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Abstract— This paper presents the design, analysis, and
performance evaluation of globally asymptotically stable filters
for attitude estimation. The design is based directly on the
sensor measurements as opposed to traditional solutions that
resort to parameterizations of the rotation, e.g., Euler angles
or quaternions, or more recent geometric approaches explicitly
solved on the special orthogonal group, SO(3). The proposed
solutions include the estimation of gyro bias, incomplete sensor
measurements, systematic tuning procedures, and also allow
for the inclusion of frequency weights to model colored noise.
Finally, and due to the inherent structure, the filters are comple-
mentary and also cope well with slowly time-varying gyro bias.
Simulation results are included that illustrate the achievable
performance in the presence of realistic measurements provided
by low-cost, low-power sensor suites.

I. INTRODUCTION

The design of Navigation Systems plays a key role in the
development of a large variety of mobile platforms. Indeed,
the quality of the navigation information is a fundamental re-
quirement in many applications, whether it is for data acqui-
sition purposes, where geo-referencing is usually essential,
or for control purposes, where quantities such as the position,
attitude, and the linear and angular velocities of the vehicle
are often required. This paper presents the analysis, design,
and performance evaluation of globally asymptotically stable
filter for attitude estimation based directly on the sensor
measurements.

Traditional attitude estimation methods consist, as dis-
cussed in the recent survey paper [1], in a two step process:
i) estimate the attitude from body measurements and known
reference observations, and ii) filtering the noisy quantities.
The first step, where an attitude estimate is obtained from
body measurements to feed a filter (or an observer), ends
up in one of many known representations, e.g., Euler an-
gles, quaternions, Euler angle-axis representation, rotation
matrix, etc. [2]. The filtering process builds essentially on a
kinematic model combined either with the integration of rate-
gyros or dynamic models. In the first case, the kinematics are
propagated using three-axis rate gyros, while in the second
case the dynamic model for the angular velocity is used.
Each has its own advantages and disadvantages. For instance,
dynamic models are complex, highly nonlinear, often time-
varying, and the inertia matrix may not be well known,
as well as other dynamic parameters. On the other hand,
rate-gyros are usually subject to measurement bias, often
slowly time-varying. With all possible combinations, attitude
estimation solutions are many in the literature. Extended
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Kalman Filters (EKFs) and variants have been widely used,
see [3] and [4], for instance. In spite of the good performance
achieved by EKF and EKF-like solutions, divergence due to
the linearization of the system dynamics has led to the pursuit
of different solutions, in particular nonlinear observers such
as those presented in [5] and [6]. For a more thorough
survey, the reader is referred to [1]. In all the aforementioned
references, the sensor measurements are essentially used to
obtain instantaneous algebraic measurements of the attitude
that are used afterwards to feed an observer or filter, depend-
ing on whether or not sensor noise is considered. Sensor
specificness is therefore disregarded and, even when it is
considered, the nonlinear transformations that are performed
to obtain the attitude from vector measurements distort noise
characteristics. Moreover, with the exception of EKF and
EKF-like solutions, systematic tuning procedures are often
absent. Exceptions are presented in [7] and [8] where vector
measurements are used directly in the feedback of observers
built directly on the Special Orthogonal Group SO(3) and
the Special Euclidean Group SE(3), respectively. In the first
local exponential stability is achieved and the error is shown
to converge to zero for almost all initial conditions, while in
the second case almost global exponential stability (AGES)
is achieved for the observer error dynamics.

The main contribution of this paper is the development of
sensor-based attitude estimation filter solutions that

• are based on the exact angular motion kinematics;
• build on the well-established Kalman filtering theory;
• have globally asymptotically stable (GAS) error dynam-

ics;
• provide systematic tuning procedures based directly

on the sensor specifications, including also frequency
weights in the design to model colored noise;

• estimate rate gyro bias and cope well with slowly time-
varying bias; and

• have a complementary structure, fusing low bandwidth
vector observations with high bandwidth rate gyro mea-
surements.

As previously mentioned, traditional attitude solutions use
the sensor measurements to obtain instantaneous attitude
measurements and the filter process resorts to one of many
attitude representation alternatives. In this paper the sensor
measurements are included directly in the system dynam-
ics and the kinematics are propagated using the angular
velocity provided by a three-axis rate gyro, whose bias is
also considered. In addition to that, the case of insufficient
vector measurement observations for attitude estimation is
also addressed. Essential in the observability analysis and
filter design is the modification of the system dynamics
to yield a structure that can be regarded as linear time-



varying (LTV), although it is, in fact, nonlinear. However,
the system dynamics are still exact and no linearization is
performed whatsoever. Observability analysis follows, for
single and double vector observations, and then the Kalman
filter design, whose stability is well characterized given the
observability properties that are derived in the paper. The
final attitude estimation solution results from combining the
sensor-based filter with an optimal attitude determination
algorithm. This last problem is commonly known in the
literature as the Wahba’s problem [9] and, for two vector
observations, there are closed-form solutions, see [10], [11],
[1], and references therein.

The paper is organized as follows. The sensor-based
frameworks that are the core of the proposed solutions are
presented in Section II, and, in Section III, the observability
properties of the systems are derived. The filtering design
is addressed in Section IV and the achieved performance
evaluated in Section V in realistic simulation environments.
Finally, Section VI summarizes the main contributions and
conclusions of the paper.

A. Notation

Throughout the paper the symbol 0 denotes a matrix (or
vector) of zeros and I an identity matrix, both of appropri-
ate dimensions. A block diagonal matrix is represented as
diag(A1, . . . ,An). If x and y are two vectors of identical
dimensions, x×y and x ·y are the cross and inner products,
respectively.

II. SENSOR-BASED FRAMEWORK

A. System dynamics

Let {I} denote a local inertial frame, {B} the body-fixed
frame, and R the rotation matrix from {B} to {I}. The atti-
tude kinematics may be described, using this representation
in SO(3), as

Ṙ(t) = R(t)S [ω(t)] ,

where ω ∈ R
3 is the angular velocity of {B}, expressed

in {B}, and S (x) is the skew-symmetric matrix such that
S (x) y = x × y. For the sake of generality, suppose that
measurements y1 ∈ R

3 and y2 ∈ R
3 are available, in body-

fixed coordinates, of known constant quantities in inertial
coordinates,

Iy1 = R(t)y1(t)

and
Iy2 = R(t)y2(t),

respectively. Then, the dynamics of y1 and y2 are given by
{

ẏ1 = −S [ω(t)]y1

ẏ2 = −S [ω(t)]y2
.

Further consider rate-gyro measurements ωm ∈ R
3 cor-

rupted with bias bω ∈ R
3, i.e.,

ωm(t) = ω(t) + bω(t).

Then, for double vector observations the system dynamics
may be written as



















ẋ1(t) = −S [ωm(t)]x1(t) + S [bω(t)]x1(t)
ẋ2(t) = −S [ωm(t)]x2(t) + S [bω(t)]x2(t)

ḃω(t) = 0
y1(t) = x1(t)
y2(t) = x2(t)

(1)

and, for single vector observations, as







ẋr(t) = −S [ωm(t)]xr(t) + S [bω(t)]xr(t)

ḃω(t) = 0
yr(t) = xr(t)

, (2)

where xr and yr are used instead of x1 and y1 as there
is only one vector measurement. The problem considered in
the paper is the design of filter solutions for the nonlinear
systems (1) and (2). Notice that, once filtered estimates of
x1 and x2 are obtained, the attitude is immediately obtained
as in tradition methods.

B. Practical considerations

Many vector observations may be considered. Common
Inertial Measurement Units (IMU) contain three triads of
orthogonally-mounted rate-gyros, accelerometers, and mag-
netometers. The magnetometers provide the magnetic field
in body-fixed coordinates. This quantity is locally constant
in inertial coordinates and it is therefore on feasible vector
observation, as discussed in [7]. On the other hand, for
sufficiently low frequency bandwidths, the gravitational field
also dominates the accelerometer measurement, as discussed
in [7]. Therefore, this would provide a second vector ob-
servation, but there are other alternatives. For example, in
[8] a set of known landmarks is assumed to be fixed in
the inertial frame and their position with respect to {B} is
measured, in body-fixed coordinates. The difference between
any pair of landmark readings also consists in a valid vector
observation. Other possibilities include vision systems, sonar
readings, radar readings, star trackers, etc. Finally, notice
that, if the attitude is single-handed for filtering processes,
without any vector observations, any pair of columns of the
rotation matrix R(t) can also be regarded as two vector
observations.

It is well known that, for two nonparallel vector observa-
tions, the attitude is uniquely determined, and for a single
vector observation, it is impossible to determine the attitude.
However, there is still some interest in the study of this
case. Dead-reckoning navigation systems such as Inertial
Navigation Systems (INS) provide open-loop propagation of
the motion state. However, the estimation of the position and
attitude of the vehicle is necessarily obtained in this type of
systems by integrating higher-order derivatives such as the
linear acceleration and the angular velocity. As such, and
regardless of the accuracy and precision of the IMU, the
errors in the position and attitude estimates grow unbounded
due to the noise and bias of the sensors [12]. A single
vector observation does not provide the entire attitude but
it may help compensating bias and restricting the attitude to
a set of lower dimensions. For example, a gravitation field
measurement yields the roll and pitch Euler angles of a yaw,
pitch, and roll Euler angles representation.

Finally, it is important to remark that, although only two
vector observations are considered, more may be incorpo-
rated in the filter design. The analysis of observability does
not change for more than two nonparallel vector observations
and the system dynamics are trivially extended.



III. OBSERVABILITY ANALYSIS

A. Uniform complete observability

Consider the LTV system
{

ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t)

, (3)

where x, u, y are the state, input, and output of the system,
respectively, t ∈ [t0,+∞[, and A(t), B(t), and C(t) are
continuous matrices of compatible dimensions.

Definition 3.1 (Uniform complete observability): The
LTV system (3) is called uniformly completely observable
if there exist positive constants δ, α1, and α2 such that

α1I � W (t, t + δ) � α2I (4)

for all t ≥ t0, where W (t0, tf ) is the observability Gramian
associated with the pair (A(t),C(t)).

Remark 1: When the system matrices A(t) and C(t) are
norm-bounded, it is easy to see that the right side of (3)
is always satisfied. This is the case of the systems under
study in the paper and therefore only the left side of (4) is
considered and the existence of α2 needs not to be addressed.

B. Double vector observations

The observability of (1) is examined in this section.
The states x1 and x2 are obviously observable as they
are measured. Therefore the question is to determine the
conditions such that it is possible to determine the rate gyro
bias. These conditions are well known but, for stability pur-
poses, stronger results are convenient, e.g., uniform complete
observability. On the other hand, the system dynamics (1)
are nonlinear. Notice, however, that using the cross product
properties x × y = −y × x, it is possible to rewrite(1) as



















ẋ1(t) = −S [ωm(t)]x1(t) − S [x1(t)]bω(t)
ẋ2(t) = −S [ωm(t)]x2(t) − S [x2(t)]bω(t)

ḃω(t) = 0
y1(t) = x1(t)
y2(t) = x2(t)

or, in compact form, as
{

ẋ(t) = A(t)x(t)
y(t) = Cx(t)

, (5)

where

A(t) =

[ −S [ωm(t)] 0 −S [y1(t)]
0 −S [ωm(t)] −S [y2(t)]
0 0 0

]

and

C =

[

I 0
0 I

]

.

Now, although the system dynamics (5) are nonlinear, they
may, nevertheless, be regarded as LTV. This allows for the
derivation of important observability results and the design
of a GAS Kalman filter. Before addressing the first of these
issues, the following lemma is introduced.

Lemma 1: Let f(t) : [t0, tf ] ⊂ R → R
n be a continuous

and two times continuously differentiable function on I :=
[t0, tf ], T := tf − t0 > 0, and such that

f (t0) = 0.

Further assume that

max
t∈I

∥

∥

∥
f̈(t)

∥

∥

∥
≤ C. (6)

If

∃ :
∥

∥

∥
ḟ (t∗)

∥

∥

∥
≥ α∗,

α∗ > 0
t∗ ∈ I

(7)

then
∃ : ‖f (t0 + δ∗)‖ ≥ β∗.

0 < δ∗ ≤ T
β∗ > 0

(8)

The following theorem addresses the observability of (5).
Theorem 1: The LTV system (5) is uniformly completely

observable if and only if the vector observations are not
parallel or, equivalently,

Iy1 × Iy2 6= 0. (9)

Proof: Let Rm(t) ∈ SO(3) be a rotation matrix such
that

Ṙm(t) = Rm(t)S [ωm(t)]

and consider the Lyapunov transformation [13]

z(t) = T(t)x(t),

which preserves observability properties, where

T(t) = diag (Rm(t), Rm(t), I) .

It is a simple matter of computation to show that the new
system dynamics are given by

{

ż(t) = AAA(t)z(t)
y(t) = CCC(t)z(t)

,

where

AAA(t) =

[

0 0 −Rm(t)S [y1(t)]
0 0 −Rm(t)S [y2(t)]
0 0 0

]

and

CCC(t) =

[

RT
m(t) 0

0 RT
m(t)

]

.

The transition matrix associated with AAA(t) is given by

φ (t, t0) =







I 0 −
∫ t

t0
Rm(σ)S [y1(σ)] dσ

0 I −
∫ t

t0
Rm(σ)S [y2(σ)] dσ

0 0 I







and, if W (t0, tf ) denotes the observability Gramian as-
sociated with the pair (AAA(t),CCC(t)) on [t0, tf ] and d =
[

dT
1 dT

2 dT
3

]T
, ‖d‖ = 1, it is a simple matter of computation

to show that

dT
W (t, t + δ)d=

∫ t+δ

t

‖f (τ)‖2
dτ,

where

f (τ) :=

[

d1 −
∫ τ

t
Rm(σ)S [y1(σ)]d3dσ

d2 −
∫ τ

t
Rm(σ)S [y2(σ)]d3dσ

]

.



For d1 6= 0 or d2 6= 0 it is clear that ‖f (0)‖ ≥ ‖d1‖ = α∗
1

or ‖f (0)‖ ≥ ‖d2‖ = α∗
2, respectively. On the other hand, if

d1 = d2 = 0, it follows that ‖d3‖ = 1,

f (t) = 0,

and

ḟ (t) = −
[

Rm(t)S [y1(t)]d3

Rm(t)S [y2(t)]d3

]

.

Now, suppose that (9) is true. Then,

y1(t) × y2(t) 6= 0

for all t ≥ t0. Therefore, there exists α∗
3 > 0 such that

∥

∥

∥
ḟ (t)

∥

∥

∥
≥ α∗

3

for all t ≥ t0 and ‖d3‖ = 1. But that means, using Lemma
1, that there exist α∗

4 > 0 and δ∗1 > 0 such that

‖f (t + δ∗1)‖ ≥ α∗
4

for all t ≥ t0. Therefore

∃ ∀ ∀ : ‖f (t + δ∗)‖ ≥ α∗,
α∗ > 0 t ≥ t0 d ∈ R

9

δ∗ > 0 ‖d‖ = 1

and using Lemma 1 again,

∃ ∀ ∀ : dT W (t, t + δ)d ≥ α,
α > 0 t ≥ t0 d ∈ R

9

δ > 0 ‖d‖ = 1

which means that the system is uniformly completely ob-
servable. Suppose now that (9) is not true. Then,

y1(t) × y2(t) = 0

for all t ≥ t0 and

∃ ∀ : y1(t) × d3 = y2(t) × d3 = 0.
d3 ∈ R

3 t ≥ t0
‖d3‖ = 1

Let

d =

[

0
0
d3

]

.

It is straightforward to show that

dT
W (t, t + δ)d = 0

for all t ≥ t0. Therefore, the system is not observable,
which concludes the proof, as in that case it is not uniformly
completely observable either.

This result, although quite simple, is nevertheless funda-
mental to assess about the stability of the Kalman filter that
will be presented in Section IV.

C. Single vector observations

As it was previously mentioned, with a single vector mea-
surement it is impossible to determine the attitude uniquely.
However, it may still be possible to restrict the attitude to
a space of lower dimension and determine the gyro bias.
Before providing the main result, notice that, as in the
previous case, the nonlinear system (2) may be rewritten,
in a compact form, as

{

ẋr(t) = Ar(t)xr(t)
yr(t) = Crxr(t)

, (10)

where

Ar(t) =

[

−S [ωm(t)] −S [yr(t)]
0 0

]

and
Cr = [ I 0 ] ,

which may be regarded as a LTV system, although it is in
fact nonlinear. The following theorem provides a necessary
and sufficient condition on uniform complete observability
for (10).

Theorem 2: The LTV system (10) is uniformly completely
observable if and only if

∃ ∀ ∀ ∃ : ‖S (yr (t∗))d‖ ≥ α∗.

δ∗ > 0 t ≥ t0 d ∈ R
3 t∗ ∈ [t, t + δ∗]

α∗ > 0 ‖d‖ = 1
(11)

Proof: Following the same steps as in Theorem 1,
consider the Lyapunov transformation

zr(t) = Tr(t)xr(t),

which preserves observability properties, where

Tr(t) = diag (Rm(t), I) .

It is a simple matter of computation to show that the new
system dynamics are given by

{

żr(t) = AAAr(t)zr(t)
yr(t) = CCCr(t)zr(t)

,

where

Az(t) =

[

0 −Rm(t)S [yr(t)]
0 0

]

and
Cz(t) =

[

RT
m(t) 0

]

.

The transition matrix associated with AAAr(t) is given by

φ (t, t0) =

[

I −
∫ t

t0
Rm(σ)S [yr(σ)] dσ

0 I

]

and, if Wr (t0, tf ) denotes the observability Gramian as-
sociated with the pair (AAAr(t),CCCr(t)) on [t0, tf ] and d =
[

dT
1 dT

2 dT
3

]T
, ‖d‖ = 1, it is a simple matter of computation

to show that

dT
Wr (t, t + δ)d=

∫ t+δ

t

‖fr (τ)‖2
dτ,

where

fr (τ) := d1 −
∫ τ

t

Rm(σ)S [yr(σ)]d2dσ.



Suppose now that (11) is true. Notice that, if d1 6= 0, there
exists α∗

1 > 0
‖fr(t)‖ = α∗

1

for all t ≥ t0. On the other hand, if d1 = 0, it is
straightforward to show, using (11), that

∃ ∀ ∀ ∃ :
‚

‚

‚
ḟr (t∗2)

‚

‚

‚
≥ α∗

2.

δ∗2 > 0 t ≥ t0 d2 ∈ R
3 t∗2∈ [t, t + δ∗2 ]

α∗

2 > 0 ‖d2‖ = 1

In addition to that, notice that f̈r(τ) is bounded for all τ and
fr(t) = 0. Therefore, resorting to Lemma 1, it follows that

∃ ∀ ∀ ∃ : ‖fr (t∗3)‖ ≥ α∗

3.

δ∗3 > 0 t ≥ t0 d2 ∈ R
3 t∗3∈ [t, t + δ∗3 ]

α∗

3 > 0 ‖d2‖ = 1

But then it is possible to write

∃ ∀ ∀ ∃ : ‖fr (t∗4)‖ ≥ α∗

4

δ∗4 > 0 t ≥ t0 d ∈ R
6 t∗4∈ [t, t + δ∗4 ]

α∗

4 > 0 ‖d‖ = 1

and, using Lemma 1 again, it follows that

∃ ∀ ∀ ∃ : dT
W r(t, t+δ)d ≥ α∗,

δ∗ > 0 t ≥ t0 d ∈ R
6 t∗∈ [t, t + δ∗]

α∗ > 0 ‖d‖ = 1

which means that (10) is uniformly completely observable.
Next, it is shown that (11) is also a necessary condition.
Suppose that (11) is not true. Then,

∀ ∃ ∃ ∀ : ‖S (yr (t))d∗‖ < α.

δ > 0 t∗ ≥ t0 d∗ ∈ R
3 t ∈ [t∗, t∗ + δ]

α > 0 ‖d∗‖ = 1
(12)

Let

d =

[

0
d∗

]

.

Then, it is straightforward to conclude that

dT Wr(t
∗, t∗ + δ)d =

∫ t∗+δ

t∗
‖fr (τ)‖2

dτ

=
∫ t∗+δ

t∗

∥

∥

∫ τ

t∗
Rm(σ)S [yr(σ)]d∗dσ

∥

∥

2
dτ

≤
∫ t∗+δ

t∗

∫ τ

t∗
‖Rm(σ)S [yr(σ)]d∗‖2

dσdτ

=
∫ t∗+δ

t∗

∫ τ

t∗
‖S [yr(σ)]d∗‖2

dσdτ

= ‖S (yr [ξ(δ)])d∗‖2
∫ t∗+δ

t∗

∫ τ

t∗
1dσdτ

= ‖S (yr [ξ(δ)])d∗‖2 δ2

2
, (13)

where ξ(δ) ∈ ]t∗, t∗ + δ[. From (12) and (13) it follows that

dT
Wr(t

∗, t∗ + δ)d ≤ δ2

2
α

for all α > 0, δ > 0. Let

α =
2

δ2
ǫ.

Then,

∀ ∃ ∃ : dT
W r(t

∗, t∗+δ)d < α,

δ > 0 t∗ ≥ t0 d∗ ∈ R
6

ǫ > 0 ‖d∗‖ = 1

which means that the LTV system (10) is not uniformly com-
pletely observable. Therefore, if (10) is uniformly completely
observable, (11) must hold, which concludes the proof.

Remark 2: Technically, (11) may be interpreted as a per-
sistent excitation condition. From the practical point of view,
Theorem 2 simply states that the LTV system is uniformly
completely observable if and only if there exists δ∗ > 0 such
that there is a minimal angular motion on any time interval
of length δ∗.

IV. ATTITUDE ESTIMATION SOLUTION

This section presents the attitude estimation solution pro-
posed in the paper. The final structure results from combining
a sensor-based globally asymptotically stable Kalman filter,
whose design is detailed in Section IV-A, with an optimal and
computationally efficient attitude determination algorithm
from two vector observations, briefly described in Section
IV-B. For single vector observations it is well known that
it is impossible to reconstruct the attitude. However, it is
still possible to determine, e.g., two Euler angles. This is the
last step of the resulting structure for single vector measure-
ments, which is addressed in Section IV-C. Additionally, the
problem of more than two vector observations is also briefly
discussed, in Section IV-D, and it is shown how easy it is to
generalize the previous solution for this case.

A. Filter design

For filtering design purposes, consider an augmented ver-
sion of (5), given by

{

ẋ(t) = A(t)x(t) + Bd(t)
y(t) = Cx(t) + Dn(t)

, (14)

where d(t) and n(t) are system disturbances and sensor
noise, respectively. To model colored noise, it may be
assumed that d(t) and n(t) are the outputs of stable linear
time invariant (LTI) filters Wd and Wn, respectively, driven
by unit intensity continuous-time white Gaussian noise. This
assumption leads to an augmented version of the Kalman
filter, see [14] for an example of application. In this paper,
and for the sake of clarity of presentation, the simple version
given by (14) is employed, where d and n are assumed
zero-mean, white Gaussian noises, with intensity matrices Ξ
and Θ, respectively, and correlation matrix Ψ. The Kalman
filter synthesis is trivial (and therefore omitted) and global
asymptotic stability achieved provided that B and D are
properly chosen, as the pair (A(t),C) was shown to be
uniformly completely observable [15], [16].

B. Attitude determination

The problem of finding the proper rotation matrix R that
minimizes the loss function

J (R) =
1

2

N
∑

i=1

ai

∥

∥yi − RT Iyi

∥

∥

2
, ai > 0,

is known in the literature as the Wahba’s problem [9] and,
for N = 2, there exists a closed-loop solution. In the
previous section a Kalman filter was derived that yields
filtered estimates ŷ1(t) and ŷ2(t) of the vector observations
y1(t) and y2(t) provided by the sensors. Instead of using the
sensor measurements, the filtered estimates are normalized,

ŷn
1 (t) =

ŷ1(t)

‖ŷ1(t)‖
, ŷn

2 (t) =
ŷ2(t)

‖ŷ2(t)‖
,



as well as the corresponding inertial vectors,

Iyu
1 =

Iy1

‖Iy1‖
, Iyu

2 =
Iy2

‖Iy2‖
,

and the attitude matrix is reconstructed using the closed-loop
(and computationally efficient) optimal solution presented in
[11], that minimizes

J
(

R̂(t)
)

=
1

2

2
∑

i=1

1

2

∥

∥

∥
ŷu

i (t) − R̂T (t)Iyu
i

∥

∥

∥

2

,

and that is omitted here due to the lack of space and as
it can be found in [11]. The overall attitude estimation
system is depicted in Fig. 1, where K(t) is the Kalman gain
matrix. It is important to stress that the resulting structure
is complementary: high bandwidth rate gyro measurements
are combined with low bandwidth vector observations to
determine a low frequency perturbation in the rate-gyro
measurements and provide filtered estimates of the vector
observations.

+

+

+

+

+

+ −

−

−

−−

−

∫

∫

∫

S[y1(t)]

S[y2(t)] S[ωm(t)]

S[ωm(t)]

K(t)

y1(t)

y2(t)

ωm(t) ŷ1(t)

ŷ2(t)

b̂ω(t)

R̂(t)

Sensor-based filter

Optimal Attitude
Determination

Fig. 1. Attitude Estimation System

Remark 3: There is nothing in the filter structure imposing
any particular relation between ŷ1(t) and ŷ2(t). Therefore,
it may happen, due to bad initialization of by accident, that
ŷ1(t) and ŷ2(t) are parallel for some time t. In this case, the
optimal solution presented in [11] is not well defined. On the
other hand, the same happens if, for some time t, ŷ1(t) =
0 or ŷ2(t) = 0. If any of these situations was to happen,
the sensor measurements could be used directly to obtain
an estimate of the attitude. However, notice that the filter
may be initialized with the first set of vector observations.
In addition to that, it will be shown shortly that the filter
convergence, which is global, is very fast, and warming-up
delays below 1 s may be considered. Therefore, none of these
situations are to happen in practice.

C. Single Vector Observations

When only one vector measurement is available, it is
obviously impossible to determine the attitude. Nevertheless,
some information is extracted. As an example, if the attitude
is parameterized using the yaw, pitch, and roll Euler angles,
the roll and pitch angles would be determined from gravita-
tional field vector observations. Therefore, in this case, and
in order to evaluate the performance of the proposed solution,
two Euler angles are determined from the estimates provided

by the Kalman filter, which is a reduced version of the filter
proposed in Section IV-A. This is omitted due to the lack of
space and as it is evident from the context.

D. Multiple Vector Observations

Although in the paper only up to two vector observations
are considered, the proposed solution is trivially extended for
multiple vector observations. Indeed, all that is required is to
add more states to the system dynamics (14) and to modify
the attitude determination algorithm to cope with more than
two vector observations. This is quite useful as there is
a myriad of commercially available sensors that provide
vector measurements useful for attitude determination. As an
example, there are nowadays star trackers that can track over
50 stars at a time. Notice that in this case the specificness
of each sensor can still be directly incorporated in the filter
design and colored noise is easily modeled, as opposed to
tradition solutions that use the vector measurements solely
to compute an instantaneous attitude measurement used to
feed an observer or filter built on one of the many attitude
representations.

V. SIMULATION RESULTS

In order to evaluate the performance of the proposed
filtering solutions, simulations were carried out using a fixed
platform with unlimited rotation available on all axes, similar
to, e.g., the calibration table 2103HT Series Multi-Axis
Table, from Ideal Aerosmith. For performance evaluation
purposes, and for the sake of illustrativeness, the rotation
matrix was parameterized by yaw, pitch, and roll Euler
angles, and oscillatory angular rates were applied, as given
by

ω(t) =
π

180





2 sin
(

2π
20

t
)

5 sin
(

2π
30

t + π/2
)

0



 (rad/s) .

The evolution of the Euler angles is presented in Fig. 2. A
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Fig. 2. Evolution of the Euler angles

low-cost, low-power IMU is considered, with three triads
of orthogonally mounted rate gyros, accelerometers, and
magnetometers. Two different cases are studied. In the first
case, presented in Section V-A, the IMU is assumed to
provide the magnetic and gravitational fields, as well as the
angular velocity of the vehicle corrupted with a constant
unknown bias. In the second case, discussed in Section V-B,
loss of magnetic field measurements is addressed. Additive
zero-mean white noise was considered for all sensors, with



standard deviation 0.015mG and 0.05m/s
2

for the magne-
tometers and accelerometers, respectively, and 0.05 °/s for
the rate gyros, whose measurements were also corrupted by

a constant bias equal to bω = [2 −3 1]
T

(°). The sample
rate was set to 100Hz and numerical integration was carried
out using a fourth-order Runge-Kutta method. Notice that
there are low-cost IMU with better specifications, as well
as better integration algorithms, but for the sake of clarity
of performance evaluation, very low-cost specifications were
considered.

A. Double vector observations

This section presents simulation results for double vector
observations. The Kalman filter parameters were chosen
according to the sensor noise levels,

Ξ=diag
`

0.015, 0.015, 0.015, 0.05, 0.05, 0.05, 10−6
, 10−6

, 10−6
´

,

Θ = diag (0.015, 0.015, 0.015, 0.05, 0.05, 0.05),

and Ψ = 0. No particular emphasis was given on the
tuning process as the resulting performance with these simple
parameters is very good. In practice, the spectral contents
of the sensors noise may be experimentally approximated
and frequency weights adjusted to improve the performance
of the filter, see the examples provided in [14]. Moreover,
correlation between the system disturbances d and the sensor
noise n may also be considered. Since x1 and x2 are
measured, these variables were initialized close to the true
values. The initial bias estimate was set to zero.

The evolution of the filter error is depicted in Fig. 3 and,
in greater detail, in Fig. 4. Notice that the convergence rate is
very fast. Moreover, the gyro error noise level is well below
the noise of the rate gyro measurements. The same happens,
as expected, with the error level of the two vector estimates
of the gravitational and magnetic field.
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Fig. 3. Evolution of the filter error

In order to evaluate the overall attitude performance, the
yaw, pitch, and roll Euler angles were computed from the

estimated rotation matrix R̂. The evolution of the error of
the Euler angles is depicted in Fig. 5, where the error is also
shown for the Euler angles obtained directly from the sensor
measurements, which is large due to the bad specifications of
the sensors considered. The standard deviation of the steady-
state error is shown in Table I, where the noise level of the
Euler angles obtained directly from the vector measurements
is also presented. The results evidence excellent performance
and very fast convergence, in spite of the overall low-cost
characteristics of the sensor suite.
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Fig. 4. Detailed evolution of the filter error
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Fig. 5. Evolution of the error of the Euler angles

B. Single vector observations

The case of single vector observations is considered in this
section. For that purpose, the previous simulation was mod-
ified and the magnetic field measurements discarded. Notice
that this is quite possible from the practical point of view, as
magnetic field anomalies are often. For attitude estimation
purposes, other sensors may always be considered, but it is
nevertheless interesting to see the achievable performance
in terms of gyro bias estimation in the presence of sin-
gle vector measurements. Furthermore, for dead-reckoning
navigation systems such as Inertial Navigation Systems, the
single possibility of gyro bias estimation greatly improves
its performance degradation over time.

In addition to the loss of one vector observation, in this
simulation the gyro bias is slowly time-varying, given by

bω(t) =
π

180





2
−3

1 + sin
(

2π
600

t
)



 (rad/s).

Notice that slowly time-varying bias is a very common and
undesirable characteristic of low-cost rate gyros. The filter
parameters were chosen as

Ξ=diag
`

0.05, 0.05, 0.05, 10−2
, 10−2

, 10−2
´

,

Θ = diag (0.05, 0.05, 0.05),

and Ψ = 0. Again, no particular emphasis was given on
the tuning process as the resulting performance with these
simple parameters is very good.

The evolution of the filter error is depicted in Fig. 6 and, in
greater detail, in Fig. 7. Notice that, as in the previous case,
the convergence speed is very fast, and the error level remains
confined to a very tight interval. In Fig. 8 the evolution of
the gyro bias estimate is presented, along with the actual



TABLE I

STANDARD DEVIATION OF THE ERROR OF THE EULER ANGLES

Euler Angle Proposed Solution From vector measurements
roll (°) 0.0238 0.3062

pitch (°) 0.0204 0.2892
yaw (°) 0.1337 1.730

0 50 100 150 200 250 300

−0.2

−0.1

0

0.1

0.2

0.3

t (s)

E
rr

o
r 

A
c
c
e
le

ra
ti
o
n
 o

f 
G

ra
v
it
y
 (

m
2
/s

)

x
y
z

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

t (s)

E
rr

o
r 

G
y
ro

 B
ia

s
 (

º/
s
)

x
y
z

Fig. 6. Evolution of the filter error

values. This plot clearly evidences that the filter copes well
with slowly time-varying gyro bias. Finally, the roll and
pitch Euler angles are computed from the gravity vector
estimate, and the evolution of the error depicted in Fig. 9,
where the evolution of the error that results from computing
these angles directly from the accelerometer measurements
is also shown. The standard deviation is presented in Table
II. It is interesting to see that there is a slight performance
degradation, in comparison with the results presented in
Section V-A, but the overall quality of the estimates is still
very good, in spite of the presence of slowly time-varying
bias and single vector observations.

TABLE II

STANDARD DEVIATION OF THE ERROR OF THE ROLL AND PITCH EULER

ANGLES

Euler Angle Proposed Solution From vector measurements
roll (°) 0.0453 0.3054

pitch (°) 0.0430 0.2901

VI. CONCLUSIONS

This paper presented the analysis, design, and perfor-
mance evaluation of sensor-based attitude estimation filters.
Although the system dynamics for attitude estimation are
inherently nonlinear, linear time-varying interpretations are
possible after some quick algebraic manipulations. Taking
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Fig. 7. Detailed evolution of the filter error
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advantage of the new formulations, the observability proper-
ties of the systems were analyzed resorting to classic linear
systems theory and globally asymptotically stable filters
derived based on the well-known Kalman filter.

Classic attitude estimation solutions typically ignore the
specificness of the sensors, which are basically used to
construct instantaneous algebraic attitude measurements in
one of many attitude representation, e.g., Euler angles,
quaternions, rotation matrices, etc., and the filtering process
takes place in one of these representations. In this paper
the filtering process is carried out directly in the space
of the measurements, allowing the specifications of each
sensor, including frequency response characteristics, to be
incorporated in the filter design process, which is therefore
systematic. The proposed solutions are based on the kine-
matic model, which relies on angular velocity measurements
provided by rate gyros to propagate the system state, and
the gyro bias is also taken into account and explicitly
estimated. The resulting structure is complementary, taking
full advantage of the several sensor readings.

Two practical applications were presented. In the first
case study, gravitational and magnetic field measurements
are used, coupled with rate gyro readings, to estimate the
attitude of a vehicle, as well as the rate gyro bias. In the
second application loss of sensor information is addressed
and only gravitational field measurements are considered
together with the rate gyro readings corrupted by bias. In
this last situation the goal is to estimate the rate gyro
bias and restrict the attitude to a set of lower dimension,
as it is evidently impossible to estimate the attitude with
only one vector observation. Simulation results are included
that illustrate the achievable performance in the presence
of realistic measurements provided by low-cost, low-power
sensor suites, and the solutions are also shown to cope well



with slowly time-varying gyro bias. Future work includes the
implementation and experimental evaluation of the proposed
solutions in several mobile platforms, including underwater
and aerial vehicles, with different sets of sensors.
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APPENDIX I
PROOF OF LEMMA 1

Firstly, notice that the case C = 0 is trivial. Indeed, if
C = 0, then

∀ : ḟ (t) = ḟ (t∗)
t ∈ I

and therefore

f (t0 + δ) = ḟ (t∗)

∫ t0+δ

t0

∫ σ1

t0

. . .

∫ σi−1

t0

dσi . . . dσ1

=
δi

i!
ḟ (t∗) ,

which implies (8). The remainder of the proof considers C >
0. Suppose that (6) and (7) are true. Then, using simple norm
inequalities, it is possible to write

∥

∥

∥
ḟ (t∗)

∥

∥

∥

∞

≥ 1√
n

α∗

and

max
t∈I

∥

∥

∥
f̈(t)

∥

∥

∥

∞

≤ C.

Let

k := arg max
j=1,...,n

∣

∣

∣
ḟj (t∗)

∣

∣

∣
,

where

ḟ(t) =







ḟ1(t)
...

ḟn(t)






.

Evidently,
∣

∣

∣
ḟk (t∗)

∣

∣

∣
≥ 1√

n
α∗

and

max
t∈I

∣

∣

∣
f̈k(t)

∣

∣

∣
≤ C. (15)

Resorting to the Lagrange’s Theorem, it is possible to write
that

∣

∣

∣
ḟk (t) − ḟk (t∗)

∣

∣

∣
=

∣

∣

∣
f̈k (ξ(t)) (t − t∗)

∣

∣

∣
(16)

for all t ∈ I, where ξ (t) ∈ ]t0, tf [. Using simple norm
inequalities and (15) in (16) gives

∣

∣

∣
ḟk (t) − ḟk (t∗)

∣

∣

∣
≤ C |t − t∗| .

and therefore

ḟk (t) ≥ ḟk (t∗) − C |t − t∗|
for all t ∈ I. Now assume, without loss of generality, that

ḟk (t∗) > 0. Then, there exists an interval I1 = [t1, t2] ⊂ I,
t1 < t2, where either t1 = t∗ or t2 = t∗, and with length

T1 :=
1

2
min

(

T,
α∗

C

)

,

such that

∀ : ḟk (t) ≥ ḟk (t∗) − C |t − t∗| > 0.
t ∈ I1

(17)

Integrating (17) on I1 gives
∫

I1

ḟk (t) dt ≥ β > 0,

where

β := T1

(

α∗ − CT1

2

)

> 0.

Now, notice that

fk (t2) =

∫ t2

t0

ḟk (t) dt

=

∫ t1

t0

ḟk (t) dt +

∫

I1

ḟk (t) dt.

If

fk (t2) 6= 0

then
∃ : |fk (t0 + δ∗1)| ≥ β∗

1 .
0 < δ∗1 ≤ T

β∗ > 0



Otherwise, it must be

fk (t0 + t1) = −
∫

I1

ḟk (t) dt 6= 0,

which implies that

∃ : |fk (t0 + δ∗2)| ≥ β∗
2 .

0 < δ∗2 < T
β∗

2 > 0

Either way,

∃ : |fk (t0 + δ∗)| ≥ β∗

0 < δ∗ ≤ T
β∗ > 0

and, using simple norm inequalities

∃ : ‖f (t0 + δ∗)‖ ≥ β∗,
0 < δ∗ < T

β∗ > 0

which concludes the proof.


