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Abstract

Recently, image categorization has been an active research topic due to the urgent
need to retrieve and browse digital images via semantic keywords. This paper for-
mulates image categorization as a multi-label classification problem using recent
advances in matrix completion. Under this setting, classification of testing data
is posed as a problem of completing unknown label entries on a data matrix that
concatenates training and testing features with training labels. We propose two
convex algorithms for matrix completion based on a Rank Minimization criterion
specifically tailored to visual data, and prove its convergence properties. A major
advantage of our approach w.r.t. standard discriminative classification methods
for image categorization is its robustness to outliers, background noise and par-
tial occlusions both in the feature and label space. Experimental validation on
several datasets shows how our method outperforms state-of-the-art algorithms,
while effectively capturing semantic concepts of classes.

1 Introduction

With the ever-growing amount of digital image data in multimedia databases, there is a great need
for algorithms that can provide effective semantic indexing. Categorizing digital images using key-
words, however, is the quintessential example of a challenging classification problem. Several as-
pects contribute to the difficulty of the image categorization problem, including the large variability
in appearance, illumination and pose of different objects. Moreover, in the multi-label setting the
interaction between objects also needs to be modeled.

Over the last decade, progress in the image classification problem has been achieved by using more
powerful classifiers and building or learning better image representations. On one hand, standard
discriminative approaches such as Support Vector Machines or Boosting have been extended to the
multi-label case [28, 14] and incorporated under frameworks such as Multiple Instance Learning
[31, 33, 32, 20, 27] and Multi-task Learning [26]. However, a major limitation of discriminative
approaches is the lack of robustness to outliers and missing data. Recall most discriminative ap-
proaches project the data directly onto linear or non-linear spaces, thus lacking a noise model for it.
To address this issue, we propose formulating the image classification problem under a matrix com-
pletion framework, that has been fueled by recent advances in Rank Minimization [7, 18]. Using
this paradigm, we can easily deal with incomplete descriptions and errors in features and labels. On
the other hand, traversal to the use of more powerful classifiers, better image representations, such
as SIFT [17] or GIST [21] have boosted recognition and categorization performance. A common ap-
proach to represent an object has been to group local descriptors using the bag of words model [24].
Our algorithms make use of the fact that in this model the histogram of an entire image contains
information of all of its subparts. By modeling the error in the histogram, our matrix completion
algorithm is able to capture semantically discriminative portions of the image, thus obviating the
need for training with precise localization, as required by previous methods [31, 33, 32, 20, 27].
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Our main contributions are twofold: (1) We propose two new Rank Minimization algorithms, MC-
Pos and MC-Simplex, motivated by the image categorization problem. We study the advantages
of matrix completion over classic discriminative approaches and show that performing classification
under this paradigm not only improves state-of-the-art results on several datasets, but it does so with-
out recurring to bounding boxes or other precise localization methods in its labeling or modeling.
(2) We prove that MC-Pos and MC-Simplex enjoy the same convergence properties of Fixed Point
Continuation methods for Rank Minimization without constraints. We also show that this result
extends to the framework presented by [11], whose convergence was only empirically verified.

2 Previous Work

This section reviews related work in the area of image categorization and the problem of Matrix
Completion using a Rank Minimization criterion, optimized with Nuclear Norm methods.

Image Categorization Since the seminal work of Barnard et al. [3], many researchers have ad-
dressed the problem of associating words to images. Image semantic understanding is now typically
formulated as a multi-label problem. In this setting, each image may be simultaneously categorized
into more than one of a set of predefined categories. An important difference between multi-class
classification and multi-label classification is that classes in multi-class classification are assumed to
be mutually exclusive whereas in multi-label classification are normally interdependent from one an-
other. Therefore, many multi-class techniques such as SVM, LDA and Boosting have been modified
to make use of label correlations to improve multi-label classification performance [28, 14].

Additionally, Multiple Instance Learning (MIL) approaches can be used to explicitly model the re-
lations between labels and specific regions of the image, as initially proposed by Maron et al. [19].
This framework allows for the localization and classification tasks to benefit from each other, thus
reducing noise in the corresponding feature space and making the learned semantic models more ac-
curate [31, 33, 32, 20, 27, 26]. Although promising, the MIL framework is combinatorial, so several
approaches have been proposed to avoid local minima and deal with the prohibitive number of pos-
sible subregions in an image. Zha et al. [32] make use of hidden CRFs while Vijayanarasimhan et
al. [27] recur to multi-set kernels to emphasize instances differently. Yang et al. [31] exploit asym-
metric loss functions to balance false positives and negatives. These methods, however, require an
explicit enumeration of instances in the image. This is usually obtained by pre-segmenting images
to a small fixed number of parts or applied in settings where detectors perform well, such as the
problem of associating faces to captioned names [4]. On the other hand, to avoid explicitly enumer-
ating the instances, Nguyen et al. [20] couple constraint generation algorithms with a branch and
bound method for fast localization. Multi-task learning has also been proposed as a way to regular-
ize the MIL problem, so as to avoid local minima due to many available degrees of freedom. In this
setting, the MIL problem is jointly learned with an easier fully supervised task such as geometric
context [26].

Matrix Completion using Rank Minimization Rank Minimization has recently received much
attention due to its success in matrix completion problems such as the Netflix challenge, where one
wishes to predict a user’s movie preferences based on a subset of his and other people’s choices, or
minimum order control [10], where the goal is to find the least complex controller achieving some
performance measure.

A major breakthrough by [7] states the minimization of the rank function, under broad conditions,
can be achieved using the minimizer obtained with the Nuclear Norm (sum of singular values).
Since the natural reformulation of the Nuclear Norm gives rise to a Semidefinite Program, existing
interior point methods can only handle problems with a number of variables in the order of the
hundreds. Thus, several methods have been devised to perform this optimization efficiently [15, 6,
18, 25, 13, 1, 7, 2]. In the last few years, incremental matrix completion methods have also been
proposed [1, 2, 5].

In the context of Computer Vision, minimization of the Nuclear Norm has been applied to several
problems: Structure from Motion [1, 8, 5], Robust PCA [29], Subspace Alignment [22], Subspace
Segmentation [16] and Tag Refinement [34].
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3 Multi-label classification using Matrix Completion

In a supervised setting, a classifier learns a mapping1 W : X → Y between the space of features X
and the space of labels Y , from Ntr tuples of known features and labels. Linear classifiers define
(xj ,yj) ∈ RF ×RK , where F is the feature dimension and K the number of classes, and minimize
the loss l between the output space and the projection of the input space, as

minimize
W,b

Ntr∑
j=1

l

(
yj , [W b]

[
xj

1

])
, (1)

with parameters W ∈ RK×F , b ∈ RK . Given (1), Goldberg et al. [11] note that the problem of
classifying Ntst test entries can be cast as a Matrix Completion. For this purpose, they concatenate
all labels and features into matrices Ytst ∈ RK×Ntst ,Ytr ∈ RK×Ntr ,Xtst ∈ RF×Ntst ,Xtr ∈
RF×Ntr . If the linear model holds, then the matrix

Z0 =

 Ytr Ytst

Xtr Xtst

1>

 , (2)

should be rank deficient. The classification process consists in filling the unknown entries in Ytst

such that the Nuclear Norm of Z0, the convex envelope of rank [7], is minimized. Since in practice
we may have errors and partial knowledge in the training labels and in the feature space, let us
define ΩX and ΩY as the set of known feature and label entries and zero out unknown entries in Z0.
Additionally, let the data matrix Z be defined as a sum of Z0 with an error term E, as

Z =

[ ZY

ZX

Z1

]
=

 Ytr Ytst

Xtr Xtst

1>

 +

 EYtr 0
EXtr EXtst

0>

 = Z0 + E, (3)

where ZY ,ZX ,Z1 respectively stand for the label, feature and last rows of Z. Then, classification
can be posed as an optimization problem that finds the best label assignment Ytst and error matrix
E such that the rank of Z is minimized. The resulting optimization problem, MC-1 [11], is

minimize
Ytst,EXtr,EYtr,EXtst

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

cx(zij , z0ij) +
λ

|ΩY |
∑

ij∈ΩY

cy(zij , z0ij)

subject to Z = Z0 + E

Z1 = 1>.

(4)

Note that the constraint that Z1 remains equal to one is necessary for dealing with the bias b in (1).
To avoid trivial solutions, large distortions of Z from known entries in Z0 are penalized according
to losses cy(·) and cx(·): in [11], the former is defined as the Least Squares error, while the latter is
a log loss to emphasize the error on entries switching classes as opposed to their absolute numerical
difference. The parameters λ, µ are positive trade-off weights between better feature adaptation and
label error correction. We note this problem is equivalent to

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

cx(zij , z0ij) +
λ

|ΩY |
∑

ij∈ΩY

cy(zij , z0ij)

subject to Z1 = 1>
(5)

which can be solved using a Fixed Point Continuation method [18], described in Sec. 4.1.

1 Bold capital letters denote matrices (e.g., D), bold lower-case letters represent column vectors (e.g., d).
All non-bold letters denote scalar variables. dj is the jth column of the matrix D. dij denotes the scalar in
the row i and column j of D. 〈d1,d2〉 denotes the inner product between two vectors d1 and d2. ||d||22 =
〈d,d〉 =

P
i d2

i denotes the squared Euclidean Norm of the vector d. tr(A) =
P

i aii is the trace of the
matrix A. ||A||∗ designates the Nuclear Norm (sum of singular values) of A.‖A||2F = tr(A>A) = tr(AA>)
designates the squared Frobenius Norm of A. 1k ∈ Rk×1 is a vector of ones, 0k×n ∈ Rk×n is a matrix of
zeros and Ik ∈ Rk×k denotes the identity matrix (dimensions are omitted when trivially inferred).
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4 Matrix completion for multi-label classification of visual data

In this section, we present the main contributions of this paper: the application of Matrix Completion
to the multi-label image classification problem and its convergence proof. In the bag of (visual)
words (BoW) model [24], visual data is encoded by the distribution of features among entries from
a codebook. The codebook is typically created by clustering local feature representations such as
SIFT [17] or GIST [21]. In this setting, the formulation MC-1 (5) is inadequate because it introduces
negative values to the histograms in ZX . To address this issue, we replace the penalties used so they
reflect the nature of data: we replace the Least-Squares penalty in cx(·) by Pearson’s χ2 distance,
that takes into account the asymmetry in histogram data, as

χ2(zj , z0j) =
F∑

i=1

χ2
i (zij , z0ij) =

F∑
i=1

(zij − z0ij)2

zij + z0ij

. (6)

As the modification to cx(·) alone does not ensure that data retains its histogram nature, we add to
(5) a constraint that all feature vectors in ZX are either positive, resulting in the MC-Pos formulation

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

χ2
i (zij , z0ij) +

λ

|ΩY |
∑

ij∈ΩY

cy(zij , z0ij)

subject to ZX ≥ 0

Z1 = 1>,

(7)

or alternatively, that they belong to the Probability Simplex P (positive elements that sum to 1),
resulting in the MC-Simplex formulation

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

χ2
i (zij , z0ij) +

λ

|ΩY |
∑

ij∈ΩY

cy(zij , z0ij)

subject to ZX ∈ P
Z1 = 1>,

(8)

depending on whether we wish to perform normalization on the data or not. Additionally, we note
that the Log label error in cy(·), albeit asymmetric, incurs in unnecessary penalization of entries
belonging to the same class as the original entry (see Fig. 1). Therefore, we generalize this loss to
progressively resemble smooth version of the Hinge loss, specified by the parameter γ as

cy(zij , z0ij) =
1
γ

log(1 + exp (−γz0ijzij)). (9)
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Figure 1: Comparison of Generalized Log loss with Log loss (γ = 1).

4.1 Fixed Point continuation (FPC) for MC-1

Albeit convex, the Nuclear Norm operator makes (5), (7), (8) not smooth. Since the natural refor-
mulation of a Nuclear Norm minimization is a Semidefinite Program, existing off-the-shelf interior
point methods are not applicable due to the large dimension of Z. Thus, several methods have been
devised to efficiently optimize this problem class [15, 6, 18, 25, 13, 1, 7, 2]. The FPC method [18],
in particular, is comprised by a series of gradient updates h(·) = I(·) − τg(·) with step size τ
and gradient g(·) given by the error penalizations cx(·) and cy(·). These steps are alternated with a
shrinkage operator Sν(·) = max (0, · − ν), applied to the singular values of the resulting matrix, so
the rank is minimized. Provided h(·) is a contraction, this method provably converges to the optimal
solution for the unconstrained problem. However, the formulation MC-1 (5) is constrained so in [11]
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a projection step is added to the algorithm (see Alg. 1), whose convergence was only empirically
verified. In this paper, we prove the convergence of FPC to the constrained problem class by using
the fact that projections onto Convex sets are also non-expansive; thus, the composition of gradient,
shrinkage and projection steps is also a contraction. Since the problem is convex, a unique fixed
point exists in the optimal solution of the problem. First, let us write some preliminary results.

Algorithm 1 FPC algorithm for solving MC-1 (5)
Input: Initial Matrix Z0

Initialize Z as the rank-1 approximation of Z0

for µ = µ1 > µ2 > · · · > µk do
while Rel. Error > ε do

Gradient Descent: A = h(A) = Z− τg(Z)
Shrink: A = UΣV>, Z = USτµ(Σ)V>

Project onto feasible set: Z1 = 1>
end while

end for
Output: Complete Matrix Z

Lemma 1 Let pC(·) be a projection operator onto any given convex set C. Then, pC(·) is non-
expansive. Moreover, ‖pC(Z)− pC(Z∗)‖ = ‖Z− Z∗‖ iff pC(Z)− pC(Z∗) = Z− Z∗.

Proof For the first part, we apply the Cauchy-Schwarz inequality on the fact that (see [12, pg. 48])
‖pC(Z)− pC(Z∗)‖2

F ≤ 〈pC(Z)− pC(Z∗),Z− Z∗〉. (10)
For the second part, let us write

‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2
F =

‖pC(Z)− pC(Z∗)‖2
F + ‖Z− Z∗‖2

F − 2〈pC(Z)− pC(Z∗),Z− Z∗〉, (11)
where the inner product can be bounded by applying (10), yielding
‖pC(Z)−pC(Z∗)−(Z− Z∗) ‖2

F ≤ ‖pC(Z)−pC(Z∗)‖2
F +‖Z−Z∗‖2

F−2‖pC(Z)−pC(Z∗)‖2
F . (12)

Introducing our hypothesis ‖pC(Z)− pC(Z∗)‖ = ‖Z− Z∗‖ into (12) yields
‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2

F ≤ 0, (13)
from which we conclude an equality is in place.

Theorem 2 Let Z∗ be an optimal solution to (5). Then Z is also an optimal solution if
‖pC(Sν(h(Z)))− pC(Sν(h(Z∗)))‖ = ‖Z− Z∗‖. (14)

Proof Using the non-expansiveness of operators pC(·), Sν(·) and h(·) (Lemma 1 and [18, Lemmas
1 and 2]), we can write

‖Z− Z∗‖ = ‖pC(Sν(h(Z)))− pC(Sν(h(Z∗)))‖ ≤
≤ ‖Sν(h(Z))− Sν(h(Z∗))‖ ≤ ‖h(Z)− h(Z∗))‖ ≤ ‖Z− Z∗‖, (15)

so we conclude the inequalities are equalities. Using the second part of the Lemmas, we get
pC(Sν(h(Z∗)))− pC(Sν(h(Z))) = Sν(h(Z∗))− Sν(h(Z)) = h(Z∗)− h(Z) = Z− Z∗. (16)

Since Z∗ is optimal, by the projected subgradient method, we have
pC(Sν(h(Z∗))) = Z∗, (17)

which, in turn, implies that
pC(Sν(h(Z))) = Z, (18)

from which we conclude Z is an optimal solution to (5).

We are now ready to prove the convergence of MC-1 to a fixed point Z∗ = pC(Sν(h(Z∗))), which
allows us to state its result as an optimal solution of (5).

Theorem 3 The sequence {Zk} generated by Alg. 1 converges to Z∗, an optimal solution of (5).

Proof Once we note the non-expansiveness of pC(·), Sν(·) and h(·) ensures the composite operator
pC(Sν(h(·))) is also non-expansive, we can use the same rationale as in [18, Theorem 4].
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4.2 Fixed Point Continuation for MC-Pos and MC-Simplex

The condition that h(·) is a contraction [18, Lemma 2] used for proving the convergence of Alg. 1
is still valid for the new loss functions proposed in (6) and (9), since the new gradient

g(zij) =


λ

|ΩY |
−z0ij

1+exp (γz0ijzij)
if zij ∈ ΩY ,

1
|ΩX |

z2
ij+2zijz0ij−3z0

2
ij

(zij+z0ij)2
if zij ∈ ΩX ,

0 otherwise

(19)

is contractive, provided we choose a step size of τ ∈ [0,min ( 4|ΩY |
λγ , τX |ΩX |)]. These values are

easily obtained by noting the gradient of the Log loss function is Lipschitz continuous with L = 0.25
and choosing τX such that the χ2 error, for the Non-Negative Orthant, is Lipschitz continuous with
L = 1. Key to the feasibility of (7) and (8) within this algorithmic framework, however, is an effi-
cient way to project Z onto the newly defined constraint sets. While for MC-Pos (7) projecting a vec-
tor onto the Non-Negative Orthant is done in closed form by truncating negative components to zero,
efficiently performing the projection onto the Probability Simplex in MC-Simplex (8) is not straight-
forward. We note, however, this is a projection onto a convex subset of an `1 ball [9]. Therefore, we
can explore the dual of the projection problem and use a sorting procedure to implement this projec-
tion in closed form, as described in Alg. 2. The final algorithms are summarized in Alg. 3 and Alg. 4.

Algorithm 2 Projection of a vector onto probability Simplex

Input: Vector v ∈ RF to be projected
Sort v into µ : µ1 ≥ µ2 ≥ ... ≥ µF

Find ρ = max
{

j ∈ n : µj − 1
j (

∑ρ
i=1 µi − 1) > 0

}
Compute θ = 1

ρ (
∑ρ

i=1 µi − 1)
Output: w s.t. wi = max{vi − θ, 0}

Algorithm 3 FPC Solver for MC-Pos (7)
Input: Initial Matrix Z0

Initialize Z as the rank-1 approximation of Z0

for µ = µ1 > µ2 > · · · > µk do
while Rel. Error > ε do

Gradient Descent: A = Z− τg(Z)
Shrink 1: A = UΣV>

Shrink 2: Z = USτµ(Σ)V>

Project ZX : ZX = max (ZX ,0)
Project Z1: Z1 = 1>

end while
end for

Output: Complete Matrix Z

Algorithm 4 FPC Solver for MC-Simplex (8)
Input: Initial Matrix Z0

Initialize Z as the rank-1 approximation of Z0

for µ = µ1 > µ2 > · · · > µk do
while Rel. Error > ε do

Gradient Descent: A = Z− τg(Z)
Shrink: A = UΣV>

Shrink: Z = USτµ(Σ)V>

Project ZX onto P (Alg. 2)
Project Z1: Z1 = 1>

end while
end for

Output: Complete Matrix Z

5 Experiments

This section presents the performance evaluation of the proposed algorithms MC-Pos (7) and MC-
Simplex (8) in image categorization tasks. We compare our results with MC-1 (5) and standard
discriminative and MIL approaches [30, 20, 27, 26, 33, 32] on three datasets: CMU-Face , MSRC
and 15 Scene. For our algorithms and MC-1, the values considered for the parameter tuning were
γ ∈ {1, 3, 30}, λ ∈ [10−4, 102]. The continuation steps require a decreasing sequence of µ, which
we chose as µk = 0.25µk−1, stopping when µ = 10−12. We use µ0 = 0.25σ1, where σ1 is the
largest singular value of Z0. Convergence was defined as a relative change in the objective function
smaller than 10−2.

CMU-Face dataset This dataset consists in 624 images of 20 subject faces with several expres-
sions and poses, under two conditions: wearing sunglasses and not. We test single class classifica-
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tion and localization. As in [20], our training set is built using images of the first 8 subjects (126
images with glasses and 128 without), leaving the remainder for testing (370, equally split among
the classes). We describe each image by extracting 10000 SIFT features [17] at random scales and
positions and quantizing them onto a 1000 visual codebook, obtained by performing hierarchical
k-means clustering on 100000 features randomly selected from the training set. For this dataset,
note that subjects were captured in a very similar environment, so the most discriminative part is
the eye region. Thus, Nguyen et al. [20] argue that better results are obtained when the classifier
training is restricted to that region. Since the face position varies, they propose using a Multiple
Instance Learning framework (MIL-SegSVM), that localizes the most discriminative region in each
image while learning a classifier to split both classes.

We compare the results of our classifier to the ones obtained by MIL-SegSVM as well as a Support
Vector Machine. For the SVM, we either trained with the entire image information (SVM-Img) or
with only the features extracted from the relevant, manually labeled, region of the eyes. For MC-1,
MC-Pos and MC-Simplex, we proceed as follows. We fill Z with the label vector and the BoW
histograms of each entire image and leave the test set labels Ytst as unknown entries. For the MC-
Simplex case, we preprocess Z by `1-normalizing each histogram in ZX . This is done to avoid the
Simplex projection picking a single bin and zeroing out the others, due to scale disparities in the bin
counts. The obtained results are presented in Table 1, in terms of area under ROC curve (AUROC).
These indicate both the fully supervised and the MIL approaches are more robust to the variability
introduced by background noise, when compared to what is obtained when training without local-
ization information (SVM-Img). However, this is done at either the cost of cumbersome labeling
efforts or iteratively approximating the solution of MIL, an integer quadratic problem. By using Ma-
trix Completion, in turn, we are able to surpass these classification scores by solving a single convex
minimization, since our error term E removes noise introduced by non-discriminative parts of the
image. To validate this hypothesis, we run a sliding window search in the images using the same size
criteria of [20]. We search for the box having the normalized histogram most closely resemblant to
the corrected version in ZX according to the χ2 distance, and get the results shown in Fig. 2 (sim-
ilar results were obtained using MC-Simplex). These show how the corrected histograms capture
the semantic concept being trained. When comparing Matrix Completion approaches, we note that
while the previous method MC-1 achieves competitive performance against previous baselines, it
is outperformed by both MC-Pos, showing the improvement introduced by the domain knowledge
constraints. Moreover, MC-1 does not allow to pursue further localization of the class representative
since it introduces erroneous negative numbers in the histograms (Fig. 5).

Figure 2: Histograms corrected by MC-Pos (7) preserve semantic meaning.

Table 1: AUROC result comparison for the
CMU Face dataset.

Method AUROC
SVM-Img [20] 0.90
SVM-FS [20] 0.94

MIL-SegSVM [20] 0.96
MC-1 [11] 0.96
MC-Pos 0.97

MC-Simplex 0.96
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Figure 3: Erroneous histogram correction per-
formed by MC-1 (5). Top: Global view. Bot-
tom: Rescaling shows negative entries.

7



MSRC dataset Next, we run our method on a multi-label object recognition setting. The MSRC
dataset consists of 591 real world images distributed among 21 classes, with an average of 3 classes
present per image. We mimic the setup of [27] and use as features histograms of Textons [23]
concatenated with histograms of colors in the L+U+V space. Our algorithm is given the task of
classifying the presence of each object class in the images. We proceed as in the CMU-Face dataset.

In this dataset, we compare our formulations to MC-1 and several state-of-the-art approaches for
categorization using Multiple-Label Multiple Instance Learning: Multiple Set Kernel MIL SVM
(MSK-MIL) by Vijayanarasimhan et al. [27], Multi-label Multiple Instance Learning (ML-MIL)
approach by Zha [32] and the Multi-task Random Texton Forest (MTL-RF) method of Vezhnevets
et al. [26]. For localization, [32, 27] enumerate possible instances as the result of pre-segmenting
images into a fixed number of parts, whereas [26] provides pixel level classification. The obtained
average AUROC scores using 5-fold cross validation are shown in Table 2. Results show our meth-
ods significantly outperform MC-1. Moreover, MC-Simplex (8) outperforms results given by MIL
techniques. Again, the fact that feature errors are corrected allows us to achieve good results while
training with the entire image. This is opposed to relying on full blown pixel classification or seg-
mentation techniques, which is still considered an open problem in Computer Vision. Moreover,
we point out that MSK-MIL is a kernel approach as opposed to ours which, despite non-linear error
penalizations, assumes a linear classification model in the feature space.

15 Scene dataset Finally, we test the performance of our algorithm for scene classification. Scenes
differ from objects in the sense that they do not necessarily have a constrained physical location
in the image. The 15 scene dataset is a multi-label dataset with 4485 images. According to the
feature study in [30], we use GIST [21], the non-histogram feature achieving best results on this
dataset. Notice that while not a BoW model, this feature represents the output energy of a bank of
24 filters, thus also positive. We run our algorithm on 10 folds, each comprised by 1500 training
and 2985 test examples. The results on Table 3 show again that our method is able to achieve results
comparable to state-of-the-art. One should note here that the state-of-the-art results are obtained by
using a kernel space, whereas our method is essentially a linear technique aided by non linear error
corrections. When we compare our results to using a linear kernel, MC-Simplex is able to achieve
better performance. Relating to the results obtained for CMU-Face and MSRC datasets, we note
that the roles of the MC-Pos and MC-Simplex are inverted, thus emphasizing the need for existence
of models with and without normalization.

Table 2: 5-fold CV AUROC comparison for the
MSRC dataset (Std. Dev. negligible at this pre-
cision).

Method Avg. AUROC
MSK-MIL[27] 0.90
ML-MIL [32] 0.90
MTL-RF [26] 0.89

MC-1 [11] 0.87
MC-Pos 0.92

MC-Simplex 0.90

Table 3: 10-fold CV AUROC comparison for
the 15 Scene dataset (Std. Dev. negligible at
this precision).

Method Avg. AUROC
1-vs-all Linear SVM [30] 0.94

1-vs-all χ2 SVM [30] 0.97
MC-1 [11] 0.90
MC-Pos 0.91

MC-Simplex 0.94

6 Conclusions

We presented two new convex methods for performing semi-supervised multi-label classification
of histogram data, with proven convergence properties. Casting the classification under a Matrix
Completion framework allows for easily handling of partial data and labels and robustness to out-
liers. Moreover, since histograms of full images contain the information for parts contained therein,
the error embedded in our formulation is able to capture intra class variability arising from differ-
ent backgrounds. Experiments show that our methods perform comparably to state-of-the-art MIL
methods in several image datasets, surpassing them in several cases, without the need for precise
localization of objects in the training set.
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