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Abstract-The morphology of an embodied agent heavily 
influences the characteristics of sensory signals induced during 
sensorimotor activity. In order to facilitate later information 
processing, it is desirable to couple sensors and actuators in a 
way such that the agent's actions induce well structured sensory 
feedback. In this work, we empirically investigate the meaning 
of "well structured" with respect to the predictability of the 
induced stimulus and the complexity of the model required to 
predict the change. For this purpose, we consider a visual sensor 
consisting of an unknown topology composed of light sensitive 
receptors and we investigate a number of different actions. For 
each action, we learn a stimulus prediction function and we 
propose to qualify the action depending on the complexity of the 
prediction model. By visualizing this measure for two different 
sensors and over different action spaces, we observe that a given 
sensor topology implicitly imposes actions for which the provoked 
change in stimulus can be described with less effort, which we 
feel has direct implications for the behavior of an agent using 
that sensor. 

I. INTRODUCTION 

Every motor command triggered by our brain provokes 

a sequence of sensorimotor reactions which induce highly 

context sensitive stimuli. Usually, we merely attribute the 

observer's environment to be the context of these signals. 

This seems natural, because of course, it is something in 

the outside world which is supposed to cause the perceived 

sensor activation. However, having a closer look at the process 

which generates the sensor signals, we realize that the final 

signal is not only defined by the state of the environment 

with respect to the observer, but that the generation of the 

stimulus is heavily influenced by the structure of the sensor 

and the actions provoking it. In fact, all of these ingredients 

contribute conjointly when input signals for the visual system 

are formed. Drawing inspiration from this perspective we feel 

that, in the same way in which early visual stimuli are acquired 

and shaped by the recording sensor and its interaction patterns, 

any higher level visual percept is likewise strongly dependent 

on sensorimotor interaction. This point of view has a long

lasting history in developmental psychology. Classical work on 

sensorimotor coordination in perception include for example 

[1], [2] and [3]. There the idea is pursued that percepts are built 

during sensorimotor interaction which, inversely, leads to the 

understanding that the recognition of experienced phenomena 

is tied to applicable actions [3]. A more recent contribution 

especially with respect to visual perception can be found in 

[4], where it is argued that visual percepts are acquired through 

the training and execution of sensorimotor "skills". 

In the work described here, we address the influence of 

sensor morphology and sensor movements on the structure of 

an induced stimulus signal. Our motivation is to understand 

how actions and sensor structure interplay in shaping primary 

stimuli recorded by a visual system. Our final intention is to 

qualify a sensor repositioning action depending on character

istics present in the stimulus it provokes. With this objective, 

we formulate a concept for good motor actions driven by two 

lines of thought: first of all, we prefer actions which lead to a 

change in sensory stimulus which is predictable; secondly, we 

prefer actions which lead to a change in stimulus which can be 

described using a simpler model. Following these criteria we 

develop an environment-independent measure specifying "how 

simple" it is to predict the outcome of a given action under 

a given sensor topology. We motivate these two central ideas 

related to prediction more in depth in Section II. In the results 

section of this paper, we evaluate two commonly considered 

sensor layouts using three different types of actions. By visual 

inspection of obtained measurements, we are able to detect 

what we consider to be good actions specific to a given sensor 

topology. Based on the assumption that actions leading to 

predictable sensor feedback and simpler prediction models are 

preferred, we are able to deduce how an agent's actions and 

behaviors are coupled with its sensor topology. We find that 

the resulting conclusions match well with observations made 

for biological systems. 

Previous work related to the analysis of sensory feedback 

generated during sensorimotor interaction has been published 

in [5]. The authors describe results obtained when applying 

information theoretic measures between different actuator and 

sensor variables in real and simulated robots. While the results 

presented in [5] also address visual sensors and sensor reposi

tioning actions, correlation and information transfer measures 

are computed between specific image locations and particular 

actuator variables during a specific task. The obtained results 

report measures depending on morphology, action and expe

rienced situation. On the contrary, in our work we propose a 

measure based on a learnt prediction model which is valid for 

any situation the agent encounters in the sampled environment. 
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This approach explicitly excludes the influence of a particular 

situation and creates an environment-independent measure 

which qualifies an agent's action with respect to the agent's 

morphology. 

Work described in [6], in some way inversely, shows how 

the topological structure of a visual sensor can be discovered 

using an entropy maximization algorithm, a process which 

is related to our work in the sense that eventually an agent

specific but environment-independent result is obtained. 

In a more general form, the paradigm of sensorimotor co

ordination has also been promoted in [7], where sensorimotor 

interaction is advocated as a fundamental design principle for 

perception in embodied artificial agents. For example, based 

on work done in [8], it is sketched out how a robot can use 

sensory signal patterns generated during sensorimotor activity 

to facilitate recognition of objects. 

The remaining part of this paper is organized as follows. In 

the next section we will motivate more in depth why we choose 

prediction and prediction model complexity to compose the 

proposed measure. We then introduce our definition of good 

motor actions in Section III, after describing the agent's 

observation and action model. In Section IV, we present and 

interpret results obtained from sampling two different sensor 

topologies. 

II. WHAT ARE GOOD MOTOR ACTIONS? 

The first, and more intuitive criterion we propose for good 

motor actions, is whether the action leads to an accurately 

predictable change in sensory stimulus. We choose prediction 

as an important trait of a good motor action since prediction 

is a fundamental mean to decide whether a change in stim

ulus complies or deviates from an expected feedback. This 

capability can be found in many animals, including organisms 

featuring a nervous system of a few hundred neurons [9]. 

An extensive overview of how predicted sensory signals are 

used in biological systems is given in [10]. As outlined there, 

sensory stimulus prediction is ubiquitous in nature being used 

for reflex inhibition, sensory filtration, and stabilization of 

percepts. 

The second, less obvious but not less important criterion for 

good motor actions in the proposed sense, is the complexity of 

the prediction model. In what follows, we motivate this idea by 

reviewing three independent lines of research. Although, we 

do not formally prove the necessity for simple models, and 

at first sight there seems to be limited overlap between the 

three areas outlined, we hope we can convince the reader of 

the common underlying concept and of the appeal to strive for 

simple prediction models which can be achieved by smartly 

shaping the morphology of a physical system. 

a) Eye Morphology in Nature: The receptor distribution 

in the human eye is a particularly prominent example of 

a specifically shaped sensor topology. In [11], it is pointed 

out that the log-polar-like receptor distribution corresponds 

to a mapping function which transforms image rotations and 

dilations (zoom) into simple coordinate shifts in the log-polar 

coordinate system. Hence, if an eye featuring such a receptor 

distribution is focusing on an object and that object is rotated 

or scaled, the projected image is merely shifted along the 

log-polar coordinate axes. It was argued that this property 

results in an advantage for the human visual cortex, as it could 

achieve image invariance for these transformations at a low 

computational cost by simply shifting the image. 

Other mammalians, for example sheep, pigs, horses or 

the red kangaroos (Macropus rufus) feature a horizontally 

elongated ganglion cell distribution in their fovea, also called 

visual streak [12], [13]. Such distributions could account for 

the fact that horizontal image translations are more frequently 

experienced by these animals, because as opposed to predators, 

they have a more limited binocular vision and their behavior 

is less "object oriented". On the other hand, it is important for 

these species to observe the horizon, a behavior which induces 

horizontal image shifts. Hence, the visual streak improves the 

"coordinate shift" property previously described. 

b) Self-similar Point Distributions: In an inventive work 

described in [14], the following was proved: a set of points 

randomly distributed on a disk converges to a stable configu

ration given: i) points are conjointly transformed by rotations, 

dilations and translations which are applied according to a 

given probability distribution; and ii) after a transformation 

action is applied, each point is moved towards transformed 

points which are lying closest to the point under consider

ation. The paper shows, the final point distribution is the 

configuration where each point has on average the smallest 

possible distance to the next closest transformed point under 

the given action probability distribution. In [14], this quality is 

called the self-similarity of that point-set and action probability 

distribution. Configurations obtained with unrestricted uni

formly distributed rotation and dilation actions, but restricted 

uniformly distributed translation actions show highly regular 

fovea-like point distributions. Furthermore, using different 

action probability distributions for horizontal and vertical 

translations, elliptic (visual streak-like) point distributions are 

obtained (for an illustration see Figure 10 in [14]). 

c) Morphological Computation for Distance Estimation: 

In a setup described in [15], a robot equipped with a number 

of light sensitive receptors moves along a textured wall. The 

receptors form a horizontal, one-dimensional visual sensor 

which can be reconfigured online. The robot executes a opti

mization algorithm which searches for a sensor configuration 

which ensures that the time required for a dark I bright contrast 

to move from one receptor to the next is the same for all pairs 

of receptors. It is then shown, that the optimal configuration 

found linearizes the computation of the robot's distance to the 

wall, allowing a very simple computation to execute this task. 

In the next section, we will formalize a definition which 

embraces the motivation given here. Prior to that, we would 

like to emphasize the following. If one is familiar with the 

concept of uncertainty sampling, e.g. for active learning where 

an action is considered a good action when it leads to still 

unknown feedback, then the paradigm introduced in this work 

might sound counterintuitive, as we precisely reward actions 



which do not discover novelty [16]. However, our understand

ing of good motor actions is different and this distinction is 

deliberate. We consider actions which lead to well predictable 

changes advantageous for an embodied agent, because they 

support and improve for example the capability to distinguish 

between sensory stimuli which originate in the environment 

(e.g. moving predators or prey) and self-induced stimuli (pro

voked by movements of the agent's own body). Relying on 

better predictable actions improves forward modelling of self

generated stimuli which is a common concept implemented in 

nervous systems of many but the simplest organisms [10]. 

III. A DEFINITION OF GOOD MOTOR ACTIONS 

To test the so far introduced ideas, we consider an agent 

in state s placed in a 2-dimensional world described as a 

luminance function is : JR2 -+ JR, i.e. a grayscale image. The 

agent observes the world through a sensor composed of N 
receptors. Each of these receptors is described as a receptive 

field in which is used to integrate luminance like 

(1) 

where on(is) is the value observed by the n-th receptor and 

the receptive field function in is modeled as a multivariate 

Gaussian on i(x). We choose Gaussians as the possible set of 

functions for in because Gaussians are particularly well suited 

to describe receptive field functions, both for biological plau

sibility as well as for their amenable mathematical properties 

[17]. 

After taking the observation at state s, the agent can change 

is using its actuators. Therefore, after performing action a, the 

agent observes 

on(is 0 a) = J in(x)is (a(x)) dx, (2) 

where we define is+l = is 0 a. For simplicity, these actions 

are considered well behaved in the sense that they are smooth 

bijections. The notation D sand D s+1 is used to denote the 

sensor activation values before and after applying action a: 

[Ol(iS)] 
02 (is) Ds = . , 

oN(is) 

[Ol(iS+d] 
02(is+d Ds+l = . . 

oN(is+d 
(3) 

Incorporating the ideas presented in Section II, we now 

formulate what we mean by prediction using a simple model. 

The general form of stimulus prediction with the given ob

servation model refers to a function pa : JRn -+ JRn which, 

when applied to the initially observed sensor values Ds, is 

able to approximate the sensor values obtained after applying 

an action a: 
(4) 

Considering a static world and a spatially rigid sensor layout, 

we observe that the class of functions from which pa should 

be chosen can be restricted. In the appendix, we provide an 

argument that motivates a reduction of this set of functions 

to the linear function set. Having selected a linear pa we are 

now left with the concern how to decide on the complexity 

of the prediction model. A common and natural approach to 

select simpler models is to evaluate the number of parameters 

required by the model. For a linear predictor, we can translate 

this requirement by forcing the predictor to be sparse. In this 

sense, we revise equation (4) as 

(5) 

where pa is the matrix representation of the linear prediction 

function pa. This equation is still ill defined since the notion 

of sparsity is vague and nothing has been said about the 

prediction error. It is our belief that these cannot be canonically 

defined, so several alternatives can be proposed as a means of 

mixing the importance of sparsity and allowed error: 

• Fix sparsity and minimize the prediction error. For ex

ample one can say that each row of matrix pa must 

have a single non-zero entry (sparsity) and under this 

set minimize the norm error. Other sparsity sets can be 

chosen such as pa having at most k non-zero entries or 

that pa must be permutation matrices. 

• Minimize the prediction error and infer sparsity. A strat

egy which first obtains the minimum norm error solution 

for pa with a rule which grounds entries of this solution 

to zero and subsequently deduces sparsity. 

• Simultaneously minimize both prediction error and spar

sity. For example the well known LASSO algorithm 

allows for a single parameter to weight the importance 

of sparsity versus norm error [18]. 

Any of these methods will obtain a prediction matrix pa 
as well as the associated prediction error Ea from several 

samples of the sensor values before (Ds) and after (Ds+1) 
applying action a from randomly chosen states s. An action 

performance score for the given sensor topology is therefore 

a function of the prediction matrix and the prediction error 

like Qa (pa , Ea). We call a good action one which induces 

a high performance score. The choice of this performance 

score is usually tied with the choice of the sparsity / prediction 

optimization algorithm. For example, if sparsity is fixed, then 

the performance should only depend on the final prediction 

error. 

For the experiments described next, we chose the approach 

which first minimizes the prediction error while constraining 

entries of pa to be greater or equal to zero. To provide the 

performance score we use the Gini index which is a well 

known sparsity measure complying with a number of desirable 

properties [19]. In short: 

pa = argmin 

s.t. 
Li IID�+l - pa D�II� 
pa �O 

where pa is defined as an average over a number of actions 

i. We found this combination to provide good invariance to 

sampling noise and overall results consistent with what was 
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(a) Grid Layout (b) Foveal Layout 

Fig. I. Investigated sensor topologies. Circles visualize the standard deviation 
of the Gaussian receptive field of each receptor. In red, the covered action 
ranges; rectangular: the range of translational actions; c-shaped: the range of 
rotation and scale actions. 

to be expected. Note that as privileged observers we, the 

reader and the authors, have access to the underlying sensor 

topology hence can judge what is to be expected, but this 

information is not given to the algorithm. Also, the constraint 

pa 2: 0 feels natural in a biological context and the chosen 

approach does not require any further parameter as it is the 

case when fixing sparsity (number of non-zero entries in 

pa) or when implementing a regularized version of the least 

squares solution such as the LASSO method (regularization 

parameter). 

IV. RESULTS 

In this section we investigate two given sensor layouts, 

a regular grid-like configuration, and a non-uniform, fovea

inspired layout with a logarithmic parametrization, also com

monly used to describe growth spirals found in nature [20]. 

We chose the grid configuration because of its relevance with 

respect to basically all artificial image sensors, e.g. CCD sen

sors available off-the-shelf. The logarithmic distribution was 

chosen to analyse stimulus change patterns for foveating visual 

systems as described in Section II. The two layouts are shown 

in Figure 1. We investigate three types of actions and their 

combinations: translations, rotations and dilations. For each 

sensor configuration and two action sub-spaces (shift-x / shift-y 

and rotation / scale), we applied the proposed measuring al

gorithm to 10 000 randomly chosen actions. Figure 1 shows 

the action ranges in red with respect to the sensor topologies. 

Each score was obtained by sampling a particular action 1.4-

times the number of receptors from randomly chosen positions 

in the image. Figures 2 to 5 show the obtained scores. In 

what follows, we discuss the results for each sensor topology 

individually. 

A. Uniform Grid Sensor Layout 

Measurements for horizontal and vertical translation actions 

are presented in Figure 2. The plot shows clear peaks when 

a translation equals a combination of horizontal and vertical 

receptor distances. The peaks corresponding to larger action 

steps are slightly smaller because larger displacement actions 

lead to a bigger number of peripheral and unpredictable 

receptors, provoking noise in the prediction operator which 

is responsible for less sparse solutions. This is a desirable 
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Fig. 2. Actions scores for the grid layout under horizontal and vertical 
translations. Translation units refer to the sampled world which extends over 
[-1,1] in both directions. 

effect, as peripheral receptors do not qualify well in terms of 

our measure. The results for rotation and dilation are shown 

in Figure 3. Excluding the peak for the zero-action, only two 

significant peaks are visible located at zoom level z = 1 and 

900 and -900 rotation. This makes sense as these are the 

actions which achieve a perfect permutation of receptors. In 

between, the scores are significantly lower with certain angles 

achieving a slightly better score than others. 

In summary, while this sensor achieves good measures for 

shifting actions with step-sizes related to receptor distances, 

the topology does not qualify well for zoom and rotation 

actions. Hence, while translation can be computed using less 

parameters and operations, compensation of actions inducing 

rotation and dilation is more complex for this layout. 
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Fig. 3. Actions scores for the grid layout under rotation and dilation. The 
zoom factor z denotes a scaling of the sensor topology. 
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Fig. 4. Actions scores for the foveal layout under horizontal and vertical 
translations. Translation units refer to the sampled world which extends over 
[ -1, 1] in both directions. 

B. Foveal Sensor Layout 

Quite contrary to the grid-like layout, translational actions 

using the foveal sensor lead to the results shown in Figure 4. 

Disregarding the peak for the zero-action, the plot does not 

show clear good actions except for a ring of local optima 

corresponding to shifts of the center location to receptor posi

tions on the second ring, although, these shifts are assigned a 

significantly lower score than the shift-peaks in the previously 

discussed layout (compare also Figure I). Much different 

appear the measurements for the rotation and scale action 

space shown in Figure 5. Here we observe seven strongly 

expressed peaks at zoom level z = 1 distributed according 

to the number of receptors on the semicircle between -900 

and 900• We also note that at the same angular positions, the 

same number of peaks appears for zoom levels z = 0.60 and 

z = 1.68. These peaks correspond to scaling and rotation 

actions which map receptors from one ring to a neighbor ring 

of receptors. 

We conclude, a foveal sensor favours simplified linear pre

diction operators for rotational transformations but sacrifices 

on the other hand sparsity under translational displacements. 

C. Discussion 

We observe a clear shift in the characteristics of the action 

scores when moving from the grid sensor layout to the 

foveal layout. While the grid layout achieves higher scores 

under translation, the foveal sensor requires a more descrip

tive prediction function for the same actions. This coincides 

with the fact that animals with a foveating visual system 

usually compensate image translations by appropriate sensor 

movements, e.g. saccadic gaze shifts or smooth pursuit of 

foveated objects. Hence, the handling of image translations 

is "outsourced" to active sensor repositioning allowing for an 

abatement of image transformations for which the sensor itself 

is badly optimized. Contrariwise, the grid-like sensor does not 

qualify well for rotation and scaling while the foveal sensor 

significantly facilitates the description of stimulus changes for 

these actions. Again, this matches well with observations in 

living organisms. Foveating visual systems can be assumed 

to frequently experience image rotation and scaling because 

foveal sensors are typically used to engage in object-oriented 

behavior ranging from prey-catching to in-hand manipulation; 

activities which typically involve self-induced actions resulting 

in approximation, adjustment or repositioning of an object. As 

the vision system compensates for translations of the target 

object, these behaviors mostly induce rotation and scaling of 

the object's projection on the observing sensor, which as we 

have seen are well supported transformations for the foveal 

sensor layout in the sense that they can be compensated by a 

computationally inexpensive post-processing step. 

Giving consideration to these observations, it seems rea

sonable to assume that the morphology of a sensor has strong 

ties to the agent's behavior (and vice versa). This, however, 

also means that body and movements of a system striving 

for efficient functioning must be designed with these ties in 

mind. We believe, the measure introduced in this work can 

be of help in this respect as it reflects relationships between 

a given sensor morphology and given actions and it indicates 

ways of coupling the sensor with appropriate motor actions. 

V. FUTURE WORK 

Having confirmed that the introduced score aligns well 

with the reasoning introduced in Section II, we will tackle in 

future work a few shortcomings of the present implementation. 

Namely, improving the Gini approach such that it has better 

discriminatory behavior. In extended work, we will investigate 

a solution for equipping a system with the capability to 

autonomously select favourable actions for a given sensor by 

implicitly discovering favourable regions in the given action 

space without the need for repeated sampling of a single ac

tion. To enable such learning in the sense of an ontogenetic de

velopment approach, we will put the focus on on-line learning 
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Fig. 5. Actions scores for the foveal layout under rotation and dilation. The 
zoom factor z denotes a scaling of the sensor topology. 



techniques where sensorimotor experiences are sequentially 

acquired. Eventually, we will investigate in a more formal 

comparison the here introduced measure with related measures 

like the Bayesian (BIC) or Akaike (AlC) information criteria. 

The empirical data collected and presented in this work does 

not allow for a comparison, as these measures typically require 

a much bigger number of samples. Furthermore, the BIC / AIC 

requires the exact number of involved parameters, a quantity 

which is not directly available from pa without setting a 

threshold. 

ApPENDIX 

Linear Prediction Functions: The argument for linearity of 

prediction functions is a direct consequence of the world, 

action and sensor model. First note that the observation 

function (1) is linear in its argument is. If the observations are 

perfectly predictable, then equation (4) is perfectly satisfied, 

meaning that each receptor value satisfies 

{=} 

Ds+l = p
a (Ds) 

r1 

(i

.

+

,j 1 ( rd

i

'

) 

l) 

02 (Zs+l) 02 (Zs) 
· = p

a 
. 

· . 
· . 

ON (is+l) ON (is) 

(6) 

(7) 

Since 0i is linear, given any two images i� and i� and any 
two scale factors a and (3 the previous satisfies 

l Ol(i;+l) ] r Ol(i�+l) j 
o2(i;+1) o2(i�+1) 

a . + (3 . . . . . 
oN(i;+l) oN(i�+l) 

l Ol(i�) ] l Ol(i�) ] 
o2(i�) o2(i�) 

a . +(3 . . . . . 
oN(i�) oN(i�) 

'"--v--' '"--v--' D� D� 

which, when equation (7) is replaced on the left hand side 

proves linearity of p
a whenever the action is perfectly pre

dictable. 
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