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Abstract

Speckle is an inherent characteristic of tissues when as-
sessed by ultrasound. De-speckling is performed to improve
the visualization of anatomical details but the information en-
coded in speckle is often discarded. In this paper we propose
an ultrasonic decomposition procedure which estimates de-
speckled and speckle images starting with images created from
Radio Frequency (RF) data. These images are used to extract
features of tissue echogenicity (acoustic properties) and tex-
tural information of the tissue parenchyma. Three-case stud-
ies demonstrate the usefulness of the proposed decomposition
methodology for tissue characterization.

1. Introduction

In the ultrasound image formation process a transmitted ul-
trasound pulse interacts with an anatomical region of interest
providing information about internal tissue structures which is
encoded in the backscatter echo. Moreover, an image features
a characteristic granular pattern denoted in the literature by
speckle [1]. Many statistical distributions have been proposed
to model the envelope of ultrasound signals. In the case of fully
developed speckle [3,9], the backscatter echo envelope can be
described by a Rayleigh distribution, usually appropriated in
(nearly) homogeneous tissue regions. The goal of the pa-
per is to describe a complete and robust methodology provid-
ing useful echogenicity1 and texture features for tissue char-
acterization obtained from estimated de-speckled and speckle
fields. Fig.1 displays a schematic diagram of the decomposi-
tion methodology, which consists of: (i) estimation of eRF im-
age (image referring to the envelope of the RF data) from the
B-mode image displayed by the ultrasound equipment, (ii) de-
speckling estimation based on the Rayleigh distribution, per-
formed in eRF images (either estimated or computed directly
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1Echogenicity is the characteristic ability of a tissue to reflect sound waves
and produce echoes.
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Figure 1. Architecture of the proposed decom-
position procedure

from available RF data), (iii) isolation of speckle field and (iv)
tissue characterization.

2. De-speckling and Speckle estimation

Let Y = {yi,j} be the estimated N×M eRF image. In this
section we describe the procedure to estimate the de-speckled
image Σ = {σi,j}. Here, a Bayesian framework with the
MAP criterion is adopted to deal with the ill poseness nature
of the problem. Hence, the de-speckled image is obtained by
minimizing an energy function,

Σ̂ = arg min
Σ

E(Y,Σ), (1)

where E(Y,Σ) = Ed(Y,Σ) + Ep(Σ). Ed(Y,Σ), called
data fidelity term, pushes the solution toward the data and
Ep(Σ), called prior term, regularizes the solution by intro-
ducing prior knowledge about Σ. The data fidelity term is the
log-likelihood function,Ed(Y,Σ) = − log(p(Y|Σ)) where

p(Y|Σ) =
∏N,M

i,j=1 p(yi,j |σi,j) and p(yi,j |σi,j) = yi,j

σ2
i,j

e
− y2

i,j

2σ2
i,j

is the Rayleigh distribution [7]. The overall energy function,
obtained after considering the variable change x = log(σ2) is



given by:

E(Y,X) =
∑

i,j

[
y2

i,j

2
e−xi,j + xi,j

]
+ αTV (xi,j) (2)

where TV (xi,j) =
∑

i,j

√
(xi,j−xi−1,j)2 + (xi,j−xi,j−1)2.

This energy function, where the prior term is the so called
Total Variation (TV) of X = {xi,j}, is convex because all of
its terms are convex (second derivative is positive). This means
that its solution is unique and achievable.

The speckle corrupting the ultrasonic data is multiplicative
in the sense that its variance depends on the underlying signal
Σ. The image formation model may be formulated as follows:

yi,j = ηi,jσi,j , (3)

where σi,j is the intensity of pixel (i, j) of the de-speckled im-
age, while yi,j and ηi,j are the corresponding pixel intensities
in the eRF image and speckle field, respectively. The distribu-
tion of η is given by:

p(ηi,j) =
∣∣∣∣
dy

dη

∣∣∣∣ p(y) = ηi,je
−η2

i,j/2, η ≥ 0, (4)

which is an unit parameter Rayleigh distribution independent
of σ. The computation of the speckle field, N = {ηi,j}, is
performed from the estimated eRF image, Y = {yi,j}, and
from the de-speckled one, Σ = {σi,j}, yielding: ηi,j = yi,j

σi,j
.

3. Features extraction

In order to investigate the usefulness of the proposed
methodology for tissue characterization, different types of fea-
tures are extracted from the de-speckled and speckle images.

Echogenicity index The echogenicity index, referring to tis-
sue distinct acoustic properties in a specific area, is represented
by the averaged value σ̄k of local echogenicity values σm,n

inside a block k = {σm,n : m = 1, ..., M, n = 1, ..., N} ex-
tracted from the de-speckled image Σ̂. This de-speckled image
is used, for instance, in Fig. 2c.1.

Echogenicity decay The intensity decay along depth is a
common phenomenon occurring in diffuse liver disease [4]
and is also visible in high-reflectivity tissues, like calcified
carotid and coronary plaques [6]. The feature referring to
echogenicity decay, sd, is obtained by linear regression over
the mean values of each line of the block k = {σm,n : m =
1, ..., M, n = 1, ..., N}, σ̄k

m =
∑N

n=1 σm,n, where the cost
function to be minimized is given by:

J =
M∑

m=1

(sd m + b− σ̄k
m)2. (5)

Figs. 2b.1-b.2 illustrate the distinct intensity profiles in de-
speckled images for normal and pathologic liver, overlayed
with the estimated echogenicity decays for each case.
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Figure 2. Case Studies

Speckle-derived wavelet energies The structure and direc-
tionality of speckle is hypothesized as being a relevant feature
for tissue discrimination. Thus, suitable textural descriptors
could be extracted from the isolated speckle field by consider-
ing the first Haar wavelet decomposition energies, particularly
the approximation energy Ea, together with horizontal EdH
and vertical detail energies EdV . Additionally, to quantify the
relative detail in each direction, the ratio of horizontal to verti-
cal detail energies, rHV = EdH

EdV is computed, where rHV ≈ 1
means that there is no predominant speckle directionality.

4. Results

In summary, the de-speckling process produces a de-
speckled image, carrying information about the local tissue
echogenicity, and a speckle field, related to the structure and
the characteristic pattern of a local tissue area. It becomes now
important to demonstrate that the estimated outcomes of the
overall decomposition procedure, specifically the de-speckled
image and speckle field, provide information that is properly
related to different morphological and textural properties of
the tissue. Given this, we present 3 case studies using distinct
ultrasonic data, which are here described (Fig. 2 and Table 1).



Description Features Results Observations

C.S.1

inter and intra- tissue tex-
tural analysis from com-
puted speckle fields of
carotid plaque, thyroid and
liver (Fig. 2a)

wavelet based detail energies

wa: Ea=99.57 Ed=0.43 rHV =2.8
wb: Ea=95.43 Ed=4.57 rHV =4.7
wc.1: Ea=92.34 Ed=7.66 rHV =2.3
wc.2: Ea=94.32 Ed=5.68 rHV =3.1
wc.3: Ea=96.30 Ed=3.70 rHV =2.1

features differ significantly
from one anatomical structure
to another, as well as from one
tissue area to another

C.S.2

liver steatosis binary clas-
sification (Fig. 2b) [5], us-
ing a sample of 20 livers,
clinically labelled as nor-
mal or steatotic (with ab-
normal lipid retention)

wavelet based detail energies;
echogenicity decay from de-
speckled image (Figs.2b.1-b.2)

Sensitivity: S=1.00
Specificity: K=0.95
l.1: s̄d=0.48 (0.18) ĒdH=9.79 (2.68)
ĒdV =6.78 (1.63)
l.2: s̄d=0.80 (0.11) ĒdH=19.97
(4.54) ĒdV =4.66 (1.61)

High sensitity and specificity
results
Good discrimination between
classes (normal vs. steatotic liv-
ers) in Fig.2b.3

C.S.3

IVUS 3-type plaque tis-
sue classification [2] using
67 plaques labelled as fi-
brotic, lipidic and calcified
(Fig. 2c)

echogenicity index from de-
speckled image

Accuracy: A= 91.37(5.02
Sensitivities:
Sfib=0.91 (0.05)
Slip=0.94 (0.04)
Scal=0.91 (0.05)

the inclusion of speckle fea-
tures improves the classifica-
tion performance obtained with
an already existing classifica-
tion framework [2]

C.S.3

subject identification
based on thyroid tissue [8],
considering a population
of 10 subjects (several
samples per subject)

wavelet decomposition based
detail energies obtained from
speckle; echogenicity index
from de-speckled image

Sensitivities:
S(f.1)=0.79 (0.15)
S(f.2)=0.70 (0.07)
S(f.1, 2)=0.94 (0.10)

High sensitity values, specially
when features are combined

Table 1. Summary table

5. Conclusions

In this paper, a decomposition procedure is proposed which
is able to estimate the de-speckled and speckle components of
an ultrasound image, providing additional sources of informa-
tion, referring to echogenicity and texture. The inclusion of
this information in distinct studies here presented showed to
be favorable for tissue characterization.
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