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Abstract: This article describes a navigation algorithm for a mobile robot, endowed with
odometry and a range sensor, moving in a structured indoor environment, without previous
knowledge of its map. The objective is to discover the exit and obtain the shortest path from
the initial point. The navigation algorithm adapts to changes in the environment. Results
obtained with a mobile robot, endowed with a laser scanner, are presented.

1. INTRODUCTION

In an industrial environment, the presence of
autonomous vehicles that perform repetitive tasks is
becoming more predominant. Due to the vast
physical area, and its complexity, where these
vehicles operate, their adaptation to the environment
without human intervention is fundamental. In this
process, the vehicle needs to acquire the
indispensable information required for time and
spatial task management. In this work, where the
vehicle is a mobile platform, a navigation algorithm
is developed to carry out a mission within an indoors
office-like environment.

In the literature, two ways for mapping indoor
environments can be found: grid-based and
topological. The first leads to complex planning and
problem solving in large-scale indoor environments,
while the topological maps can handle more
efficiently the sensor errors [4][5].

This article describes a navigation algorithm for a
mobile robot, endowed with odometry and a range
sensor, moving in a structured indoor environment –
a maze – without previous knowledge of its map. The
objective is to discover the exit and obtain the
shortest path from the initial point. The navigation
algorithm adapts to changes in the environment. We
have chosen a topological map composed of two
building blocks: crossings and corridors, both
delimited by walls. Along its mission, the vehicle
must build automatically a topological map, based on
which it can locate itself and optimize the path to
execute the tasks for which it was designed. This
map construction must consider the possible
enlargement of the original physical area and the

access to the map must be fast, in order to efficiently
plan a trajectory.

The paper is organized as follows: Section 2 presents
an overview of the work presented in this paper.
Section 3 describes the data parameterization for the
two levels of the navigation process, which is
detailed in Section 4. Experimental results are
presented in Section 5. Section 6 concludes the paper
and presents directions for further development of
this work.

Figure 1. Nomad Super Scout II platform with
a Sick Laser on top.

2. OVERVIEW

The navigation algorithm uses the sensors data to
acquire environment information. After data
processing and its parameterization, the information
available is used for two navigation levels: low level
and high level. The first controls motor wheels, and
the second builds and uses the topological map.



The maze is a group of corridors and crossings that
will constitute the map. A crossing consists of a
location, where the vehicle can change its trajectory.
A corridor is the connection between two crossings,
always maintaining the same direction. The
delimitation is made by walls, with which the vehicle
cannot collide. These are perpendicular among
themselves.

Figure 2. The combination of these five
topological patterns (possibly rotated and/or
enlarged or reduced) defines a maze.

The first 3 basic patterns on the left of Fig. 2,
exemplify crossings in a maze. The fourth patterns
represents a corridor. The last one is a special case: a
corridor without exit, i.e., a dead end, which is
identified as a crossing, where the only hypothesis is
to turn backwards. However, the corridors have
different widths and different lengths, which implies
crossings with different dimensions.

The maze is represented topologically by means of a
graph, where the crossings and the corridors
correspond to the nodes and the arcs, respectively.
Each node contains information on the connected
arcs, the number of times that each one was visited
and the dimensions of the crossing. The dimensions
of the crossings are obtained using the dimensions of
the previous and following corridors and the
odometry data that is calibrated along the navigation.

The algorithm was tested on a mobile platform
Nomad Super Scout II endowed with a Sick Laser,
represented in Fig. 1. The vehicle’s perception of the
environment is obtained through evaluation of the
Sick Laser's measurements and odometry [1], as
mentioned. The Sick Laser measurements are
represented in the (x,y) coordinate system (CS),
coupled to the vehicle (Fig. 3). The odometry
measurements are relative to the world CS, (xw,yw),
coincident with the CS coupled to the vehicle for the
initial posture.

Figure 3. Vehicle CS for a Nomadic Super
Scout II (top view ).

The information retrieved by the Sick Laser consists
of N=360 measurements in polar coordinates, (ri,θi)
i=1,...,N, where ri represents the value of the distance
to the obstacle according to the direction θi that
ranges between 0º and 180º, with an increment of
0.5º. The odometry, based in the integration of the
angles of each wheel, indicates the pose of the
vehicle in the world CS. This information obtained
from the sensors is then used to navigate through the
maze.

3. DATA PARAMETERIZATION

As there is no initial knowledge of the maze where
the vehicle will navigate, it is fundamental to select
trajectories in order to gather the largest possible
amount of information so that it can elaborate the
topological representation of the maze. The mobile
platform must avoid obstacles and maintain a smooth
and centered trajectory both in the corridors and the
crossings.

While the exit of the maze has not been reached, the
priority options are those that allow discovering new
nodes in the map which, regarding the maze, means
new corridors and new crossings. When the objective
is reached, to return to the starting point, the shortest
path in the computed map is selected, which
corresponds to the optimal path.

It is useful to point out that, for new paths in the
maze, the map is enlarged, as much as the need of
reaching new objectives (new points to reach). There
are several methods of identifying that the objective
was reached, e.g., by the odometry values, or by the
recognition of a pre-defined geometric object with
the Sick Laser, or by the visualization of a pre-
defined image through a video camera, among others.
The several steps taken along the navigation process
are illustrated in Fig. 4.

After the acquisition of the Sick Laser's data, (ri,θi),
the information is processed by filtering the points
that are distant from the center of the vehicle of a
dynamic value, d, proportional to the corridor's
width, w. There are several corridors in the maze,
with different width values, w. However it is
assumed that each corridor has an approximately
constant width, which w is determined by (4.5). This
fact is due to the diversity of the dimensions of the
corridors that constitute the maze. Because of the
diffraction limitations of the laser, mainly in corners,
it is necessary to apply median filtering. After
median filtering, the existing related groups in the
data are identified. By related group it is meant a
group of points that are not further away from the
previous value than a threshold value.
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Figure 4. Schematic of the navigation process.

The (ri,θi) are compared with the previous values,
because the points are sorted in increasing order
according to the angle. At the end of each iteration,
each point is identified as (ri,θi,c), i=1,..., N, where
ri,θi corresponds to the polar coordinates of point i,
that belongs to group c. The number of groups
changes between iterations. The rth and θth are the
threshold values.

As the environment is well structured, composed by
corridors and crossings as described previously, each
group can be parameterized with one or more straight
lines.

[ ]22 )ˆ( yyEe −= (3.1)

The error of a given group with respect to a linear
parameterization bxay +⋅=ˆ  is minimized by
determining a and b that minimize the cost function
(3.1), where (x,y) are Cartesian coordinates and ŷ is
an estimation of y .
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Figure 5. Sets constructing.

Due to the positioning of the maze walls and the
chosen CS, the algorithm expects to detect almost
horizontal straight lines, where the absolute value of
b is very high, and vertical straight lines, where the
slope, a, reaches high values. Due to this situation,
straight lines are defined (ϕ,β), which satisfy the
parametric equation (3.3), where ϕ is the angle
between the straight line and the y-axis.

βϕϕ =⋅+⋅ )sin()cos( yx (3.3)

However, it is not guaranteed that the
parameterization of each group is achieved with a
single straight line [3], in order to assure that the
error value is less than a threshold value. If this
happens, the maximum possible number of
consecutive points is parameterized with only one
straight line (until the error value is less than a
threshold). The same procedure is followed for the
remaining points of the same group. The number of
straight lines is increased until the group is
completely parameterized (see Fig. 6). If each
straight line is valid for only two points of this set,
which means too many straight lines, then this
iteration is ignored because the measures were
inaccurate. Besides the values (ϕ,β), other parameters
are necessary to define the straight line, rk, the limits
between which the straight line is valid, xinf, yinf, xsup
and ysup, and the set c it belongs to:

( )cyxyxrk ,,,,,, supsupinfinfβϕ= (3.4)

At each iteration there exists a variable number of
groups and all this information is parameterized by
seven parameters times the number of straight lines.
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Figure 6. Linear parameterization of each set.

4. NAVIGATION

Data parameterization is used for navigation. It is
necessary to elaborate trajectories and to build the
map of the maze. There are two navigation levels:
low level and high level. Low level navigation
corresponds to the determination of the pose (x,y,θ),
in order to accomplish trajectories that are equidistant
to the maze walls, with the desired orientation. High
level navigation consists of the elaboration of the
graph map, as a topological maze representation. It
also optimizes the path with all the information
obtained so far, in order to reach the intended
objective.

4.1 Low level navigation

Based on the previously computed parameterization,
it is possible to calculate the angular error, θe, that
corresponds to the angle between the y-axis of the
referential coupled to the vehicle and the corridor's
walls, as well as the error distance, de, between the
center of the vehicle and the middle of corridor,
measured perpendicular to the walls. The value w
defines the corridor with, measured perpendicular to
the walls. As shown in the Fig. 7, the controller uses
those values to calculate the velocity reference that
will be applied to the wheel velocity controllers.

Low Level
Navigation Control

θe

de

Paramete-
rization

vleft

vright

w

Figure 7. Schematic of parameterization vs.
control.

Based on the CS coupled to the vehicle and due to
the maze structured environment, the resulting
straight lines of the parameterization could only be

vertical or horizontal. Knowing the slope of the
straight lines (defined by ϕ, see (3.3) ) it is possible
to calculate the orientation error of the vehicle.
Thus, straight lines that have |ϕ|<45º, are considered
vertical straight lines, otherwise, they are horizontal.

Figure 8. Typical situation, where the
visualization range shows two sets: the first
(on the left of the platform) with straight lines
a and b, and the second set (on the right) with
a single straight line c as a result of
parameterization.

As a result of the parameterization we have two
groups, the first composed of straight lines a and b,
and the second with a single straight line c, see Fig.
8. While the straight lines b and c are considered
vertical, a is horizontal. In Fig. 8, the effect of the
occlusion in the group to the right of the vehicle is
noticeable.

To calculate the orientation error of the vehicle, θe,
the weighted average of the slope of the vertical
straight lines and the slope of the horizontal straight
lines is used. Regarding vertical straight lines:
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where Rv corresponds to the number of vertical
straight lines of all groups, Ni, the number of points
that constitutes the straight line i (obtained using the
variables xinf, yinf, xsup and ysup, of (3.4) ) and ϕi, the
slope of vertical straight line i. A similar procedure is
applied to the horizontal straight lines. However, we
must subtract 90º to the slope of the straight lines,
because these are considered horizontal:
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The value of orientation error, θe , is calculated by
means of the weighted sum of v

meanθ  and h
meanθ :

a)

b)

c)
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The distance error between the vehicle and the
corridor's center, de, is the result of the sum of the
distances, between the center of the referential
coupled to the vehicle and the intersection of the
vertical straight lines with the x-axis:
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The parameter 0, >βVR  indicates the number of

vertical straight lines, where βi is positive, while
0, <βVR  indicates the straight lines number with

negative βi. Fig. 9 illustrates the orientation and
distance errors with respect to the corridor's walls.
Although the examples present the errors separately,
they always exist together.

Figure 9. Example of orientation error (left)
and distance error (right).

The calculation of the corridor's width is obtained
using the straight lines that are considered vertical
and the intersection of these with the x-axis of the CS
coupled to the vehicle:
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(4.5)

The controller is designed based on functions that
depend on parameters de and θe: f(de) and g(θe) [2].
The maximum value of orientation error, is 45º (due
to the definition of vertical straight lines; see Section
4.1), while 

maxed  corresponds to half of the corridor's

width, w/2, minus the half diameter of the vehicle.
When the absolute value of de approaches the limit, it
is necessary to correct that value, whatever the value
of θe will be. Function γ(de), defined by (4.6) is used
to scale g(θe):











−=

max

1)(
e

e
e d

d
dγ (4.6)

Functions f(de) and g(θe) are proportional to de and θe
respectively. In the crossings the function f(de) is not
used, because de cannot be calculated (4.4). When the
platform enters the crossing, in the first iterations, the
θe signal is changed and its value is increased by a
positive or negative offset, to make the controller
unstable. The proportional gain constants for the
controller were obtained experimentally.

Odometry calibration is essential for platform
navigation, because the center of the crossings is
obtained by odometry. The values are calibrated
using the following equations:
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where i and i-1 are consecutive iterations and ccorridor
corresponds to the entrance of the previous crossing,
given by the odometry, plus w/2. The signal ±
corresponds to “+” for 0º orientation and “–” for 180º
orientation. For other orientation cases, the variables
x and y are exchanged in (4.7).

4.2 High level navigation

At this point, besides parameterization, we also know
error values de and θe. In this navigation level it is
necessary to identify if the vehicle is either located in
a crossing or in a corridor. It is also necessary to
build the topological map and analyze all the
information in order to make the right decision on the
path to take.

If the positioning and the limits between which the
straight lines are valid, that will allow either corridor
or crossing identification. If the vehicle is located in
a corridor, with error values below the defined limits,
it is expected to perceive two groups, each with a
straight line. Only the visible area allowed by the
algorithm limits each one of those straight lines.
When the upper limit of the straight lines begins to
be inferior to the value imposed by the area allowed
by the algorithm, the credibility of a crossing begins
to increase. This credibility factor releases the
algorithm of unsuccessful iterations. When the
number of points of each straight line is less than a
threshold value, it is considered that the vehicle is
located in a crossing. The number of groups is
analyzed, as well as the number of straight lines at
each one, to evaluate the possible exits of the
crossing. In the example shown in Fig. 8, the vehicle
is about to enter a crossing, constituted by two
groups. The first is defined by straight lines a and b,
and due to the continuity between the straight lines
and the positioning, indicates the inexistence of any
exit for the left or in front. The second group displays
a greater separation with respect to the previous
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group, which means an exit for the right. The
algorithm just considers an exit, when the distance
between two groups is more than the diameter of the
vehicle.

Nodes and arcs constitute the topological map as it
was already referred in section 2. A node is
associated to each crossing, identified as node k ,
containing the following information: the physical
dimensions of the crossing contained in the vector v ,
the number of times that each arc was visited t  and

vector b  with the possible directions that the vehicle
can take:

,...3,2,1),,( == kbtvn kkkk . (4.8)

The physical dimensions of the crossing v , are
defined relative to its center, width and length.
Vector b  identifies the arcs of each node. In
positions 0, 1, 2 and 3 of this vector we define the
arcs for the left, front, right and back respectively in
relation to the world CS (coincident with the
referential coupled to the vehicle at initialization).
Whenever a node is created, the existent arcs in that
crossing are identified and the respective positions of
vector b  are initialized to 0 (zero). The remaining
positions are initialized with value –1 (or NULL).
Knowing the branch that links to the previous node,
the corresponding position of vector b  is refreshed
with the number of that node.

The graph is built based on this procedure. Once
located in the crossing, before a node is created, the
position of the vehicle is verified in the world CS and
the existence of the node is sought in the graph map.
In case it doesn't exist, this fact leads to the creation
of the node, just as it was explained in the previous
paragraph. Afterwards, based in the existent arcs in
that node, a decision must be made. If the path to the
objective is still not known, it prevails the mission
“to conquer”, that is, to search for crossings still not
visited, or that have been traveled the smallest
possible number of times. This is how an
enlargement of the map is achieved.
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While the objective has not been reached, the process
repeats itself iteratively. Once its mission is
accomplished, the vehicle will have to return to the
starting point, or otherwise, it will be assigned a new
objective. If, through the built map, it succeeds to
reach the objective, it will optimize the path
according to the traveled distance. The A* algorithm
is used in the search of the optimal path between two
nodes in the built map.

5. EXPERIMENTAL RESULTS

The vehicle used is a Nomad Super Scout II (see Fig.
1) a non-holonomic mobile unit with two motor-
driven wheels. It includes a Pentium 233 MHz with
64 MB and odometry sensors. It also incorporates on
the top of the vehicle a Sick Laser with a 180º scan
angle  (0.5º precision) and communicates with the
computer through the serial port, using the RS232
communication protocol, at a speed of 38.4 kbps.

The low level navigation was initially tested in a
corridor (see Fig. 10). As shown in Fig. 9, in the first
test the platform begins with an orientation error,
while in the second, with a distance error. In this
case, the platform’s orientation is parallel to the
walls. The length of the corridor is about 1.5 meters.
The platform corrects the distance error faster, which
is also important to correct the orientation error. This
is due to the distance error created when the platform
moves, trying to correct the orientation.

The real situation of Fig. 8 is shown in Fig. 11. The
platform changes its direction smoothly in the
crossing. The small oscillation is due to errors in the
laser measurements. However it is not perceptible on
the platform motion, due to the reduced vehicle
acceleration.

Figure 10. Example of navigation through a
corridor starting with orientation error (left)
and distance error (right).

Figure 11. Navigation through a crossing.

After these low level navigation tests, a maze was
built as shown in Fig. 12 and Fig. 13. The maze
dimensions are 7 × 4 meters. There is no exit in the
maze to visit all the corridors and crossings and to
test the algorithm when a crossing is often visited. In



the first trial, Fig. 12, the odometry correction was
disabled and, at each crossing, the direction was
randomly chosen. For almost 4 laps, the increase of
odometry error is visible. After a few more laps, the
algorithm couldn’t identify all the crossings. Due to
the odometry error, in Fig. 12 it seems that the
platform crashes against the wall in some corridors
(in the middle of the maze and near the dead-end).

Figure 12. Navigation in a maze without
odometry correction.

In the last test, shown in Fig. 13, the odometry
correction was enabled. In each crossing the
algorithm chooses the direction not so often visited
(in order to discover more paths). The platform
started its path in the right side of the maze. The right
half of the maze is visited more times because of the
deadlock, which is solved perfectly. When this side
of the maze is completely known, the left half is
discovered with one path. This test lasted almost 5
minutes to discover the entire map. If there were an
exit, it would use less time.

Figure 13. Navigation in a maze with
odometry correction.

6. CONCLUSIONS

This paper demonstrated navigation in an unknown
environment without a previous knowledge of a map.
The method requires that the environment is
expressed as a combination of the five patterns
defined in 2. Still the fact remains that the navigation
algorithm works with not parallel walls. The vehicle
always navigates in the middle of the corridor using
the parameterization algorithm in the limited

observation area. For transient obstacles, as someone
walking along the corridor, the navigation algorithm
avoids the collision and stops. If the obstacle persists,
the vehicle turns back along the corridor without
modifying the map.

Further developments could integrate vision sensing
to add more information about each crossing. Vision
could be used to replace the odometry. To optimize
the vehicle performance, a velocity controller could
be developed to increase the translation velocity
proportionally to the corridors width.

7. REFERENCES

[1] J. Borenstein, H. Everett, L. Feng, (1996). Where
am I ? Sensors and Methods for Mobile Robot
Positioning.

[2] R. Carelli, S. Humberto, V. Mut, (1999).
Algorithms for Stable Control of Mobile Robots
with Obstacle Avoidance. In Latin American
Applied Research. Pages 191-196

 [3] J. Mota, M. Ribeiro. Localization of a Mobile
Robot Using a Laser Scanner on Reconstructed
3D Models. In Proceedings of 3rd Portuguese
Conference on Automatic Control. September
1998

[4] J. Leonard, H. Durrant-White, I. Cox. Dynamic
Map Building for an Autonomous Mobile Robot.
In Proceedings of the IEEE International
Workshop on Intelligence Robots and Systems.
July 1990

 [5] S. Thrun, A. Bücken. Learning Maps for Indoor
Mobile Robot Navigation. Artificial Intelligence.
1998.


