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Abstract. This paper proposes a biometric system based on features
extracted from the thyroid tissue accessed through 2D ultrasound. Tis-
sue echo-morphology, which accounts for the intensity (echogenicity),
texture and structure has started to be used as a relevant parameter in
a clinical setting. In this paper, features related to texture, morphology
and tissue reflectivity are extracted from the ultrasound images and the
most discriminant ones are selected as an input for a prototype biomet-
ric identification system. Several classifiers were tested, with the best
results being achieved by a combination of classifiers (k-Nearest Neigh-
bors, MAP and entropy distance). Using leave-one-out cross-validation
method the identification rate was up to 94%. Features related to tex-
ture and echogenicity were tested individually with high identification
rates up to 78% and 70%, respectively. This suggests that the acoustic
impedance (reflectivity or echogenicity) of the tissue as well as texture
are feasible parameters to discriminate between distinct subjects. This
paper shows the effectiveness of the proposed classification, which can
be used not only as a new biometric modality but also as a diagnostic
tool.

1 Introduction

The thyroid is one of the largest endocrine glands in the body (see Fig.1). It
controls how quickly the body burns energy, makes proteins and how sensitive
the body should be to other hormones [15]. Thyroid ultrasonography is a non-
invasive diagnostic exam, which provides immediate information on the structure
and the characteristics of thyroid glands. This imaging modality is widely used in
clinical practice because it combines low cost, short acquisition time, absence of
ionizing radiations and sensitivity in ascertaining the morphology of the thyroid
gland, as well as the size and number of thyroid nodules.

Ultrasound images usually present a low signal to noise ratio (SNR) and
are characterized by a type of multiplicative noise called speckle that accompa-
nies all coherent imaging modalities. It appears when images are obtained by



using coherent radiation and is the result of the constructive and destructive
interference of the echoes scattered from heterogeneous tissues and organs [1].

Fig. 1. Tllustration of the thyroid gland’s anatomy and location. An ultrasound ex-
amination is performed by placing the probe on the patient’s neck (Courtesy of Mayo
Foundation for Medical Education and Research).

The characteristic granular speckle pattern present in the ultrasound images
makes the diagnostic task harder, whereas the subjectivity involved in their in-
terpretation can be regarded as their major drawback. A framework which could
provide explicit features extracted from the images would lead to a more reliable
medical diagnosis, providing the experts with a second opinion and reducing the
misdiagnosis rates.

Some studies have been developed which aim at characterizing the thyroid
tissue using ultrasound image processing and analysis. Image intensity informa-
tion has been used for the identification of thyroid Hashimoto disease [9], for the
detection of nodular thyroid lesions, and for thyroid tumor classification. Tex-
tural image information encoded by means of co-occurrence matrix features [6]
have been used for identification of chronic inflammations of the thyroid gland
[14,13] and for the discrimination between normal and pathologic tissues [4].

Tissue echo-morphology, which accounts for the intensity (echogenicity), tex-
ture and structure, has started to be used as a relevant parameter in a clinical
setting (see Fig.2). Basically, features extracted from a given region, tissue or
organ can be used to identify (classify) a patient as normal or as suffering from
a pathological condition. In a classification context, this is considered to be a
two-class problem.

This paper proposes a biometric system based on features extracted from the
thyroid tissue accessed through 2D ultrasound. Biometrics deals with identifi-
cation of individuals based on their physiological or behavioral characteristics.
Identification (Who am I?) refers to the problem of establishing a subject’s iden-
tity - either from a set of already known identities (closed identification problem)
or otherwise (open identification problem) [7].

Thyroid tissue echo-morphology qualify to be a biometric because it is a uni-
versal feature, which means that every person has the characteristic, is distinct



Fig. 2. Examples of thyroid ultrasound images, presenting different echo-morphologies.
a) Hyperechogenic, b) Hypoechogenic and c) Heterogeneous thyroids.

from one individual to another, is permanent and can be easily collected through
a common ultrasound scanner.

The paper is organized as follows. Section 2 formulates the problem and
section 3 describes the feature module used in the biometric system. Section 4
presents the classifiers used in the identification problem. Section 5 presents the
results obtained by the biometric system and section 6 concludes the paper.

2 Problem Formulation

In this paper, an analogy between two problems is made. In the context of
medical diagnosis, a subject is assigned to one of two classes N (normal) or
P (pathological). The risk of classifying pathological patients as normal (false
negatives) should be penalized. Regarding a biometric identification problem,
there is a class assigned to each individual. The maximum likelihood probabilities
(or other types of scores) are computed in order to label the individual with its
corresponding class.

The problem addressed in this paper can be stated as follows: given C; classes,
each corresponding to a different individual (registered in the database), and O;
observations, corresponding to 2D ultrasound sample images of the thyroid tissue
recorded from each individual, establish the identity of new observations (label
to the corresponding classes), which is a typical human identification problem.

The diagram block of the biometric system used in this paper is illustrated
in Fig.3. It is mainly composed of three modules: (i) the sensor module, (ii) the
feature extraction module, and (iii) the classification module.

The sensor module accounts for image acquisition. Ultrasound images of the
thyroid gland were acquired longitudinally and transversally to the neck of 10
individuals, using an ultrasound scanner (Siemens Sonoline G50) operating in
brightness (B-) mode. For each individual, the two lobes of the thyroid were
scanned and one image per lobe was acquired. All thyroids were scanned under
the same operating conditions in order to make the echo-morphological features
extracted from the images independent of the scanner properties.
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Fig. 3. Diagram block of the biometric identification system

3 Feature Extraction Module

The feature extraction module is an important part of the biometric system
because it determines which features are used for identification. In this section
it is also important to consider how the thyroid glands are segmented from the
ultrasound images, which features qualify for individual characterization, and
from those features which of them are more relevant for discriminating between
classes (subjects).

3.1 Segmentation

Before extracting the relevant features that describe the echo-morphology of
the thyroid glands it is important to segment its anatomy from the ultrasound
images. This is an important step in the development of an automatic and robust
biometric tool.

The thyroid glands are the regions of interest from where the features are to
be extracted. This can be done by manually outline the contours of the thyroid,
which is incredibly tedious and time-consuming.

One way to circumvent this problem is to use automatic or semi-automatic
methods (Active Contours [17], Level Sets [16], Graph Cuts [2, 8]). In this paper,
a semi-automatic method based on Gradient Vector Flow (GVF) active contours
(snakes) is used.

Active contours [17], or snakes, are computer-generated curves that move
within images to find the boundaries of the region of interest. The GVF snake
begins with the calculation of a field of forces, called the GVF forces, over the
image domain. The GVF forces are used to drive the snake, modeled as a physical
object having a resistance to both stretching and bending towards the boundaries
of the object. The GVF forces are calculated by applying generalized diffusion
equations to both components of the gradient of an image edge map (see Fig.4).
The semi-automatic nature of the segmentation process is due to user-dependent
initialization: in fact, to make the method more robust, the user should provide
a rough initialization of the contour by giving some initial clicks on the image.



3.2 Feature Extraction

After obtaining the segmented thyroid glands, 6 rectangular windows (32 by 32
pixels) were extracted from each lobe and were used for training. Similarly, 3
other regions were also extracted (see Fig.5) and used for testing.

Three different types of features are then computed for each rectangular
window: (i) 2 features associated with the Rayleigh distribution parameter, (ii)
4 wavelet energy coefficients, (iii) 4 radon transform parameters. These features
are also combined with the longitudinal mid-distance measure for each thyroid
gland. This distance corresponds to the vertical distance measured between the
borders of the thyroid at its middle section. In summary, 11 features are used to
characterize each sample taken from the segmented thyroids.

Fig. 4. Semi-automatic segmentation using GVF active contours: (i) original image,
(ii) image convolved with gaussian mask, (iii) image edge map, (iv) segmented thyroid
(the extraction of the mid-distance measure is also shown).

3.3 Rayleigh distribution parameters from original sample and

speckle field

The speckle pattern present in the ultrasound images is a result of the interfer-
ence of echoes at the surface of the transducer, which emanate from the acoustic
impedance of the tissues.



Several statistical models are proposed in the literature to describe this kind
of pattern [10]. One of the most used in ultrasound (US), LASER and Synthetic
Aperture Radar (SAR) is the Rayleigh distribution [3]. Commonly the speckle
pattern is called speckle noise, and is often studied in de-noising problems. An-
other view of the problem, which is considered in this paper, is to accurately
reconstruct the ultrasound images to provide a measure of the local acoustic
impedance of the tissues.

In this context, a bayesian reconstruction method with a log-Euclidean prior
is used [12]. In this approach, the ill-poseness nature of the reconstruction (de-
noising) problem is circumvented by using a priori information about the un-
known image to be estimated. The estimation is formulated as an optimization
task where a two-term energy function is minimized. The first term pushes the
solution toward the observations and the second regularizes the solution.

Fig. 5. (Left) (i) Original image, (ii) reconstructed image (local rayleigh parameters),
(iii) Speckle field, and (iv) Rayleigh estimation of the speckle field. (Right) Illustration
of samples used for testing (i) and their corresponding Rayleigh estimates, speckle field

Let X = {z;;} and Y = {y; ;} be a N x M image presenting the acoustic
impedance of the tissue and a speckle image, respectively. The speckle pattern
of the image Y = {y; ;} is described by a Rayleigh distribution,

2
yig i
p(yijleig) = —Le g, (1)
i

The estimation of X from Y is formulated as the following optimization task

X:argn}}nE(X,Y), (2)



where F(X,Y) is an energy function.

The optimization problem, described by equation (2), is usually ill-posed in
the Hadamard sense. This difficulty may be overcome by using the mazimum a
posteriori (MAP) criterion,

S—— ~——
data fidelity term  prior term

where Fy (X,Y), called data fidelity term, is the symmetric of the log-likelihood
function

N,M
Ey(X,Y)=—log | [ pwi;lzi,)| (4)

4,j=1

where it is assumed statistical independence of the observations [5].

The solution to this problem (in fact, an energy minimization problem) is an
image (see Fig.5 (ii)) in which the value of each pixel is the Rayleigh parameter
that characterizes accurately the local reflectivity of the tissue being scanned.
Thus, for each sample, one Rayleigh distribution parameter is extracted by av-
eraging the local Rayleigh parameters inside the sampled window.

Moreover, it is known that the speckle corrupting the ultrasound images is
multiplicative in the sense that its variance depends on the underlying estimated
signal X. The image formation model may be formulated as follows: ¥ = v/ X
where X is the noiseless image and 7 is the corresponding noise intensity (see
Fig.5 (iii)). A similar reconstruction procedure was performed to extract one
Rayleigh distribution parameter associated with the speckle field of each sample
(see Fig.5 (iv)). The speckle field is used in the sequel of the paper to extract
different textural features.

3.4 Wavelet energy coefficients

Texture information is hypothesized as being a relevant parameter to discrimi-
nate between thyroids and therefore individuals. One way to assess the texture of
a given sample is to decompose its corresponding speckle field using 2D wavelets
(see Fig.6(iii)). This kind of decomposition consists in using low and high pass
filters onto the approximation coefficients at level j (the original image) in order
to obtain the approximation at level j+1, and the details in three orientations
(horizontal, vertical, and diagonal). This method is performed along 3 levels.
Every subimage contains information of a specific scale and orientation, which is
conveniently separated. The amount of detail for each resolution level, which ac-
counts for the level of heterogeneity in each sample being studied, is computed as
the sum of horizontal, vertical and diagonal detail energies for each level. There-
fore, in this paper each sample will be also described by one feature accounting
for the approximation energy as well as three different detail energies.



Fig. 6. Wavelet decomposition. Multi-resolution texture is assessed through the detail
energy levels.

3.5 Radon transform features

In this paper, it is also hypothesized that the thyroid tissue may be charac-
terized by different directionality patterns observed in the ultrasound images.
The encoding of the directional patterns is realized by means of Radon Trans-
form features [11]. The idea is to project the image intensity along a radial line
oriented at different angles (0, 45, 90 and 135 degrees).

Let (x,y) be the cartesian coordinates of a point in a 2D image, and u(zx,y)
the image intensity. Then, the 2D radon transform denoted as R, (p, ) is given
by

+o00 +oo
R.(p,0) = / / u(z,y)d(p — xcosh — ysind)dxdy (5)

where p is the perpendicular distance of a line from the origin and @ is the angle
formed by the distance vector. The feature vector can be defined as

F= [U([Rul (,0, 01)"'5 Run (p’ 01)])? ey g([Ru1 (p7 0]9)’ ey Run (P, 0]3)])]’ (6)

where o = % accounts for the contribution of the radon transform along

four distinct angles 6; = {0, 45,90, 135°}.

3.6 Dimensionality reduction

At this point, 11 features per sample (each sample corresponding to a rectangular
window) were extracted: 2 features associated with the Rayleigh distribution, 1
mid-distance measure, 4 wavelet energies, and 4 radon transform parameters.
The amount of features extracted (11 features per sample, 6 samples per thyroid
lobe, 2 lobes per individual, 10 individuals) makes the identification problem a
complex task.



One way to deal with this problem and to eliminate the redundancy among
features is to use principal component analysis (PCA). This approach is used
to better handle and visualize the data by selecting the 3 most discriminating
axis in the feature space and computing the 3 most relevant features (projection
of the observations onto these axis). In summary, 3 features (components of
the PCA) per observation sample are used in the identification problem. Fig.7(i)
shows the representation of the observations (each individual sample) in the new
feature space, where the 3 components of the PCA represent the 3 dimensions
of the plot.
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Fig. 7. Feature selection using PCA. (i) Representation of the observations (6 samples
per individual) in the new PCA-derived feature space. Training samples (belonging to
different classes) are represented with light symbols while testing samples are shown
in bold. (ii) 2D feature space, showing a clear discrimination of the observed samples
into two classes (gender of subjects)

This new PCA-derived feature space can be projected onto a 2 dimensional
feature space. Fig.7(ii) shows that the 2D features are able to clearly discriminate
between two groups of individuals: one class addressed to men and the other to
women. Even though no prior information is known about the clinical status of
the individuals subject to this test it is clearly suggested that echo-morphology
information might be correlated with the different types and quantities of hor-
mones produced by men and women. This fact can lead to thyroids presenting
different acoustic impedances and textures. This also explains the good discrim-
ination between male and female populations.

At this point, we can suggest that this system might be useful as a soft
biometric system for gender identification.



4 Classification Module

In this paper, a closed set identification problem is addressed, which means
that N possible outputs are generated for N possible models. The decision on
whether to classify an observation (individual features) as being part of any of
the available classes (individual database) is based on a computed score (MAP
probability, distance measure, entropy). Three types of classifiers were studied:

4.1 K-Nearest neighbors classifier

The K-Nearest neighbors (KNN) classifier is based on the idea that an object
is classified by a majority vote of its neighbors, with the object being assigned
to the class most common amongst its k nearest neighbors. This is a common
nonlinear classifier which results, when 1NN is used, in a Voronoi tesselation of
the feature space.

4.2 MAP classifier

The Maximum a Posteriori classifier is based on the MAP probability of a class
w given an observation X

w = argmax p(w|X). (7)

In our work we assume that the observations can be modeled by a multivari-
ate gaussian distribution given by

1 —1/2(X—p)' T N (X -
P(X,ME):WQ /200w (Xmm), (8)

In this framework the discriminant function to be maximized is given by

gi(X) = log p(X |w;) + log p(w;) 9)

where g;(X) = —5 log | 2] — 5(X — ;) (X — ;) +log p(w;), and p; and o;
are maximum likelihood estimates of the mean and covariance matrices of the
pdf of class i, based on the training data; p(w;) = 1/N, being N the number of
individuals in the database.

4.3 Minimum entropy distance classifier

As it was described before, the underlying observation model for each sample is
described by a Rayleigh parameter (reflectivity) (see Fig.8(i)). The approximated
probability density function (PDFs) generated using this Rayleigh parameter can
be compared with the other PDFs in the database (Fig.8(ii)).



Conformity tests using the PDF for a given individual (testing distribution)
and the remaining PDFs from the database (training distributions) were per-
formed in order to assess which distribution better represents the observed one.

Considering the Kolmogorov-Smirnov conformity statistical test, P, = 1 —
Py, is the probability of rejecting the null hypothesis, Hy, which is the hypothesis
of the data have been generated by any of the distributions from the database.
Here, Py, = Qics(N), Qrs(\) =2 Y00, (—1)771e 22 A = ({/(N) +0.12 +

%) D, N is the number of data points and D = max|c(n) — ch(n)|, where ¢(n)

and ch(n) are the cumulative probability functions of the testing and training
distributions.

The Kullback-Leibler entropy distance is given by, d = ) p(n) log(%).
Here, p(n) is the training distribution and h(n) is the histogram of the observed
(testing) sample.
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Fig. 8. The histogram of an observed sample can be approximated by a Rayleigh
distribution with an estimated parameter which accounts for the acoustic impedance
of the sample tissue. This distribution can be compared with the others in the database
and entropy distance measures can be computed.

The aforementioned classifiers were used individually but also in a combined
scheme. The idea is to put together the classification given by each classifier and
use a voting strategy to yield a final classification for each sample.

5 Results and Discussion

The performance of the classifiers was tested through 2 experiments and the
result is summarized in Table 1. In the first experiment, 60 samples from one
thyroid lobe were used as training data and 30 samples from the same lobe were
used as testing data. The second experiment uses training data from one thyroid



Table 1. Performance of the classifiers (k-nNeighbors, MAP, SmirKolm, KullLeibler,
and combination of the mentioned classifiers) for two different data samples, using all
the features available, only textural features and features computed by PCA. These
results refer to average values of identification rates as well as standard deviations, ob-
tained through 10 consecutive runs of the classification methodology. Results achieved

with the Leave-One-Out method are also shown.

Identification Rate

Classifier Features Exp.1 Exp.2
All  |0.858 + 0.117|0.222 + 0.051
k-nNeigh PCA |0.878 4+ 0.100{0.267 + 0.050
Texture |0.789 £ 0.150(0.233 + 0.088
All  ]0.400 4+ 0.100{0.300 + 0.111
MAP PCA |0.822 4+ 0.154]0.656 + 0.256
Texture |0.722 + 0.050(0.456 + 0.077
SmirKol Rayleigh|0.700 £+ 0.067{0.211 + 0.039
kullLeib Rayleigh|0.700 + 0.067]|0.211 + 0.039
All  {0.878 £ 0.069|0.674 + 0.084
Combined PCA 0.922 4+ 0.069]0.756 + 0.184

[Combined clssf. w/ LeaveOneOut] PCA [0.937 + 0.099]0.948 + 0.175]

lobe (60 samples) and testing data from the opposite lobe (30 samples). Regard-
ing the k-nearest neighbor and the MAP classifiers, tests were performed consid-
ering (i) all the features available, (ii) only the ones corresponding to the Radon
transform and wavelets, which account for texture information, and (iii) the PCA
derived features. The conformity tests (Kolmogorov-Smirnov, Kullback-Leibler)
consider only the Rayleigh parameter (acoustic impedance or reflectivity) as de-
scribing each sample. The combined classifier was tested with all the features
available as well as with the ones obtained after PCA.

In order to make the classification scenario as reliable as possible 10 runs of
classification were performed, where in each run different thyroid samples were
selected from the images. The identification rates shown in Table 1 are averaged
values of the identification rates obtained for each run of classification.

The best performance is achieved by using a combination of all the mentioned
classifiers, considering the PCA derived features, with high correct identification
(ID) rates for both experiments (ID rate for Exp.1 = 0.922+0.069 and for Exp.2
= 0.756+0.184). When all the features are considered by the combined classifier,
ID results are also reasonably good.

The ID rates obtained both with MAP and the K-Nearest neighbors classifier
using only textural features were also high, which allows to conclude that texture
information is in fact relevant for tissue characterization and differentiation.
Textural features have already been shown to be relevant in a similar context
[13]. The poor performance of these classifiers for Exp.2 when using these kind
of features suggests that textural contents change significantly from one thyroid
lobe to the other.



A good performance is also achieved with the entropy distance classifiers
(KullLeib and SmiKol) for the first data set (Exp.1). This suggests that the
acoustic impedance of the thyroid tissue (which is the only parameter used by
these two classifiers) is indeed a good parameter for discriminating between
thyroids and thus individuals. The poor performance of these classifiers when
using the second data set suggests once more that the echo-morphology varies
significantly from one thyroid lobe to the other.

Thus, it appears that textural and echogenicity features strongly vary from
one lobe to another and therefore in order to improve the effectiveness of using
echo-morphological features in both a clinical and a biometric setting, only one
lobe of the thyroid should be considered for study.

Another estimate of the accuracy of the classifier uses the leave-one-out
method. In this case, all but one sample from each lobe (Exp.1) or from both
lobes (Exp.2) were used, thus using a larger training data set. Again, the com-
bined classifier was used because it was the one which achieved better results
in the previous experiment. Again, considering Table 1 it is observed a good
performance of the classifier, in which the classifier even outperforms for Exp.2
(ID rates for Exp.1: 0.937 + 0.099 and Exp.2: 0.948 & 0.175). This suggests that
the number of samples in the database significantly affects the performance of
the classifier.

6 Conclusions

Computer derived features from 2D ultrasound images of the thyroid glands were
used as part of a prototype biometric system. These features are related to the
acoustic impedance, texture and morphology of the thyroid tissue.

Good results were achieved with all the classifiers used individually but the
best performance was obtain with a combination of all the classifiers when using
the three most discriminant features, computed by PCA. Moreover, reasonably
high identification rates were also achieved with the entropy distance classifiers
considering the Rayleigh distribution parameter, suggesting that the acoustic
impedance, or reflectivity, of the tissues is a relevant feature to discriminate
between individuals. Similarly, good performance was achieved when textural
features computed from the speckle field were considered, which allows to con-
clude that the speckle field has important textural content. Analysis of thyroid
echo-morphology should be further exploited because it appears to be very useful
not only as a (soft) biometric system but also as a diagnostic tool.

Preliminary results, using 11 parameters extracted from ultrasound images,
are encouraging. Further studies, involving larger data sets (more individuals
and more samples), as well as observations taken from multiple sessions along
distinct time instants, are required to better establish the accuracy of this new
biometric modality.
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