
Nonlinear Attitude Estimation Using Active Vision and Inertial
Measurements

S. Brás, R. Cunha, J.F. Vasconcelos, C. Silvestre and P. Oliveira

Abstract— In this paper we consider the problem of esti-
mating the attitude of a rigid body equipped with a triad of
rate gyros and a pan and tilt camera. The nonlinear attitude
observer integrates angular velocity measurements from rate
gyros, with images of a planar scene provided by the camera. By
exploiting directly sensor information, i) a stabilizing feedback
law is introduced and the exponential convergence to the
origin of the estimation errors is shown; ii) an active vision
system is proposed that relies on an image-based exponentially
ISS control law for the camera pan and tilt angular rates
to keep the features in the image plane. The discrete time
implementation of the observer makes use of recent results in
geometric numeric integration to preserve the rotation matrix
properties. Simulated and experimental results demonstrate the
effectiveness and applicability of the proposed solution.

I. INTRODUCTION
Computer vision has long been recognized as an extremely

flexible means of sensing the environment and acquiring
valuable information for pose estimation and control. Over
the last decade, awareness of this potential has brought about
a widespread interest in the field of vision-based control
and navigation. Vision-based techniques can be seen as a
reliable alternative to GPS based navigation for the operation
of Unmanned Aerial Vehicles’ (UAVs) in indoors and urban
environments. The aim of this paper is the development of
a nonlinear image based observer to estimate the vehicle
attitude relative to a set of image features.

The use of cameras as positioning sensor in control and
navigation applications has its most significant representative
in the body of work devoted to vision-based control. Over the
years, this topic has been extensively studied, experimentally
tested, and is well documented (see for example [1] and
references therein). The literature on vision-based rigid-body
stabilization and estimation highlights important questions
and indicates possible solutions to i) keeping feature visi-
bility along the system’s trajectories for a large region of
attraction [2] ii) minimizing the required knowledge about
the 3-D model of the observed object [3], iii) guaranteeing
convergence in the presence of camera parametric uncer-
tainty and image measurement noise [3], iv) establishing
observability conditions for attitude estimation [4], [5].
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In many applications it is desired to design observers based
only on the rigid body kinematics, that are an exact descrip-
tion of the physical quantities involved. In this approach, the
attitude of the vehicle is propagated by integrating inertial
sensor measurements [6], [7], [8]. Research on the problem
of deriving a stabilizing law for systems evolving on mani-
folds, where attitude is parameterized, can be found in [9],
[10], [11], [12], [13], that provide important guidelines for
observer design and discuss the topological characteristics
and limitations for achieving global stabilization on the
SO(3) manifold.

Nonlinear observers are usually formulated in the
continuous-time domain, and the practical implementation of
these algorithms calls for advanced discrete-time integration
algorithms. The development of numeric integration methods
that preserve geometric properties, has witnessed in the last
fifteen years a remarkable progress, and particular empha-
sis was placed by the scientific community on differential
equations integration methods evolving on Lie groups. These
methods were originally proposed by Crouch and Grossman
in [14], and the general order conditions computed in [15]. In
[16] the author construct generalized Runge-Kutta methods
for integration of differential equations evolving on Lie
groups, where the computations are performed in the Lie
algebra, which is a linear space. More recently, the work
in [17], [18] derives the order conditions for commutator
free Lie group methods, to overcome some of the prob-
lems associated with the computation of commutators. An
application of geometric numeric integration to multi-body
dynamics evolving in SE(3) can be found in [19].

In this work we consider the problem of estimating the
attitude of a rigid body equipped with a triad of rate gyros
and a pan and tilt camera. The proposed attitude nonlinear
observer integrates angular velocity measurements from rate
gyros, with images of a planar scene provided by an active
vision system. By exploiting directly sensor information, a
stabilizing feedback law is proposed and the exponential
convergence to the origin of the estimation errors is shown.
As a second goal, we develop an active vision system
targeted at keeping the features inside the image plane, which
relies on the application of an image-based control law for
the camera pan and tilt angular rates.

The discrete time implementation of the observer is ad-
dressed. Using recent results from numerical analysis, an
integration method is adopted to approximate conveniently
the original continuous time observer. The discrete time
algorithm is detailed and its performance is illustrated in
simulation. Discrete time implementation results, with noise



in the inertial and visual measurements, are presented to
support that the algorithm can be adopted in practice.

The paper is structured as follows. In Section II, the atti-
tude estimation and the camera pan and tilt control problems
are introduced. The sensors installed onboard the vehicle are
described and the frames adopted in the work are introduced.
In Section III the attitude observers are presented, and their
properties are highlighted. A low complexity discrete time
implementation of the observer is presented in Section V.
In Section VI simulations illustrate the performance of the
observer discrete time approximation and the pan and tilt
controller. A real time prototype is described in Section VII,
and experimental results a shown. Concluding remarks and
comments on future work are presented in Section VIII.

NOMENCLATURE
The set of real n × m matrices is denoted as

M(n,m) and M(n) := M(n, n). The set of skew-
symmetric, orthogonal, and special orthonormal matrices
are denoted as K(n) := {K ∈ M(n) : K = −KT},
O(n) := {U ∈ M(n) : UTU = I}, SO(n) :=
{R ∈ O(n) : det (R) = 1}, respectively. The n-
dimensional sphere and ball are described by
S(n) :=

{
x ∈ Rn+1 : xTx = 1

}
and B(n) :={

x ∈ Rn+1 : xTx ≤ 1
}

, respectively. The notation diag(a)
describes a diagonal matrix formed by placing the elements
of a ∈ Rn in the main diagonal. A generic rotation matrix
that transforms a vector from frame {A} to frame {B} is
denoted by B

AR. The time dependence of variables will be
omitted in general, except when considered necessary for
clarity of presentation.

II. PROBLEM FORMULATION
Consider a rigid body equipped with a triad of rate gyros

and a pan and tilt camera. Let {B} be the frame attached to
the rigid body, {L} the local frame attached to the feature
plane, and {C} the camera frame with origin at the camera’s
center of projection and z-axis aligned with the optical axis.
The observed scene consists of four points whose coordinates
in {L} are denoted by Lxi ∈ R3, i ∈ {1, . . . , 4}. Without
loss of generality, the origin of {L} is assumed to coincide
with the centroid of the feature points so that

4∑

i=1

Lxi = 0. (1)

The image based navigation problem illustrated in Fig. 1
can be summarized as the problem of estimating the attitude
of a rigid body given by the rotation matrix from {L} to
{B}, denoted as L

BR, using images of the feature points and
angular velocity readings. An active image-based controller
for the camera pan and tilt angles will also be considered to
keep the features in the image plane.

A. Sensor Suite
The triad of rate gyros is assumed to be aligned with {B}

so that it provides measurements of the body angular velocity
ωB corrupted by a constant bias term

ωr = ωB + bω, ḃω = 0.
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Fig. 1. Diagram of the experimental setup.

As shown in Fig. 1, the camera can describe pan and tilt
motions corresponding to the angles ψ and φ, respectively.
As such the rotation matrix from {C} to {B} is given by

B
CR = RpanRtilt (2)

Rpan = Rz(π/2 + ψ), Rtilt = Rx(π/2− φ)

where Rz(·) and Rx(·) denote rotation matrices about the
z-axis and x-axis, respectively. The distances between the
{C} origin and the tilt rotation axis and between the {B}
origin and the tilt rotation axis, are respectively, l1 and l2.

For simplicity of notation, we denote the configuration
of {C} with respect to {L} by (R,p) ∈ SE(3), where
R = L

CR is the rotation matrix from {C} to {L} and p
the position of the origin of {L} with respect to {C}. Then,
the 3-D coordinates of the features points expressed in {C}
can be written as qi = RT Lxi+p, i ∈ {1, . . . , 4} and, using
the perspective camera model, the 2-D image coordinates of
those points yi ∈ R2 can be written as [5]

[
yi

1

]
= δiAqi, (3)

where A ∈ R3×3 is the camera calibration matrix assumed
to be known and δi is an unknown scalar encoding depth
information and given by

δi = (eT
3qi)−1, e3 = [0 0 1]T . (4)

B. Attitude kinematics
In what follows, we will address the problem of estimating

the attitude of the camera frame {C} with respect to the
local frame {L} given by R ∈ SO(3). Assuming that the
camera pan and tilt angles are known, we can readily obtain
the attitude of the rigid body L

BR = RC
BR as proposed. The

camera frame attitude kinematics can be described by

Ṙ = R (ω)∧ , (5)

where once again for simplicity of notation ω ∈ R3 denotes
the camera angular velocity and (x)∧ is the skew symmetric
matrix defined by the vector x ∈ R3 such that (x)∧y = x×
y, y ∈ R3. Taking the time derivative of (2), straightforward
computations show that ω can be written as

ω = C
BRωB + RT

tilt[−φ̇ 0 ψ̇]T , (6)

where ψ̇ and φ̇ are the time derivatives of the camera pan
and tilt angles, respectively.
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Fig. 2. Block diagram of the attitude observer and camera controller. The
quantities R̂ and b̂ω are, respectively, the attitude and angular rate bias
estimates.

C. Problem Statement

In summary, the estimation problem addressed in this
paper can be stated as follows:

Problem 1: Consider the attitude kinematic model de-
scribed by (5). Design a dynamic observer for R based on
ωr and yi, i = {1, . . . , 4}, with the largest possible basin of
attraction.

To develop an active vision system using the camera
pan and tilt degrees of freedom, we consider the following
problem:

Problem 2: Let ȳ be the image of the features’ centroid
given by [

ȳ
1

]
= δ̄Ap, δ̄ = (eT

3p)−1. (7)

Design a control law for ψ̇ and φ̇ based on ωr and yi, i ∈
{1, . . . , 4}, such that ȳ approaches the center of the image
plane.

Figure 2 depicts the cascaded composition of the system,
where the angular rate bias estimate is fed into the pan and
tilt controller.

III. PROPOSED OBSERVER

In the following, we propose a solution to Problem 1 that
builds on results presented in [6], where a nonlinear position
and attitude observer based on landmark measurements and
biased velocity measurements was shown to provide expo-
nential convergence to the origin for the position, attitude,
and bias errors. The proposed observer is designed to match
the rigid body attitude kinematics taking the form

˙̂R = R̂(ω̂)∧, (8)

where R̂ is the estimated camera attitude and ω̂ is the
feedback term designed to compensate for the estimation
errors.

Some rotational degrees of freedom are unobservable in
the case features are all collinear as discussed in [6] and
references therein. The following necessary condition is
assumed.

Assumption 1: The features are not all collinear.
Building on the results presented in [6], we will consider

a feedback law for ω̂ that uses measurements of the form

U = RT [Lu1 . . . Lun] ∈ R3×n, (9)

where Lui ∈ R3 are time-invariant in the local frame {L}. To
obtain these vector readings from the image coordinates yi,

we explore the geometry of planar scenes. For that purpose,
we introduce the matrices

X =
[

Lx1 · · · Lx4

]
, Y =

[
y1 · · · y4

1 · · · 1

]
, (10)

where Lxi are the 3-D coordinates of the feature points
expressed in {L} and yi the corresponding 2-D image
coordinates. We can now state the following lemma.

Lemma 1: Let σ = [σ1 σ2 σ3 σ4]T ∈ R4 \ {0} and ρ =
[ρ1 ρ2 ρ3 ρ4]T ∈ R4 \ {0} be such that Yσ = 0, Xρ =
0, and 1T ρ = 0, where 1 = [1 1 1 1]T . Consider that the
features position verifies the Assumption 1 and the camera
configuration is such that the image is not degenerate (neither
a point nor a line). Then, the depth variables δi defined in
(4) can be written as

δi = α
ρi

σi
, (11)

where α ∈ R, ρi %= 0, and σi %= 0 for i ∈ {1, 2, 3, 4}.
Proof: Due to space constraints, we present a brief

outline of the proof. We start by noting that Y and X can
be related by an homography transformation given by Y =
AM(X + n1T )Dδ , where M = −R(n∧)2 + pnT is the
homography matrix, n is a unitary vector perpendicular to
the feature plane, 1 = [1 1 1 1]T , and Dδ = diag(δ), δ =
[δ1 δ2 δ3 δ4]T . Assuming that M is nonsingular, which is
true for camera configurations that do not lead to degenerate
images (straight lines and points), we can write

Yσ = 0 ⇔ AM(X + n1T )Dδσ = 0 ⇔
XDδσ = −n1T Dδσ ⇔ XDδσ = 0 ∧ 1TDδσ = 0 (12)

If no three points are collinear, it follows that
1) for any vector ρ = [ρ1 ρ2 ρ3 ρ4]T %= 0 such that Xρ =

0 and 1T ρ = 0, the inequality
∏4

j=1 ρj %= 0 also holds;
2) for any vector σ = [σ1 σ2 σ3 σ4]T %= 0 such that

Yσ = 0, the inequality
∏4

j=1 σj %= 0 also holds;
Then (12) is equivalent to Dδσ = αρ ⇔ δ = δD−1

σ ρ, where
α ∈ R and Dσ = diag(σ).

Writing (3) in matrix form and using Lemma 1, we have

Y = A(RTX− p1T )αD−1
σ Dρ

where Dρ = diag(ρ). From the feature centroid constraint
X1 = 0, it follows that

αRTX = A−1YD−1
ρ Dσ(I− 1

n
11T ). (13)

which takes the form of (9) up to a scale factor. We can use
the properties of the rotation matrix and the positive depth
constraint δi > 0 to obtain the normalized vector readings

x̄i = RT
Lxi

‖Lxi‖
= sign(α)

αRT Lxi

‖αRT Lxi‖
. (14)

where sign(α) = sign
(

ρi

σi

)
. Finally, we define the matrix U

using linear combinations of (14) so that U = X̄AX, where
AX ∈ R5×5 is nonsingular and X̄ = [x̄1, . . . , x̄4, x̄i× x̄j ]
for any linear independent x̄i and x̄j .



The directionality associated with the features positions
is made uniform by defining transformation AX such that
UUT = I. The desired AX exists if Assumption 1 is satisfied
[6].

Let the bias in angular velocity measurements be constant,
i.e. ḃω = 0, and consider the Lyapunov function

V =
||R̃− I||2

2
+

1
2kbω

||b̃ω||2, (15)

where kbω > 0, b̃ω := b̂ω − bω, and b̂ω is the estimated
bias in angular velocity measurements. Its time derivative is
given by

V̇ = sT
ω(ω̂ − C

BRω) +
1

kbω

˙̃bT
ωb̃ω, (16)

where sω = RT

(
R̃− R̃T

)∨
, and (·)∨ is the unskew

operator, such that, ((a)∧)∨ = a, a ∈ R3. The feedback
term sω can be expressed as an explicit function of the sensor
readings [6, Theorem 8]. The attitude feedback law is

ω̂ = C
BR

(
ωr − b̂ω + RT

pan[−φ̇ 0 ψ̇]T
)
− kωsω

= C
BR

(
ω − b̃ω

)
− kωsω,

(17)

where kω > 0. Applying the feedback law (17) to the
Lyapunov function (16) and defining

˙̂bω := kbω
B
CRsω, (18)

the Lyapunov function derivative is given by V̇b =
−kω||sω||2.

Considering the feedback law (17) and the differential
equation (18), the closed loop attitude error dynamics results
in

˙̃R = −kωR̃
(
R̃− R̃T

)
− R̃

(
RC

BRb̃ω

)∧

˙̃bω = kbω
B
CRRT

(
R̃− R̃T

)∨ (19)

The Lemma 2 provides sufficient initial conditions for the
boundedness of the estimation errors that exclude conver-
gence to the equilibrium points satisfying ||R̃ − I||2 = 8.
Global asymptotic stability of the origin is precluded by
topological limitations associated with those points [20].

Lemma 2: The estimation errors x̃b =
(
R̃, b̃ω

)
are

bounded. For any initial condition that verifies
1

kbω
||b̃ω(t0)||2

8− ||R̃(t0)− I||2
< 1, (20)

the attitude error is bounded by ||R̃(t) − I||2 < 8 for all
t ≥ t0.

Proof: Let Ωρ = {x̃b ∈ Db : V ≤ ρ}. As the
Lyapunov function (15) is a weighted distance from the
origin, ∃γ ||x̃b||2 ≤ γV and Ωρ is a compact set. V̇ ≤ 0
implies that any trajectory that starts in Ωρ remains in Ωρ.
So, ∀t≥t0 ||x̃b(t)||2 ≤ γV (x̃b(t0)) and the state is bounded.

The gain condition (20) is equivalent to V (x̃b(t0)) < 4.
The invariance of Ωρ implies that V (x̃b(t)) ≤ V (x̃b(t0)),

and so 1
2 ||R̃(t) − I||2 ≤ V (x̃b(t0)) < 4 and consequently

||R̃(t)− I||2 < 8 for all t > t0.
Exploiting the results derived for LTV systems in [21],

Theorem 1 establishes the exponential convergence of the
system (19) trajectories to the desired equilibrium point.

Theorem 1: Assume that ω, ψ̇ and φ̇ are bounded. Then
the attitude error and the bias estimation error converge
exponentially fast to the equilibrium point

(
R̃, b̃ω

)
= (I, 0),

for any initial condition satisfying (20).
Proof: The result can be obtained by following the

proof of [22, Theorem 1] where the properties of a similar
Lyapunov function are derived. Despite that, for sake of
clarity, the proof will be presented here.

Let the attitude error be given in the quaternion form q̃ =
[
q̃T

q q̃s

]T , where q̃q = R̃−R̃T

4
√

1+tr(R̃)
and qs = 1

2

√
1 + tr(R̃).

The closed-loop dynamics are

˙̃qq =
1
2
Q (q̃)

(
−RC

BRb̃ω − 4kωq̃q q̃s

)

˙̃bω = 4kbω
B
CRRTQT (q̃)q̃q,

(21)

where Q(q̃) := q̃sI + (q̃q)
∧, and ˙̃qs = −2kωq̃T

q q̃q q̃s −
1
2 q̃

T
q

C
BRb̃ω . Using ||q̃q||2 = 1

8 ||R̃ − I||2 the Lyapunov
function in quaternion form is given by V = 4||q̃q||2 +

1
2kbω

||b̃ω||2. It will be used a coordinate transformation like
the one proposed in [8].

Let xq :=
(
q̃q, b̃ω

)
, xq ∈ Dq and Dq := B(3)×R3, and

define the system (21) in domain Dq = {xq ∈ Dq : Vb <
4}. The set Dq corresponds to the interior of a Lyapunov
surface, so it is well defined and positively invariant. The
condition (20) implies that the initial state is contained in
Dq.

Let x& := (q̃q&, b̃ω&) and Dq := R3 ×R3, and define the
linear time-varying system

ẋ& =
[
A(t,λ) BT (t,λ)
−C(t,λ) 03×3

]
x&, (22)

where λ ∈ R+
0 × Dq , and the submatrices are de-

scribed by A(t,λ) = −2kω q̃s(t,λ)Q(q̃(t, λ)), B(t,λ) =
− 1

2
B
CRRTQT (q̃(t,λ)), C(t,λ) = −4B

CRRTQT (q̃(t,λ)),
and q̃(t,λ) represents the solution of (21) with initial condi-
tion λ = (t0, q̃(t0), b̃ω(t0)). The matrices A(t,λ), B(t,λ),
and C(t,λ), are bounded and the system is well defined.

If the parameterized system is λ-UGES, then the sys-
tem (21) is uniformly exponentially stable in Dq [21, p.14-
15]. The parameterized system verifies the assumptions of
[21]:

1) For bounded ω, ψ̇ and φ̇, the elements of B(t,λ), and
∂B(t,λ)

∂t are bounded.
2) The positive definite matrices P (t,λ) = 8kbωI

and Q(t,λ) = 32kbω q̃2
s(t,λ)kωI, satisfy

P (t,λ)BT (t,λ) = CT (t,λ), −Q(t,λ) =
AT (t,λ)P (t,λ) + P (t,λ)A(t, λ) + Ṗ (t,λ) and
are bounded, namely qmI ≤ Q(t,λ) ≤ qMI, where
qM = 32kωkbω , qm = qM minxq∈Dq (1− ‖q̃q‖2).

The system (22) is λ-UGES if and only if B(t, λ) is λ-
uniformly persistently exciting [21]. In order to guarantee



that, the sufficient condition B(τ, λ)BT (τ, λ) ≥ αBI is
shown for αB > 0 independent of τ and λ. Given that

4yB(τ, λ)BT (τ, λ)y′ = ||y||2 −
(
yT B

CRRq̃q

)2

≥ ||y||2
(
1− ||q̃q||2

)
≥ ||y||2 min

xq∈Dq
(1− ‖q̃q‖2).

Then B(τ,λ)BT (τ, λ) is lower bounded and persistency of
excitation condition is satisfied. Consequently, the parame-
terized system (22) is λ-UGES, and the nonlinear system
(21) is exponentially stable in the domain Dq .

IV. CAMERA PAN AND TILT CONTROLLER

In this section, we address the problem of keeping the
features inside the image plane, resorting to the camera’s
ability to describe pan and tilt angular motions. As defined
in the statement of Problem 2, the strategy adopted to
achieve this goal amounts to controlling the camera pan
and tilt angular velocities ψ̇ and φ̇, using directly the image
measurements yi and the angular velocity readings ωr, so as
to keep the image of the features’ centroid at a close distance
from the center of the image plane.

We resort to Lyapunov theory and consider the following
candidate Lyapunov function

W =
1
2
pT Πp =

1
2
(p2

x + p2
y) (23)

where p = [px py pz]T is the position of {L} expressed
in {C} and Π ∈ R3×3 is the x-y plane projection matrix.
Using the expression for ω given in (6), the camera position
kinematics can be written as

ṗ = (p)∧ ω − v

= (p)∧ (RT
tiltR

T
panωB + RT

tilt[−φ̇ 0 ψ̇]′)− v (24)

where v is the camera linear velocity. We recall that by
definition p coincides with the position of the features’
centroid and that according (7) its image is given by ȳ.
Therefore, if we can guarantee that the Lyapunov function
W is decreasing, or equivalently [px py] is approaching the
origin, then we ensure that ȳ is approaching the center of
the image plane. To simplify the notation and without loss
of generality we will assume from now on that A = I so
that ȳx = px/pz and ȳy = py/pz .

Before proceeding to define the pan and tilt control law,
we highlight the fact that ȳ can be easily obtained from the
image measurements yi. By noting that the feature centroid
lies at the intersection between the vectors x3−x1 and x4−
x2 and the intersection between lines is clearly an image
invariant, we can immediately conclude that ȳ coincides with
the point at the intersection between y3 − y1 and y4 − y2

(see Fig. 3).
Lemma 3: Let the camera position kinematics be de-

scribed by (24) and assume that the rigid body and camera
motions are such that pz > 0 and cos φ %= 0. Consider the
control law for the camera pan and tilt angular velocities
given by

[
φ̇
ψ̇

]
= kc

[
0 1
1

cos φ 0

]
ȳ −

[
1 0 0
0 tanφ 1

]
RT

panω̂B (25)
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Fig. 3. Projection of the visual features in the image plane.

where ω̂B = ωr − b̂w and kc > 0. Then, the time derivative
of the Lyapunov function W along the system trajectories
satisfies

Ẇ ≤ −(kc − ε)W, ∀ ‖Πp‖ ≥ 1
ε

(
‖Πv‖+ pz‖b̃w‖

)

(26)
and 0 < ε < kc.

Proof: Taking the time derivative of (23) and using the
expressions for ṗ given in (24), we obtain

Ẇ = pT Π((e3)
∧ pzω − v)

= pz[py − px 0]RT
tilt(R

T
panωB + [−φ̇ 0 ψ̇]T )− pT Πv.

Choosing φ̇ and ψ̇ such that

RT
tilt(R

T
panω̂B + [−φ̇ 0 ψ̇]T ) = −kc[−ȳy ȳx κ]T (27)

for some κ and noting that ωB = ω̂B − b̃w yields Ẇ =
−kcW − pT Π(v + pz (e3)

∧ C
BRb̃w) and consequently (26)

holds. Solving (27) for φ̇, ψ̇, and κ, we obtain the control
law (25).

Remark 1: If we apply the control law (25) to the system
with state Πp = [px py]T and interpret v and pzb̃w as inputs,
it follows from (26) that the system is exponentially input-to-
state stable (ISS). As such, the distance between the image
of the centroid ȳ and the origin is ultimately bounded by
‖Πv/pz‖ and ‖b̃w‖ and converges exponentially fast to that
bound. Moreover, if Πv/pz and b̃w converge to zero so does
ȳ.

V. DISCRETE TIME IMPLEMENTATION
In this section we propose a procedure to implement the

attitude observer proposed in Section III in discrete time.
Several techniques can be adopted for discretization of non-
linear differential systems. The choice of algorithm depends
on the problem at hand, where stability and convergence are
seldom guaranteed in general.

The implementation is obtained by applying numeric inte-
gration methods to the observer continuous time dynamics.
The integration method should guarantee that the discrete
time implementation approximates conveniently the original
continuous time observer. Classic Runge-Kutta methods can
not be correctly applied to rotation matrix dynamics since
they are not able to preserve polynomial invariants like the



determinant [23, Theorem IV.3.3]. A different option is to
apply a method that intrinsically ensure the orthogonality,
like a Lie group integrator. In general, higher order methods
will lead to better approximations, but involve higher com-
putational costs that are justifiable only if the sensor data is
such that it contains high order terms information. Hence,
the selection of the method depends on the quality of the
sensor suite, the desired sampling rate, and the computational
resources available.

The attitude observer dynamics is composed by differential
equations (8) and (18), evolving in SO(3) and R3, respec-
tively. The first is integrated resorting to geometric numeric
integration methods namely, the Crouch-Grossman Method
(CG) [14], the Munthe-Kaas Method (MK) [24], and the
Commutator-Free Lie group Method (CF) [17]. The second
is implemented in discrete time using a classical numeric
integration technique.

The equation (8) of observer dynamics is not in the general
form Ṙ = Ω(t,R)R, which is assumed in the referred
geometric integration methods, nonetheless an equivalent
equation in the desired form can be obtained by transposing
(8) which gives

( ˙̂R
)T

=
(
R̂(ω̂)∧

)T

⇔ ˙̂RT = −(ω̂)∧R̂T .

Notice that in the present case, ω̂ is independent of R̂
allowing for a substantial simplification of the algorithms.

The presented geometric numerical integration algorithms
may require the knowledge of the function ω̂(t) at instants
between sampling times. Alternative sampling and computa-
tion strategies can be adopted to obtain an approximation of
this function using methods such as polynomial interpolation
of the sampled data. In the present work, the unit is equipped
with tactical grade inertial sensors and computational re-
sources are limited, then ω̂ is linearly interpolated in the
interval [(k − 1)T, kT ], where T is the sample period. Note
that, due to the adopted interpolation, the use of integration
methods with order higher that two, do not improve the
methods accuracy.

The complexity required to implement each step of the
second order CG and MK methods, and the third order CF
method is summarized in Table I, for the operations in SO(3)
Exp(.), Dexp-1(.), and matrix multiplication (mmult), as
defined in [19]. The coefficients for these methods can be
obtained in [23], [19]. Note that there is no second order
coefficients for CF method. The considered methods have
similar performance due to the linear interpolation of ω̂.
Interestingly enough, in the SO(3) manifold Exp(.) and
Dexp-1(.) are functions with a close form solution and with
similar computational cost. Due to its lower computational
cost, the second order CG method is selected.

The discrete time implementation of equation (18) was
obtained by using a second order Adams-Moulton Method,
see [25] for further details. This selection was done based on
similar arguments as those used for (8). The resulting attitude
observer numerical integration algorithm can be summarized

TABLE I
COMPLEXITY IN EACH STEP FOR CG, MK AND LC METHODS.

operation Exp Dexp-1 mmult
CG 2nd order 1 0 1
MK 2nd order 1 1 2
CF 3rd order 2 0 2

as

b̂ω k = b̂ω k−1 +
T

2
(Kbωsω k + Kbωsω k−1)

RT
k = Exp

(
TK(1)

)
RT

k−1, K(1) = − (ω̂ (kT − T/2))∧

where ω̂(kT −T/2) ≈ 1
2 (ω̂(kT − T ) + ω̂(kT )). Since this

is an implicit algorithm a numeric technique like the Fixed-
Point Method should be executed in each integration step.

VI. SIMULATION
To assess the effectiveness of the proposed ensemble, this

section illustrates, in simulation, the dynamic behavior of
the active camera pan and tilt controller and the discrete
time implementation of the attitude observer about a typical
vehicle maneuver. The tuning capabilities of the observer and
the controller are also displayed for two sets of feedback
gains.

In the simulation, the positions of the features are Lx1 =
[0 − 1 − 1]T m, Lx2 = [0 1 − 1]T m, Lx3 = [0 − 1 1]T m,
and Lx4 = [0 1 1]T m, that satisfy equation (1) and
Assumption 1. The distances l1 and l2 are set to 0.1 m,
and 0.2 m, respectively. The vehicle simulated trajectory is
characterized by a circular motion parallel to the Lx,L y,
plane with a radius of 2 m. The associated centrifugal
acceleration is aligned with the direction of the Bz axis, the
initial velocity is −4π/12.5 m s−1 along the By axis, and at
time 10 s the linear velocity decreases linearly during 5 s,
reaching zero when the vehicle reaches the starting point of
the maneuver. The observer sample time is set to 0.02 s.

The initial estimation errors in the simulations are ||R(0)−
I|| = 1.4460, b̃ω(0) = π

180 [0.5 0.5 0.5]T rad, and the initial
pan and tilt camera angles are both set to 20 π

180 rad, thus,
condition (20) is satisfied by the initial conditions.

Figure 4 illustrates the stability and the convergence of
the estimation errors of the observer discrete time imple-
mentation, validating the results of the Section III. The time
evolution of the norm of the center of the features, ||ȳ||, and
the actuation imposed by the camera pan and tilt controller
are shown in Fig. 5. The overshoot on ||ȳ|| is due to the
initial bias estimate error. Notice that, as expected, when the
camera linear velocity is non zero the center of the features
in the image plane differs from the center of the image. The
figures also show that the feedback gains can be used to
tune the convergence characteristics of the observer and the
controller. Finally, Fig. 6 depicts the evolution of ||ȳ|| in the
image plane.

VII. EXPERIMENTAL RESULTS
In this section we describe the practical implementation of

the proposed observer and camera pan and tilt controller. The
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experimental setup used is composed by a MemSense nIMU
(Fig. 7(a)), that provides the angular velocity measurements
and an AXIS 215 PTZ Camera (Fig. 7(b)). The sensors

(a) Memsense nIMU. (b) AXIS 215 PTZ Camera.

Fig. 7. Hardware.

measurements are provided to the estimator without any pre-
filtering. The features considered consist of circles segmented
by color and placed in Lx1 = [0 − 0.5 − 0.3]T m,
Lx2 = [0 0.5 − 0.3]T m, Lx3 = [0 − 0.5 0.3]T m and
Lx4 = [0 0.5 0.3]T m. The distances l1 and l2 of the
AXIS 215 PTZ are 0 m, and 0.088 m, respectively. The
camera pan and tilt controller and estimation algorithms are
implemented in a PC using C language. The system sampling
frequency is set to 10 Hz, due the time constrains on the
communication with the camera and the image processing
time. In the following, and for the sake of readability, the
estimator results are displayed using Z-Y-X Euler angles,
roll, pitch, and yaw, from frame {B} to frame {L}.

The selected gains are kω = 1, kbω = 0.01, and kc = 0.5.
Notice that the use of high values for the gains kbω gives
better bias estimation characteristics but less performance is
obtained in the attitude estimates, since the estimator tends
to amplify the measurements noise. Therefore, a compro-
mise needs to be considered, function of the sensors noise
characteristics and the desired estimator performance.

The experiment carried out consists in rotating the system
about the Bz axis. The initial roll, pitch, and yaw angles are
0 rad, 0 rad, and −2π/180 rad, respectively, and the final are
0 rad, 0 rad, and −45π/180 rad (0.7854 rad), respectively.
The initial camera pan and tilt angles are set to zero.

The time evolution of the attitude and bias estimation are
shown in the Fig. 8. From the figures it is clear the stability
characteristics of the attitude estimates, the convergence to
the real attitude when the system is disturbed and the rate
gyros bias reaching a steady state. Furthermore, we highlight
the overall accuracy of the estimates. The standard deviation
of the roll, pitch and yaw angles in the first 84 s of the
experiment are 0.0842π/180 rad, 0.2989π/180 rad, and
0.3466π/180 rad, respectively.

Figure 9 depicts the error of the position of the center of
the features in the image plane, and the camera pan and tilt
velocity. As predicted by the theoretical results the actuation
increases with the error, and the error is zero when the system
is in a stationary position. Due to the fact that camera pan
and tilt velocity commands are integer values of degrees per
second the actuation signals are quantized.

VIII. CONCLUSIONS
This paper addressed the problem of estimating the attitude

of a rigid body equipped with a triad of rate gyros and
a pan and tilt camera. Based only on the position of four
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features in the image plane and biased angular velocity
measurements the error estimates obtained by the observer
converge exponentially fast to the origin. In order to keep the
features in image, an exponentially ISS nonlinear controller
for the pan and tilt camera angles was proposed. Simulations
were present to illustrate the dynamic behavior of the over-
all solution. A simple experimental evaluation with a real
time prototype exhibited good performance and attested the
applicability of the proposed technique.
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2008.

[23] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integra-
tion, Structure-Preserving Algorithms for Ordinary Differential Equa-
tions, 2nd ed., ser. Springer Series in Computational Mathematics.
Springer, 2006, vol. 31.

[24] H. Munthe-Kaas, “High order Runge-Kutta methods on manifolds,”
Appl. Numer. Math., vol. 29, no. 1, pp. 115–127, 1999.

[25] R. Burden and J. Faires, Numerical Analysis. Boston: PWS-KENT
Publishing Company, 1993.


