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ABSTRACT

We present an algorithm able to register a known 3D de-

formable model to a set of 2D matched points extracted from

a single image. Unlike previous approaches, the problem is

solved simultaneously for both the rigid and non-rigid param-

eters of the model. The key advantage of our approach is

the projection of an initial affine estimation of the motion pa-

rameters into the motion manifold corresponding to the exact

parametrization of the problem. This projection is formulated

as the minimization of the distance between the affine solution

and the surface of the manifold. Such optimization results

in a quadratically constrained quadratic minimization prob-

lem that can be efficiently solved with standard optimization

tools. Synthetic and real tests demonstrate the effectiveness

of the approach.

Index Terms— Image Registration, Deformable Mod-

elling, Quadratic Optimization, Manifold Projection.

1. INTRODUCTION

The problem of registering deformable shapes from images

has stirred growing interests from the research community.

Such interest rises from the practical necessity of automat-

ically aligning shapes which vary their topology over time.

This is rather important in a medical context where accurate

image registration is a fundamental step for any clinical analy-

sis. In a more theoretical sense, the complexity of this task has

created an increasing attention over this problem. The loss of

rigidity constraints renders the 2D-3D registration either ill-

conditioned or extremely non-linear. Ill-conditioning led to

the introduction of extrinsic and intrinsic priors in respect to

the object pose and its deformation parameters respectively.

On the other hand, non-linearities resulted in methods with an

iterative nature which are prone to reach local solution given

the extension of the parameter space. Other approaches pro-

posed a simplification of the problem as a two-stage proce-

dure [1]. First, a rigid registration of the shape is followed by
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an optimization of the deformable parameters. However, this

procedure is likely to be biased especially in the presence of

deformations which are strongly directional and asymmetri-

cal [2].

This paper deals with the case of aligning a given 3D de-

formable model to a set of 2D points taken from an image.

The novelty here introduced consists in finding a solution for

the model parameters which exactly lie in the so-called mo-

tion manifold [3] of the parameter space. In such way, the

estimation over this space reflects exactly the structure of the

problem leading to a simultaneous estimation of the rigid and

deformable motion parameters. Instead of solving the prob-

lem directly on the surface space, we instead advocate a pro-

cedure which project an initial affine solution onto the mani-

fold surface. This not only results in an efficient algorithm but

also it avoids the locality of an iterative algorithm minimizing

over the manifold. In particular, we assume the camera ma-

trices being orthographic which is a reasonable approxima-

tion when the shape profile is small compared to the distance

from the camera. Such cameras lie on the V2,3 Stiefel man-

ifold1. Projecting into the space of deformable parameters

given this constraint results in a non-convex problem which

we show that can be efficiently solved by semidefinite relax-

ation. To the authors knowledge, the only approach trying to

solve simultaneously for all the motion parameters is the work

of Xiao et al. [2]. However their method requires several 2D

observations of the non-rigid shape and a prior over the set of

basis shapes modelling the deformation. The work of GU and

Kanade [4] can be also related to our work with the difference

that it computes a solution for both the matching and registra-

tion problems while we restrict ourself exclusively to a 2D-3D

registration of a deformable model (i.e. in our case the assign-

ments are already given). Still, when registering the matched

2D points to the 3D shape, they decouple the 2D rotation and

deformation parameters solving then for the registration and

matching using an iterative EM procedure.

1The Stiefel manifold Vk,m may be viewed as the collection of all m×k

matrices whose columns form an orthonormal set. More precisely, the (real)

Stiefel manifold Vk,m is the collection of all ordered sets of k orthonormal

vectors in Euclidean space R
m.



2. PROBLEM STATEMENT

A 2D point j is defined in non-homogeneous coordinates as

a vector wj = (uj vj)
T where uj and vj are the horizontal

and vertical image coordinates respectively. A set of p points

lying over a deformable body can be then expressed in matrix

form as:

W2×p =
[

w1 . . . wp

]

. (1)

We now introduce the image projection and deformable mod-

els describing the space of variations of the image coordi-

nates. A deformable 3D shape X3×p at a certain time instance

is projected by an orthographic camera R2×3 as:

W = RX + T (2)

where R lies onto the Stiefel manifold (i.e. RR
T = I2×2)

which from now it will be called a Stiefel matrix and T is a

2 × p matrix such that T = t1
T . The vector t is the image

centroid of the object coordinates stored in W and 1 a vector

of p ones.

2.1. THE NON-RIGID MODEL

A deformable shape varies its topology at each time instance.

Such variations can be modelled as a linear approximation

using a set of k basis shapes which expresses the modes of

variation of the shape. Such models have been already used

with 2D points (Active Shapes Models [5]), morphable mod-

els for face analysis and animation [6] and non-rigid structure

from motion [7]. In such framework, the 3D structure X is

given as:

X =
k

∑

d=1

ldBd, Bd ∈ R
3×p, ld ∈ R (3)

where Bd are the given basis shapes and ld the configuration

weights which linear combination gives the deformation at

each time instance. A more compact form can be obtained

substituting the previous equation in eq. (2) giving:

W =
[

l1R . . . lkR
]







B1

...

Bk






+ T = MS + T (4)

where M is a 2 × 3k matrix and S a 3k × p matrix. It is con-

venient to define here the homogeneous formulation of S as

S̄ = [ST
1]T . To notice the particular structure of M which en-

tails strong non-linearities given by the repetitive structure of

the Stiefel matrices. The space of these matrices is the actual

motion manifold where our solution has to lie.

2.2. THE NON-RIGID COST FUNCTION

The registration problem now can be written as an optimiza-

tion of the following cost function:

min
R,l1...lk,t

{

‖W− (MS + T)‖
2
F

}

(5)

given the constraints RRT = I2×2. Optimizing (5) results in

the minimization of a non-linear cost function with non-linear

constraints. However in the next section we re-formulate the

problem in such a way it is solvable via quadratic optimiza-

tion. To notice that in this work we consider the assign-

ment problem between 3D model and 2D observations al-

ready given.

3. 2D-3D REGISTRATION WITH PROJECTIONS

Our algorithm can be summarized as it follows:

Algorithm 1 2D-3D registration of deformable shapes

Require: A set of 2D points W and the assignment to the de-

formable model S.

Ensure: The motion matrix M as in eq. (4).

1: Compute an initial affine estimate M̄ as M̄=WS̄
T
(

S̄S̄
T
)−1

.

2: Extract the translation t as M̄ =
[

M̃ t
]

.

3: Project M̃ onto the deformable motion manifold by solving

min
R,l1...lk

{

∥

∥ M̃−
[

l1R . . . lkR
] ∥

∥

2

F

}

(6)

Now the problem is to find the best projection given R lying

onto a Stiefel manifold as given in eq. (6). This problem

was previously solved using a two-step procedure (i.e. first

estimating R and then li [1]) or by considering some priors

on the parameter space [2]. Differently, we will show that is

possible to reformulate the problem in Step 3 in such way we

can project to the correct motion manifold of the parameter

space.

3.1. MOTION MANIFOLD PROJECTION

The projection is carried out on each 2 × 3k sub-matrix M̃ as

defined in Algorithm 1 and it corresponds to solve the mini-

mization problem as stated in eq. (6). Our aim is to project

the affine solution obtained previously to a motion subspace

which exactly respect the given constraints (i.e Ri be a 2 × 3
Stiefel matrix). This is equivalent to minimizing separately all

the 2 × 3 blocks of M̃ giving:

min
R

k
∑

d=1

min
ld

∥

∥M̃d − ldR
∥

∥

2

F
(7)

which is equivalent to:

min
R

k
∑

d=1

min
ld

{

∥

∥M̃d

∥

∥

2
+ l2d ‖R‖

2
− 2ld Tr[M̃

T

d R]
}

. (8)

We can then reformulate the problem by computing the min-

imum first for ld given R. This resolves in computing the



minimum of the quadratic function in ld given by f(ld) =
a l2d − 2 b ld + c. Such minimum is found in ld = b/a giving:

ld =
Tr[M̃

T

d R]

‖R‖
2 =

1

2
Tr[M̃

T

d R]

putting this value back in eq. (7) and following with the sim-

plification, the minimization can be written as:

min
r=vec(RT )

r
T

[

−
k

∑

d=1

mdm
T
d

]

r = min
r=vec(RT )

r
T
E r (9)

where r = vec(RT ) and md = vec(M̃
T

d ). The matrix R must

satisfy the constraint of being a Stiefel matrix (i.e. RR
T =

I2×2). This quadratic minimization problem presents non-

convex constraints given by R, however, it is possible to obtain

a tight convex relaxation. We rewrite (9) as

min
r=vec(RT )

Tr(ErrT ) = min
X∈S

Tr(EX), (10)

where S is the set of all real symmetric 6 × 6 matrices X =
[

A B

B
T

C

]

, with A ∈ R
3×3, satisfying

X < 0, (11)

Tr(A) = Tr(C) = 1, Tr(B) = 0, (12)

rank X = 1. (13)

This quadratic problem, has a nonconvex constraint (rank X =
1). So, we do a convex relaxation of this problem. Since the

cost function is linear we have

min
X∈S

Tr(EX) = min
X∈co(S)

Tr(EX), (14)

where co(S) is the convex hull of the set S.

Here, we approximate the convex hull co(S) by the set of

real symmetric 6 × 6 matrices X that satisfy

X < 0, (15)

Tr(A) = Tr(C) = 1, Tr(B) = 0, (16)
[

I3×3 − A− C w

w
T 1

]

< 0, (17)

with w given by

w =





b23 − b32

b31 − b13

b12 − b21



 (18)

where B = [bij ]. Moreover, this set is defined only by linear

matrix inequalities (LMI).

Hence, we have that our problem (9) is equivalent to find-

ing the minimum of a linear function (Tr(EX)) on a convex

set (co(S)), which is given only by LMI (15)-(17). By using

Noise %

0 10 20 30 40 50

Werr 0 0.00332 0.00334 0.00336 0.00334 0.00335

Serr 0 0.100 0.114 0.114 0.114 0.115

Table 1. The table shows the rms error for the 2D error Werr

and the 3D reconstruction error Serr computed on 3500 ran-

dom trials for each level of gaussian noise. The 2D image

points are always constrained in a square with a side 2 units

long. Instead, the 3D error Serr is always shown as a percent-

ages relative to the overall 3D shape size.

SeDuMi [8], we quickly obtain the optimal matrix X for (14)

with rank X = 1. By factorizing X = rr
T , we obtain the op-

timal Stiefel matrix as RT = vec−1(r). For more details and

proofs about the tight convex relaxation proposed the reader

can check [9]. The computed Stiefel matrix R is then used to

recover the weights ld from eq. (8), obtaining a non-rigid mo-

tion matrix that satisfies the metric constraints. This allows to

solve for the motion parameters as described in Algorithm 1.

4. EXPERIMENTS

We evaluate our algorithm with synthetic experiments to test

the converge of the algorithm and to evaluate its resilience to

noise. Real tests will demonstrate the algorithm capabilities

in dealing with realistic deformations.

4.1. SYNTHETIC TEST

A 3D model S is obtained by randomly generating each basis

shapes B1, ..., Bk. The orthographic camera matrices are ob-

tained by generating random rotations and then by truncating

the last row of the matrix. The configuration weights ld are

generated more carefully since we require that B1 is a mean

3D shape of the deforming object (as it happens naturally).

Thus we constraints the ld such that ‖l1B1‖ >
∑k

d=2 ‖ldBd‖.

Then we add a random translation t to the projected points

and we form W. Finally, a N2×p Gaussian noise matrix is

added to the measurement with a noise strength represented

as ‖N‖ / ‖W‖. The experiments show a peculiar resilence to

noise leading to rather similar results at each level. The re-

sults with no noise always converged to the optimum.

4.2. REAL TEST

We tested our algorithm in a face registration scenario. In

the first test, we used a PCA model of a face computed from

3D ground truth data obtained from a VICON motion cap-

ture system. The subject in this learning stage was perform-

ing different facial expressions and slight head rotations. The

PCA model consisted of k = 5 basis shapes and 37 points

(i.e. S15×37). We then selected an image (Figure 1a) from a

video of the same subject and tried to register the points after



a) b) c)

Fig. 1. Image a) shows the selected points in the given image

frame. Image b) shows the selected point positions (green

circles) and the estimated 2D position (black crosses). Image

c) shows the registered 3D shape to the image using the given

PCA model of the subject.

a manual assignment of the correspondences computed from

the image. Figure 1b shows the results for the alignment in

the image plane and Figure 1c the given 3D shape obtained

from the estimated configuration weights as stated in eq. (3).

A second test2 was made using a face model S12×74 ob-

tained from an image sequence where a subject was tracked

using an Active Appearance Model (AAM) tracker [10]. A

non-rigid structure from motion algorithm [11] was then used

to extract the basis shapes from the 2D observations. Such

model was then used to register the 2D points of a different

subject as shown in Fig. 2(b). In this case the model was

not exactly matching the target anatomical features, however

it was still possible to compute sensible depth estimate after

running the registration algorithm. In such sense a sensible

registration may be obtained even if the model does no per-

fectly match the given 2D data. To conclude, the whole al-

gorithm was implemented in MATLAB and it requires few

seconds in order to perform the minimization since it is inde-

pendent by the number of points and basis shapes in S.

a) b) c)

Fig. 2. The first 2 figures in image a) show two samples of

the 75 frames long sequence used to generate the 3D model.

The last image of a) shows the sample used for the registra-

tion. Image b) shows the selected point positions (green cir-

cles) and the estimated 2D position (black crosses). Image c)

shows the registered 3D shape to the image.

5. CONCLUSION

We have presented a method to register 3D deformable mod-

els expressed as a combination of basis shapes to a set of 2D

points. This algorithm solves the problem by considering all

2Thanks to J. Xiao for providing the sequences and the 2D image tracks

the rigid and non-rigid parameters involved in the registra-

tion at once. In such case, the proposed optimal projection to

the motion manifolds of non-rigid shapes has shown promis-

ing results. To notice that such projections can be success-

fully used for the task of reconstructing 3D deformable mod-

els from a set of images as shown in [12]. As future work

we are planning to tackle the problem of the point assignment

given the mathematical insights provided by this work and to

extend the optimization to different types of camera models.
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