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Single hydrophone source localization
S.M. Jesus, M.B. Porter, Y. Stéphan, X. Démoulin, O. Rodriguez

and E. Coelho

Abstract— The method presented in this paper assumes
that the received signal is a linear combination of delayed
and attenuated uncorrelated replicas of the source emitted
waveform. The set of delays and attenuations, together with
the channel environmental conditions, provide sufficient in-
formation for determining the source location. If the trans-
mission channel is assumed known, the source location can
be estimated by matching the data with the acoustic field
predicted by the model conditioned on the estimated de-
lay set. This paper presents alternative techniques, that do
not directly attempt to estimate time delays from the data
but, instead, estimate the subspace spanned by the delayed
source signal paths. Source localization is then done using
a family of measures of the distance between that subspace
and the subspace spanned by the replicas provided by the
model. Results obtained on the INTIMATE’96 data set, in
a shallow water acoustic channel off the coast of Portugal,
show that a sound source emitting a 300-800 Hz LFM sweep
could effectively be localized in range or depth over an entire
day .

Keywords—Source localization, subspace methods, shallow
water, broadband.

I. Introduction

The aim of single hydrophone broadband source locali-
zation is to provide a range/depth localization approach
for coherently using the information contained in the time
series received by a single hydrophone.

Classical matched-field processing (MFP) methods
mostly use vertical or horizontal hydrophone arrays with
significant apertures in order to obtain sufficient source lo-
cation spatial discrimination. The reader is referred to the
pioneering work of Hinich [1] and Bucker [2] and to Bag-
geroer et al. [3] and references therein, for a full overview
of the classical work done in MFP. Although many stud-
ies used MFP with single frequency data (tones), some do
combine information at different frequencies. Both incoher-
ent and coherent forms have been studied providing what
are effectively broadband MFP (BBMFP) estimators [4],
[5],[6].

Source localization in the time domain was first clearly
suggested by Clay [7]1 who used a time reversal of the
channel impulse response to reduce transmission distor-
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que et Oceanográphique de la Marine, F-29275 Brest Cedex, France.
E-mail: stephan@shom.fr

E. Coelho is with Instituto Hidrográfico, Rua das Trinas 49, PT-
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1although source localization feasibility had been mentioned 10
years earlier by Parvulescu [8].

tion and (in simulation) localize a source. Li et al. [9]
used the same technique for localizing a source in a labo-
ratory waveguide using air as the medium of propagation.
Single hydrophone localization in particular, was studied
by Frazer [10] who introduced several Clay-like estimators
and tested them on simulated data. In 1992, Miller et
al.[11] showed, using computer simulations, that it is pos-
sible to localize short duration acoustic signals in a realis-
tic range-dependent environment, while, the same method
was applied for range and bearing estimation using bot-
tom moored sensors in [12]. Time domain source locali-
zation was actually achieved by Brienzo et al.[13] using
data received on a vertical array in a deep water area on
the Monterey fan. In this case, a generalized conventional
beamformer was used for recombining the received data in
time domain (matched-filter), and then between sensors in
space domain (beamformer).

In shallow water, arrival time estimation is in many prac-
tical situations compromised due to the low signal-to-noise
ratio (SNR) and/or to the difficulty in resolving individual
paths[14]. Furthermore, because of such factors as bottom
interaction and ocean variability, shallow water presents
many challenges for accurate acoustic modeling. Never-
theless, in a more recent study, it has been demonstrated
that with suitably robust processors, received and model-
predicted waveforms could be correlated at a single ar-
ray sensor yielding practical schemes for source tracking
[15],[16]. In this case, the lack of spatial information was
“compensated” by coherent broadband processing.

Difficulties associated with single hydrophone localiza-
tion are obviously related with the lack of spatial diversity.
Thus, a key point of interest, is to understand the degree to
which spatial aperture can be compensated for using broad-
band information. The method proposed in this paper goes
along the lines of those being used in ocean tomography,
where the features of interest for ocean characterization are
the time delays associated with the different acoustic paths
(or rays)[17]. Our approach does not directly attempt to
estimate time delays from the data but, instead, searches
for the source location for which the time delay set maxi-
mizes a mean least squares criteria. In that sense it gives a
mean least squares solution constrained to the given acous-
tic model.

Making the further assumption that there are features
(clusters of acoustic arrivals) that are decorrelated, allows
us to extend this approach to signal-noise subspace split-
ting. In that case estimating source location is equivalent
to measuring the distance between the estimated signal
subspace and the subspace spanned by the delayed source
signal paths given by the acoustic model. Such subspace-
based distance measures are shown to yield good source
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location estimates on real data.
This paper is organized as follows: Section 2 presents the

linear data model and the assumptions that underline the
methods being developed. Section 3 presents the classical
time-delay estimation (TDE) problem. Section 4 extends
TDE methods to source localization by including the en-
vironmental information. The resulting algorithm is then
tested, with simulated data, in section 5. Section 6 shows
the results obtained on a data set recorded in a shallow
water area off the west coast of Portugal, during the INTI-
MATE’96 experiment in June 1996 and finally, section 7,
discusses the results and draws some conclusions.

II. Linear data model

According to the linear data model, the received acoustic
signal due to a source at location θs = (rs, zs) is given by

yn(t, θs) = zn(t, θs) + εn(t), (1)

where ε is the noise sequence, assumed spatially and tem-
porally white, zero-mean and uncorrelated with the signal,
t = 1, . . . , T is the discrete-time index within each n-index
time snapshot and z is the noise-free signal given by

zn(t, θs) = pn(t, θs) ∗ s0(t). (2)

Here, s0 is the source emitted waveform and p is the channel
impulse response. Under the assumption that the medium
between the source and the receiver behaves as a multiple
time delay-attenuation channel, its impulse response can
be written

pn(t, θs) =
M∑
m=1

an,m(θs)δ[t− τn,m(θs)], (3)

where the {an,m(θs), τn,m(θs);n = 1, . . . , N ;m =
1, . . . ,M} are respectively the signal attenuations and time
delays along the M acoustic paths at time snapshots n =
1, . . . , N .

To pro-
ceed with the estimation of the τn,m;m = 1, . . . ,M ;n =
1, . . . , N time delays, it is necessary to assume that the
variation in time delays is small within each N snapshot
data set, i.e., that τn,m = τm+δτn,m where δτn,m � τm and
δτn,m � T0 where T0 is the observation time(T0 = NT∆t,
where ∆t is the sampling interval). That additional as-
sumption allows one to write

zn(t, θs) =
M∑
m=1

an,m(θs)s0[t− τm(θs)], (4)

where τm(θs) is the mean arrival time of path m within
the observation time T0. With the assumptions made in
(4) one can now rewrite (1) as

yn(θs) = S[τττ(θs)]an(θs) + εεεn, (5)

with the following matrix notations,

yn(θs) = [yn(1, θs), yn(2, θs), . . . , yn(T, θs)]t, dim T × 1
(6a)

τττ(θs) = [τ1(θs), . . . , τM (θs)]t, dim M × 1 (6b)

s0(τ) = [s0(−τ), . . . , s0((T −1)∆t−τ)]t, dim T ×1 (6c)

S[τττ(θs)] = [s0(τ1), . . . , s0(τM )], dim T ×M (6d)

and

an(θs) = [an,1(θs), . . . , an,M (θs)]t, dim M × 1 (6e)

where T is the number of time samples on each snapshot
and M is the number of signal replicas at the receiver.
Equation (5) forms a linear model on the amplitude vector
a, where further assumptions on the relative dimensions
and rank of matrix S and noise distributions allow for dif-
ferent solutions for the estimation of τττ . For simplicity the
dependence of τττ and a on the source location parameter θs
will be omitted in the next two sections.

III. Time delay and amplitude estimators

In model (5) both the amplitude and the time delay vec-
tors are unknown. However, as discussed in the introduc-
tion, we prefer to focus on the time delay vector for locali-
zation which should be a more stable feature and therefore
yield a more robust processor. There are two possible ap-
proaches for solving this problem: the first is to consider
that the amplitude vector is deterministic and therefore
both a and τττ are to be estimated; the second considers
that a can also be random and then one has to resort to
second order statistics for estimating the time-delay vector
τττ . These two approaches will be formulated in the next
subsections.

A. Deterministic amplitudes

To begin one needs some estimate of the amplitude vec-
tor a. This is a sort of classical problem and may be easily
addressed using least squares(LS), or under the Gaussian
white noise assumption, as a generalized maximum likeli-
hood (ML) problem. In either case, one obtains the follow-
ing:

â = arg{min
a

e(τττ ,a) =‖ y − S(τττ)a ‖2}, (7)

whose solution is well-known to be

â = (SHS)−1SHy, (8)

where H indicates complex conjugate transpose. Inserting
â, of (8), in (5) the problem now becomes that of estimating
a known signal in white noise (for each assumed τττ). The
optimal solution is given by the well known matched-filter.
That can be seen by plugging (8) into (7) to obtain a new
function to be maximized,

e(τττ) =‖ yHS(τττ) ‖2, (9)

which is now only a function of delay vector τττ . Passing
from (7) to (9), requires the additional assumption that
the matrix S is orthogonal, i.e., that SHS = I. In terms
of propagation, that assumption is equivalent to assum-
ing that signals travelling along different paths suffer un-
correlated perturbations. Whether this occurs in practice
depends on a variety of factors.
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The description above assumes that only a single mea-
surement y is available. If instead there are N ran-
domly distributed vectors inserted in a matrix as Y =
[y1, . . . ,yN ], of dimension T × N , the problem is formu-
lated as the minimization of

‖ Y − S(τττ)A ‖2, (10)

where A is now a M ×N matrix containing the M signal
amplitudes at N times. In this case the solution for A is
analogous to (8),

Â = (SHS)−1SHY. (11)

Substituting (11) into (10) gives the new function for τττ

e(τττ) =
1
N

N∑
n=1

‖ yHn S(τττ) ‖2 . (12)

In this case, and for an infinite observation time, one can
estimate the M time delays from the M highest peaks of
function (12), i.e.,

{τ̂LS
m ;m = 1, . . . ,M} = arg{max

τ

N∑
n=1

‖ yHn s0(τ) ‖2},

(13)
and then replace the time delay estimates obtained from
(13) into matrix S of the amplitude estimator (11) and it-
erate. In practice, for a finite observation time, (12) may
not exhibit M clear peaks and a complex M-dimensional
search may be required to solve (13). As it will be seen
below, such complex search procedure is not needed here
since only the value of the functional (12), at model pre-
dicted values of τττ , is necessary for source localization.

B. Random amplitudes

Once model (5) has been adopted, an additional assump-
tion on the mutual decorrelation of the multipath ampli-
tudes (assumed now as random and zero mean), allows
one to extend the least squares or maximum likelihood
(LS/ML) method above, to subspace separation based
methods2. In fact, the linear model (5) allows one to char-
acterize the signal part as covering a K(< M)-dimensional
subspace where K is the number of uncorrelated paths (or
groups of paths) in the received signal— this is the signal
subspace.

In general, a number N ≥M of uncorrelated time snap-
shots are available which is a requirement for estimating
the signal subspace. Let us consider the data matrix Y and
its SVD Y = UΣVH . Since T > N , Y has a maximum
rank of N . Taking into account the linear model (5) with
the assumptions made on the decorrelation of noise, sig-
nal and amplitude components, it can be shown [18] that
the M eigenvectors {u1, . . . ,uM} associated with the M
largest singular values σ1 ≥ σ2 ≥ . . . ,≥ σM provide the

2subspace methods do not require random amplitudes that can be
either random or deterministic

optimal estimate (in the sense of least squares and maxi-
mum likelihood) of the signal subspace. Indeed the vectors
um;m = 1, . . . ,M span the same (signal) subspace as the
M signal replicas s0(τ1), . . . , s0(τM ). Therefore, considered
as a function of search delay τ , the projection of the signal
replicas onto the subspace spanned by the first M eigenvec-
tors will be a maximum for τ = τm;m = 1, . . . ,M . Thus
we seek the maxima of the functional

e(τ) =‖ UH
Ms0(τ) ‖2, (14)

where UM = [u1, . . . ,uM ]. Using (14), the associated sig-
nal subspace (SS) based time delay τm estimator can be
written

{τ̂SS
m ;m = 1, . . . ,M} = arg{max

τ
‖ UH

Ms0(τ) ‖2}. (15)

Similarly, knowing that UM and its complement
UT−M = U⊥M split the whole space <T into two orthogo-
nal subspaces, the projection of the signal replicas onto the
UM signal subspace complement (denoted SS⊥ in the se-
quel) will tend to zero for the same true values of τ . There-
fore, the noise subspace based time delay τm estimator is
given by

{τ̂SS⊥

m ;m = 1, . . . ,M} = arg{max
τ

[‖ UH
T−Ms0(τ) ‖2]−1},

(16)
where the matrix UT−M = [uM+1, . . . ,uT ] is formed from
the data eigenvectors associated with the M+1 to T small-
est singular values. These eigenvectors span the subspace
containing the non-signal components, so the estimator is
generally called the noise subspace or signal subspace or-
thogonal estimator.

IV. Source localization

The source localization problem can be readily deduced
from the last sections both for the LS/ML and the subspace
separation based methods. Until now only the received sig-
nal was used for analysis but source localization requires
data inversion for source properties. That means, in partic-
ular, that the medium where the signal is propagating has
to be taken into account using a specific propagation model
to solve the forward problem. The propagation model de-
termines a set of time delays at the receiver for the given
environment and for each hypothetical source location.

Let us define τττ(θ) as the model-calculated time delay
vector for source location θ, conditioned on a given environ-
mental scenario. For all possible values of θ in a set Θ, the
vector τττ(θ) will cover a continuum on an M -dimensional
space as does the source replica vector. In other words,
the source replica vectors span a subspace S(θ) that has
dimension M under the assumption of uncorrelated paths

S(θ) = range(S[τττ(θ)]) = range{s0[τττ(θ)]; θ ∈ Θ}. (17)

As explained in the previous section, an estimate of the
actual S(θs) subspace associated with the true source lo-
cation can be obtained as the span of the M eigenvectors
contained in UM :

Ŝ(θs) = range(UM ). (18)
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Fig. 1. INTIMATE’96 environmental scenario used for simulation.

Those two subspaces share the same dimension M . An
estimator θ̂s of θs could, in principle, be derived from the
notion of distance between subspaces. This is usually based
on respective projections but alternatively one may use
the CS decomposition theorem [19] and define the distance
measure

d(θ) =
√

1− σ2
min(UH

MS[τττ(θ)]), θ ∈ Θ (19)

where σmin(•) is the minimum singular value of matrix •.
The distance measure (19) has poor performance for esti-
mating the source location parameter θs, since it mainly
depends on the estimation of the smallest eigenvalue of a
matrix that is itself highly dependent on the SNR. In prac-
tice, M is not known and varies with θ which introduces
further sensitivity into d(θ).

Alternatively, a constrained LS/ML based estimate θ̂LS

of source location θs will be, according to (12)-(13), given
by the value of θ that satisfies

max
τττ (θ)

1
N

N∑
n=1

‖ S[τττ(θ)]Hyn ‖2, θ ∈ Θ. (20)

The resulting source location estimator can therefore be
written as

θ̂LS = arg{max
τττ (θ)

1
N

N∑
n=1

M∑
m=1

‖ s0[τm(θ)]Hyn ‖2}, θ ∈ Θ.

(21)
Similarly, using (15) and (21) for the SS approach, the

source location estimate corresponds to the maximum of
the sum over paths of the projections of the replica signal
for each time delay set onto the estimated signal subspace,

θ̂SS = arg{max
τττ (θ)

M∑
m=1

‖ UH
Ms0[τm(θ)] ‖2}, θ ∈ Θ. (22)

Finally, for the SS⊥ approach, the function is searched for
the minimum of the sum over paths of the projections onto
the noise subspace estimate,

θ̂SS⊥ = arg{min
τττ (θ)

M∑
m=1

‖ UH
T−Ms0[τm(θ)] ‖2}, θ ∈ Θ.

(23)

Depth Sound speed
(m) (m/s)
0.0 1520
5.0 1520
11.3 1518
21.3 1516
32.0 1512
42.7 1510
72.8 1508
94.6 1507
135.0 1507

TABLE I

Measured sound speed profile used in the simulation

example.

V. Simulation Results

In order to test the methods presented in the previous
section, and to have a feeling of their performance on real
data, the environmental and geometry scenario used for
simulation was the same as that of the real data of next
section. Let us consider the case of an LFM sweep with a
duration Dt = 1s and a frequency band from 200 to 400 Hz.
The signal is transmitted in a 135 m depth waveguide with
a slightly downward refracting sound speed profile (table
1) over a sandy bottom characterized by a 1750 m/s sound
speed, a density of 1.9 g/cm3 and a compressional attenu-
ation of 0.8 dB/λ (figure 1).

The ray-arrival times and amplitudes predicted with
Bellhop [20] for a sound source and a receiver at 92 and 115
m depth respectively and at 5.6 km range from each other,
are shown in figure 2. The arrivals are arbitrarily ordered
in accordance with their take-off angle at the source. The
intermediate angles correspond to rays which are launched
nearly horizontally, therefore with smaller amplitude loss
as seen in figure 2(a). Their path lengths are shorted yield-
ing a sort of bowl-shaped arrival time pattern seen in figure
2(b).
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Fig. 2. Ray-model predicted arrival amplitudes (a) and times (b).

A number of N = 100 snapshots was generated accord-
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ing to model (5) with a high SNR (>20 dB) and the decor-
relation between multipath amplitudes was simulated by
generating a Gaussian vector with its mean equal to the
value given by the model (figure 2(a)), and its standard
deviation σa = 0.5 ‖ a ‖. The corresponding arrival pat-
tern, based on (13), is shown in figure 3. Note that there
are many more arrivals in figure 2 than we see as peaks
in figure 3. This indicates that there are many unresolved
paths. (With increased bandwidth, these paths would be
resolved.)
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Fig. 3. Arrival pattern with LS/ML estimator [eq.(13)].

Figure 4 shows the arrival pattern for the same data set
but using the signal subspace estimator (15) with the num-
ber of arrivals set to the true number, i.e., M = 48. Notice
that the higher resolution allows to distinguish many more
arrivals. The amplitudes are not proportional to the re-
ceived signal correlation since no eigenvalue weighting was
used to project the source signal onto the signal subspace.
Figure 5 shows the arrival pattern obtained with the noise
subspace estimator (16). The path resolution is the same
as that of the signal subspace method. However, it is much
less sensitive to the actual subspace dimensionality since
an underestimation of M would result in a mis-projection
onto the signal subspace. Numerically, this is a large num-
ber and therefore a small contribution to the inverse func-
tion in the noise subspace estimator. On the other hand,
an over estimation of M would result in a few unobserved
directions among several thousand (depending on the value
of T) which in practice has little effect on the result. The
main practical difficulty is simply the computational cost of
manipulating matrices of high dimension. For that reason
the estimators were implemented in the frequency domain
for the real data analysis of the next section.

VI. Real data analysis

The INTIMATE’96 sea trial was primarily designed as an
acoustic tomography experiment to observe internal tides
and details of the experimental setup has appeared else-
where [21]. However, for the sake of completeness, a brief
description of the experiment follows. The experiment was
conducted in the continental platform near the town of
Nazaré, off the west coast of Portugal, during June 1996
and consisted of several phases during which the acoustic
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Fig. 4. Arrival pattern with SS estimator [eq.(15)] and M=48.
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Fig. 5. Arrival pattern with SS⊥ estimator [eq.(16)] and M=48.

source was either stationnary or being towed along pre-
determined paths. This paper is concerned with the data
acquired in phase 1 during which the scenario is shown in
figure 1 and is identical to that used for the simulations in
chapter 5. The only difference is that the source signal used
during INTIMATE’96 was a 300-800 Hz LFM sweep with
2 s duration repeated every 8 s. The signal received at 5.5
km range on the 115 m depth hydrophone is shown in figure
6. At that range the time-frequency source signature could
be clearly seen (figure 6(a)), while the time-series shows a
strong multipath effect (figure 6(b)).
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Fig. 6. Received signal at 115 m depth and 5.5 km range: time-
frequency plot(a) and time-series (b).

The SNR has been estimated to be approximately 10 dB
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within the frequency band of interest. As a first test of
the match between the predicted arrival times and the es-
timated arrival patterns, figure 7 shows an example of a
received data arrival pattern, using (13). The correspond-
ing predicted arrival times are represented by the vertical
lines on the time axis. The agreement between the two pat-
terns is almost perfect for this case. In order to establish a
localization statistic, the algorithms described above were
used to estimate the source range at a given correct source
depth. Separately, we have estimated source depth using a
given (correct) range during a 20 hour long run (phase 1)
where the source was held at approximately constant range
and depth and the environment was nearly range indepen-
dent with a 135 m depth channel and a slightly downward
refracting sound speed (as explained in section 5 and in
detail in [21]).
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Fig. 7. Arrival pattern using the LS estimator for a sound source
at 5.5 km range and 92 m depth received on a sensor at 115 m
depth. Vertical lines on time axis represent Bellhop predicted
arrival times.
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Fig. 8. Estimated number of uncorrelated paths: with Akaike’s (AIC)
criterion (a) and with the Minimum Description Length (MDL)
criterion (b). The start time is 17:20 June 14, 1996.

The first problem encountered when processing the real
data using the subspace based methods was the estimation
of the number of existing paths, M , in equations (22) and
(23). In principle, M can be predicted by the acoustic
model for each source range and should be equal to the
rank of matrix S. However, in practice, it was found that
the matrix S was largely rank deficient, and the number of
estimated uncorrelated paths (or path groups) was much

smaller than the number of predicted paths M . Figure 8
shows the number of estimated paths for a 20 hour long
run using the classical Akaike Information Criterion (AIC)
and Minimum Description Length (MDL) [22]. It can be
seen in figure 8 that the estimated number of paths varies
from 4 to 5 for AIC and from 3 to 4 for MDL (while the
model predicted number of paths is M = 48).

It is known that AIC tends to give higher estimates than
MDL and in many practical situations to overestimate the
model order so these results are anticipated. In our case,
the AIC and MDL order estimates inserted in (22) and
(23) yield approximately the same results and so we will
only present the former. In figure 9 we estimated source
range and in figure 10 we estimated source depth. In these
figures the three estimators (21), (22) and (23) are respec-
tively shown in ambiguity plots (a), (b) and (c). Taking the
peak locations from those plots yields corresponding sub-
plots (d),(e) and (f) showing the estimated location (either
range or depth) vs. time. A statistic of the estimated
mean and MSE of the proposed estimators is summarized
in table 2. The data singular-value decomposition was per-
formed on 35 consecutive data snapshots every 5 minutes
- each snapshot containing a single received source wave-
form. Therefore the data shown has 231 samples along the
time axis and, since samples are 5 min apart, the whole
data set represents 19.25 hours worth of data.

Figures 9(a) and 9(b), given by the LS/ML and SS es-
timators, are very similar and show a relatively stable and
well defined estimate with a mean source range of 5.48 km
(figures 9(d), 9(e) and table 2) which coincides with the
mean DGPS range estimate recorded during the cruise.
The waving effect seen in time is mainly due to the sur-
face tide (figure 11). The phase coincidence between tide
height and the range estimate is striking and simply shows
the influence of water depth variation on the multipath
time delays structure between the source and the receiver.
Figure 9(c), obtained with the signal subspace orthogonal
projector, shows a more ambiguous surface - larger mean
square error (MSE) - with, however, the same mean source
range estimate than for the other estimators (figure 9(f)
and table 2). This poorer result is possibly due to the sig-
nal subspace rank deficiency mentioned above. The first
impression from figure 10, when compared to figure 9, is
that the results are poorer for source depth than for source
range. This is mainly a function of the axis scales since we
localize in range over a wide sweep while depths of interest
are limited to the channel depth.

There is also a dependence on the basic variation of the
acoustic field; however, in terms of intensity the character-
istic scale is a few wavelengths in both range and depth.
Among the three estimators shown in figures 10(a), 10(b)
and 10(c), is the signal subspace that provided the best
mean result with 92 m, very close to the true nominal
value and also the lowest estimated MSE. However, all the
methods perform well and there is little practical basis for
choosing one over the other. The authors also believe that
if a broadband random source signal was used the results
would be similar as those obtained with the LFM deter-
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Fig. 9. Time-depth localization plots for INTIMATE’96 phase 1 data set with LS/ML method (a), signal subspace (b) and noise subspace
projection (c). Figures (d), (e) and (f) show the depth estimate obtained as the max on each surface (a), (b) and (c) respectively. The
start time is 17:20 June 14, 1996.

ministic signals provided that the emitted signal replicas
were known at the receiver and that the frequency band
was identical.

Range Depth
(m) (m)

mean mse mean mse
LS/ML 5.48 9.3 85 348
SS 5.49 7.1 92 259
SS⊥ 5.48 34.7 80 363

TABLE II

Source localization in range and depth: estimated mean and

mean sqare error (MSE) for the three methods: LS/ML, SS

and SS
⊥

.

VII. Discussion and conclusions

The discussion of the results can be separated into two
distinct aspects: one is the estimation of the arrival times
- which is a question of time-delay estimation - and the
other is the usage of the estimated pattern to match the
predicted arrival times and its impact on source localiza-
tion. Time-delay estimation has been intensively studied in
the underwater acoustic multipath context, see for example
[23] - [26], and references therein. Three different methods
were presented here only to emphasize the importance of
high-resolution of time-delays in presence of limited band-

width signals. The source localization aspect is much more
central to the paper and, in that respect, the results shown
should be compared with those obtained in Porter, et al.
[15],[16], in which a method similar to (21) is used but the
correlation is made between the log of the received signal
and the log of the predicted arrival signal. The output
is the peak of the correlation function. The motivation
for that processor is discussed more extensively in those
papers. Briefly, the log processor brings into balance the
strong early arrivals with the weak late arrivals. The re-
sulting estimator accentuates the basic arrival pattern (in
terms of arrival times) rather than the arrival amplitude.
However, as the processor is based on a correlation of the
complete time-series it is sensitive to both the peaks and
valleys of the data. In the present study, even greater em-
phasis is placed on the arrival-times of the individual paths.
In fact, the match function given by (21) is made only for
the predicted arrival times. In other words, only the peaks
of the arrival pattern (assuming the correct prediction of
time delays) are used. Obviously, the result will be optimal
if the peak locations are correctly predicted and resolved,
and this is why subspace methods have been introduced
for time-delay resolution enhancement. Conversely, errors
on the prediction of arrival times would directly impact on
the quality of the localization. In terms of the required
computation effort, the methods presented here generally
take approximately 5 times the computation time than that
required by Porter’s method in the same conditions.

This paper has presented a comprehensive method for
source localization using broadband signals received on a
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Fig. 10. Time-depth localization plots for INTIMATE’96 phase 1 data set with LS/ML method (a), signal subspace (b) and noise subspace
projection (c). Figures (d), (e) and (f) show the depth estimate obtained as the max on each surface (a), (b) and (c) respectively. The
start time is 17:20 June 14, 1996.
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Fig. 11. Surface tide prediction for the receiver location. The start
time is 17:20 June 14, 1996.

single hydrophone. The method assumes a classical model
of the received data as a linear combination of time de-
layed replicas of the emitted waveform with unknown but
uncorrelated random amplitudes. The received signal is
assumed to be corrupted by white Gaussian noise and in
all cases the emitted signal is supposed to be known at
the receiver. First, classical TDE methods for estimating
the time delay set are presented and tested on simulated
data. Then subspace based methods are obtained, in a
classical way, for estimating the signal subspace spanned
by the received paths and its orthogonal complement. It is
shown that time delays can be derived from the intersection
of the signal subspace estimate and the subspace spanned
by the replica signals. For computing the replica signals

there are now a variety of well-developed acoustic models
suitable for this application including normal mode, PE,
wavenumber integration and ray models. Ray models have
a clear speed advantage for these broadband applications
since the ray approximation produces broadband informa-
tion (arrival times and amplitudes) for no additional cost.
Of course, ray models are also generally the least accurate
but they were found fully adequate for our application.

The source location estimators are then computed as the
sum of the contributions of the match between the received
and replica signals at the predicted arrival times. The
match itself is performed in three different ways using, one,
the full received signal, two, the projection of the received
signal onto the signal subspace and, three, its complement
projection onto the noise subspace.

These source location estimators have been applied to lo-
calize a sound source emitting a 300-800 Hz, 2 seconds long
LFM sweep recorded in a shallow water area off the coast
of Portugal. The source range or depth have been success-
fully tracked during a 20 hours time period. The results
obtained show the feasibility of single sensor source loca-
lization at known depth or at known range: source range
can be estimated within a few meters from the true range
of 5.5 km, while for source depth the results show some
persistent biais and estimation errors varying between a
few meters up to several tens of meters from the expected
true source depth of 92 m. Comparison of the methods
presented here with the results obtained in the same data
set in Porter et al. [15],[16] show that rather different ap-
proaches gave very similar results with, however, a signifi-



JESUS ET AL.: SINGLE HYDROPHONE LOCALIZATION 9

cant advantage in terms of computer time requirements for
the later. The methods presented here, in particular those
subspace based, should have an advantage relative to that
of Porter when the signal has a narrower band that only
allows for a few paths to be resolved at the receiver. The
results obtained with real data show that the correlation
and interaction between acoustic paths plays an important
role in source localization giving new insights into the un-
derstanding of how their combination and (re)combination
forms complex arrival patterns.

Acknowledgements

The authors acknowledge the support of SACLANTCEN
for lending the acoustic receiving system and the dedicated
collaboration of P. Felisberto in the real data acquisition
and processing during INTIMATE’96. This work was par-
tially supported under PRAXIS XXI, FCT, Portugal and
by the Office of Naval Research.

References

[1] M.J. Hinich, “Maximum-likelihood signal processing for a verti-
cal array”, J. Acoust. Soc. Am., vol. 54, pp.499-503, 1973.

[2] H.P. Bucker, “Use of calculated sound fields and matched-field
detection to locate sound sources in shallow water”, J. Acoust.
Soc. Am., vol. 59, pp.368-373, 1976.

[3] A.B. Baggeroer and W.A. Kuperman, “Matched field processing
in underwater acoustics”, Proc. NATO ASI Conf. on Acoustic
Signal Processing for Ocean Exploration, pp. 83-122, Madeira,
Portugal, 1992.

[4] A.B. Baggeroer, W.A. Kuperman and H. Schmidt, “Matched-
field processing: source localization in correlated noise as an
optimum parameter estimation problem”, J. Acoust. Soc. Am.,
vol. 83, pp.571-587, 1988.

[5] S.M. Jesus, “Broadband matched-field processing of transient
signals in shallow water”, J. of Acoust. Soc. Am., vol. 93(4), Pt.
1, pp.1841-1850, 1993.

[6] S.P. Czenszak and J.L. Krolik, “Robust wideband matched-field
processing with a short vertical array”, J. Acoust. Soc. Am.,
vol. 101(2), pp.749-759, 1997.

[7] C.S. Clay, “Optimum time domain signal transmission and
source location in a waveguide”, J. Acoust. Soc. Am., vol. 81,
pp.660-664, 1987.

[8] A. Parvulescu and C.S. Clay, “Reproducibility of signal trans-
missions in the ocean”, Radio Eng. Electron., vol. 29, pp.223-
228, 1965.

[9] S. Li and C.S. Clay, “Optimum time domain signal transmission
and source location in a waveguide: Experiments in an ideal
wedge waveguide”, J. Acoust. Soc. Am., vol. 82(4), pp.1409-
1417, 1987.

[10] L.Neil Frazer and P.I. Pecholcs, “Single-hydrophone localiza-
tion”, J. Acoust. Soc. Am., vol. 88(2), pp.995-1002, 1990.

[11] J.H. Miller and C.S. Chiu, “Localization of the sources of short
duration acoustic signals”, J. Acoust. Soc. Am., vol. 92(5),
pp.2997-2999, 1992.

[12] D.P. Knobles and S.K. Mitchell, “Broadband localization by
matched fields in range and bearing in shallow water”, J. Acoust.
Soc. Am., vol. 96(3), pp.1813-1820, 1994.

[13] R.K. Brienzo and W. Hodgkiss, “Broadband matched-field pro-
cessing”, J. Acoust. Soc. Am., vol. 94(5), pp.2821-2831, 1993.

[14] G.C. Carter, ”Variance bounds for passively locating an acoustic
source with a symmetric line array”, J. Acoust. Soc. Am., vol.
62(4), pp. 922-926, 1977.

[15] M.B. Porter, S. Jesus, Y. Stéphan, X. Démoulin and E. Coelho,
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