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Abstract— The maintenance of a stable and coherent rep-
resentation of the surrounding environment is an essential
capability in cognitive robotic systems. Most systems employ
some form of 3D perception to create internal representa-
tions of space (maps) to support tasks such as navigation,
manipulation and interaction. The creation and update of such
representations may represent a significant effort in the overall
computation performed by the robot. In this paper we propose
an architecture based on the concept ofExpected Perception
that allows lightweight map updates whenever the course of
action happens according to the robot’s expectations. It is only
when the robot’s predictions and the real world outcomes differ,
that corrections must be done at its full extent. We performed
experiments and show results in a real robotic platform with
stereo (3D) perception where map corrections are proposed by
simple image level (2D) comparisons.

I. I NTRODUCTION

In humans, perception is not just the interpretation of
sensory signals, but a prediction of consequences of actions.
Perception can be defined as a simulated action [1]: percep-
tual activity is not confined to the interpretation of sensory
information but it anticipates the consequences of action,so
it is an internal simulation of action. Each time it is engaged
in an action, the brain constructs hypotheses about the state
of a variegated group of sensory parameters throughout
the movement. There are some experimental neuroscientific
evidences supporting the presence of sensory anticipations
in humans [1][2]. Such sensory anticipations are framed into
more general schemes for perceptions and, ultimately, for
sensorimotor coordination [2][3] and learning. Anticipation
capabilities in humans are probably located in the cerebellum
[4]. The predictions of consequences of action in the sensory
space are very important for the control of movement, or
more specifically for the so-called predictive control, which
explain most of our sensory-motor behaviours: our brain does
not base motor control on the sensory feedback, which is
too slow for most everyday sensory-motor tasks, but on the
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Fig. 1. Overview of the proposed methodology for unexpected perception
detection implemented on a real iCub robot head.

predicted sensory input, i.e. an Expected Perception (EP),
generated thanks to internal models built by experience [5].
Sensorimotor coordination schemes based on internal models
offer a possibility for overcoming a significant difficulty
related to feedback-based models. Various possibilities exist
to combine information provided by the internal model and
actual feedback. One of the first robotic implementation of
sensory motor coordination model based on internal model is
called Expected-Perception (EP) scheme discussed in [6][7].
The papers propose an anticipation mechanism to improve
the perception-action loop of robots interacting with real-
world environments. In this model the perception crucially
involves comparison processes between incoming stimuli
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and EPs, built from previous perceptions, current motor
commands, and internal models of the robot and the environ-
ment. Background knowledge plays here a helpful role, as it
reduces the computational burden of perception and motor
coordination tasks in partially structured environments.An
application of internal model to the prediction of tactile
feedback in grasping is presented in [8]. In [8], the sensory
prediction is part of a grasping action, controlled by a scheme
based on Expected Perception (EP) [6]. Internal models in
an EP scheme can be built through experience of the real
world by means of neural-network-based learning mecha-
nisms. Gross et al. [9] provided a neural control architecture
implemented on a mobile miniature robot performing a local
navigation task, where the robot anticipates the sensory-
motor consequences of all possible motor actions in order
to navigate successfully in critical environmental regions
such as in front of obstacles or intersections. Barrera and
Laschi [10] provide a high-level architecture of sensory-
motor coordination based on anticipatory visual perception
and internal models built using a fuzzy neural network. This
architecture for the Anticipatory Visual Perception (AVP)
is depicted by figure 2 in terms of functional modules
and flow of information between them. According to the
AVP architecture, the locomotion of the robot relies on the
combination of two perception-action cycles: the traditional
and the AVP-based one.

In this paper we exploit the concept of Expected Per-
ception to propose an architecture to address the problem
of how to update a robot’s internal representation of the
surrounding environment. To be able to operate and plan in a
dynamic environment, an autonomous robot must update, at
each time step, the relative position of the items in the world
with respect to itself, hence requiring efficient perception
strategies. We consider the case of humanoid robots with
stereo vision having to navigate and avoid obstacles in
dynamic environments and discuss the role of the robot’s
motor information in the construction of a coherent and
stable 3D representation of the world. In particular we
are interested in using this knowledge for increasing the
efficiency of robot perception with respect to the utilization
of visual information alone.

Robot navigation, localization and 3D scene reconstruction
are among the oldest and most researched areas in robotic
science. However, the exploitation of Expected Perception
ideas in these areas are not common. We argue that in
complex systems, such as humanoid robots, Expected Per-
ception based techniques will play a key role in the effi-
ciency of the algorithms. The most common approaches to
robot navigation rely solely on (visual) perception. Focusing
on application to humanoid robots, [11] uses plane fitting
methods in the depth maps acquired by the stereo setup at
each time, to support the detection of the ground floor and
obstacles required for navigation. In [12] visual odometry
and 3D reconstruction are used to plan the footsteps of
a humanoid robot. Another class of methods use motor
information, to improve the quality of the of the navigation
and reconstruction systems. Often, motor odometry is used

Fig. 2. The AVP scheme[10].

together with visual information in a time filtering scheme
to provide lower variance estimates of robot and landmark
locations. Following the Simultaneous Localization and Map
Building approach (SLAM) [13], the state of the robot
(localization) and of 3D points in the environment (map)
are updated through a combination of prior knowledge (the
previous state) and the current sensory readings. In [14]
monocular visual SLAM and the information of the robot
planned movements are used to maintain a sparse map of
the environment and localize the robot. More recently [15]
used stereo vision and a grid based representation of the
environment. In this paper we propose a step further in
the utilization of motor information for 3D reconstruction
systems. Beyond filtering and data association, motor in-
formation can be used to create predictions in the sensor
space that can be very efficiently checked in run-time. If
expectations are confirmed, no updates to the predictions are
needed, thus allowing significant computational savings in
average.

The structure of the paper is as follows. Section II de-
scribes the visual expected perception scheme providing a
detailed overview of the implemented architecture. Section
III introduces the internal models for mapping the sensory
odometry information to head pose and changes in the
visual field. Section IV describes the Expected Perception
Generator and Visual Comparator modules as well as how
this information can be used to update a 3D scene represen-
tation in a computationally efficient manner. Finally, results
obtained with a real iCub robot head (see figure 1) are shown
in section V and conclusions are drawn in section VI.

II. V ISUAL EP SCHEME

The EP scheme architecture modelled and implemented
in this work is shown in Figure 3. The scheme was thought
to face a recent task for the EP applications. Differently
from the most of previous works (like [6][7] for grasping),
the Expected Perception is used to support a 3D vison
system of a humanoid robot. More precisely, the prediction
of camera images allows to simply update the 3D map of



Fig. 3. Visual EP Scheme.

the environment, without calculate it again in every vision
step.

Unlike the classical control loops, that base their response
only on the past/current sensory data, the EP architectures
use the sensory anticipation to control the actuators. In [10]
the authors start to investigate this task for the control ofa
humanoid robot locomotion. This scheme is divided in two
main loops:

• classical perception-action loop
• prediction loop

The AVP architecture represents the starting point for the
design of the scheme implemented in this paper. Although
the two schemes apparently solve the same problem, they
are actually different. First of all, the scheme proposed by
A. Barrera and C. Laschi describes an entire control loop
based on visual anticipation, whereas the architecture of
this paper focus mainly on the prediction loop. Both of
the schemes generate the Expected Prediction from a visual
3D reconstruction of the environment. The AVP architecture
produces a tridimensional Expected Perception, whereas the
proposed scheme generates a 2D prediction, easier and faster
to process and analyze.

In the scheme depicted in Figure 3, a loop step consists
in the 3D reconstruction of the environment captured by the
stereo cameras. During each step the cameras response will
be anticipated, generating a predicted left camera image. An
internal model of the robot kinematics permits to obtain the
prediction. The 3D reconstruction is, then, simply updated
using the comparison between the predicted image and the
actual one. The zone of the 3D reconstruction to be updated
for the next step are calculated applying a threshold on the
difference image.

The EP scheme operation is modelled by a series of

blocks:

• The Internal Model block calculates the new end ef-
fector position (rotation matrix and translation vector
of the left camera) from the encoder angles and motor
commands. The block is realized using a multilayer
feedforward neural network, trained with the back-
propagation algorithm. Additionally, internal model is
updated only if the change registered within the envi-
ronment is permanent. In this case, the structure and
learning parameters of the neural network are adjusted
to consider a new association between robot body
movements and changes in the visual field.

• The EP Generator block calculates the predicted left
camera image from the 3D reconstruction (gener-
ated/updated by the3D Reconstruction of Visible Space)
and the left camera position (given by theInternal
Model).

• TheVisual Comparator block calculates the differences
between the predicted and actual images. Furthermore
this block evaluate if the errors are permanent and a
new training phase of the internal model network is
necessary.

• The 3D Reconstruction of Visible Space block updates
the most unpredictable zone of the 3D reconstruction.
Only at the beginning of the control loop the architec-
ture has to build the entire 3D reconstruction of the
visible environment.

.

III. I NTERNAL MODEL

The role of the internal model, inside the Visual EP
Scheme, is to learn the correlation between robot body
movements and changes in the visual field. We tested the



Fig. 4. The graph shows the learning phase of the neural network. The
Mean Error of 5000 epochs is plotted for training set, validation set and
test set of data.

internal model moving the iCub’s head (neck pan, neck
swing and neck tilt). To compute visual shifts due to the
head movements the internal model learns the position and
orientation of the end effector (the left camera) related to
the head position. So, being the camera position known, it
is possible to generate a predicted synthetic image for the
comparison with the real one. The internal model has been
implemented using a feedforward artificial neural network,
a Multilayer Perceptron. This network has been developed
with 3 neurons in the input layer (related to neck swing,
tilt and pan angles), 10 neurons in the hidden layer and 12
neurons in output layer that correspond with the values of
the transformation matrixT calculated using odometry to
estimate the position and the orientation of the left camera,
given a certain rotationR and translationt.

T =

[

R t
0 1

]

The network uses the non linear activation sigmoid func-
tion with backpropagation learning rule. It has been taken
into account 300 simulation results, the training set for the
neural network is the 70% of these values, the 15% is used
for the validation set and another 15% is used for the test set.
These values have been shuffled to increase the variability
of the training set. The results of the learning are shown
in figure 4. The training error is almost nullified after few
epochs. This is due to the simple kinematics chain estimated
for this task. We stopped the training when the error for the
validation set is less then6 · 10−6.

IV. ESTIMATING 3D

The general setup assumed in this paper consists of a
stereo camera mounted at the end of a kinematic chain,
described as a set ofI joint anglesθ = (θ1, θ2, · · · , θI) ∈

R
I . Assume that the odometry is calibrated in the sense that a

mapT : RI
→ SE(3) is available, whereSE(3) denotes the

set of rigid transformations, which converts the odometry
values into camera position and orientation as described in
the previous section. At each time instancek a pair of images
Lk and Rk, henceforth refered to as left and right images
respectively, are obtained from cameras mounted on the last
segment of the kinematic chain together with a setθk of
odometer readings which provide an estimate of the camera
position asTk = T (θk).

The objective of this section is to incrementally obtain a
disparity mapDk at each time instant, using the expected
perception concepts to avoid recomputing the whole map
every time. This can be broken into two sub-tasks: 1)
discovering which areas require an update; 2) recomputing
the disparity map on the invalidated regions and fusing this
information with the previously available information. Each
of these will be described in greater detail next.

A. Detecting Invalid Regions

In the Expected Perception framework, intensive sensor
processing should be delayed until a simpler detection al-
gorithm flags this data as no longer valid. Since obtaining
3D measurements from stereo image data is considered
a computational burden, it is a prime candidate for this
approach. Here the question of how to detect when the
previous data is no longer valid is addressed.

Since the detection process should be as computationally
inexpensive as possible this detection is done by comparing
brightness information at consecutive time instancesLk and
Lk+1. Note that since the cameras are moving, a direct
brightness comparison is impossible (see figure 1.(e)) and
a prediction step is needed to propagate the previous image
to time instantk + 1 before the comparison. This task is
simplified by the availability of the camera position estimates
T

k and an estimate of the 3D world represented as a disparity
imageDk+1

−
, but since these readings are not perfect (sensor

discretization, kinematic errors, etc.), a means of attenuating
predictable false positives is needed. Refer to figure 5 for an
overview.

When new odometry information is available at timek+1
the system is able to compute a prediction for the left image

Lk+1
−

= p(Lk;Tk+1, Dk+1
−

)

by mapping each pixel on the image at timek to a certain
position on the image space at time instantk + 1 by re-
projecting the previous brightness and 3D information on
the new camera pose. In perfect conditions, where the real
transformation is well known and there is no noise, the
predicted image matches perfectly with the acquired image
(Lk+1), except for non-predictable image points either not
visible in the previous image or belonging to a moving
object. In these conditions a brightness difference

Ek+1 =
∣

∣Lk+1
−

− Lk+1
∣

∣

between these two images should result in a well defined
segmentation of the areas in need of being updated.

In real conditions however, the odometry and disparity
information are not perfect and small misalignments are to be
expected. Unfortunately these result in high intensity errors,
particularly noticeable near the intensity edges and corners
of the observed image, and require some mechanism to
eliminate their influence. Fortunately these edges and corners
occur at predictable positions allowing for a mechanism
which attenuates their influence to be implementable. To this
end, these error images are used to generate an accumulated



error which is propagated and accumulated along time using
a certain forgetting factorλ as

Ck+1 = (Ek+1 + λCk+1
−

)/(λ+ 1)

where
Ck+1

−
= p(Ck;Tk+1, Dk+1

−
)

is the information propagated along time. In the described
setup a forgetting factor ofλ = 10 provides good results.
The effect of this low pass filtering is that it detects and
propagates image areas known to be noisily unpredictable
and this information can be used to attenuate each pixel in
the error image before deciding whether a region needs to
be updated or not. Thus, an attenuated error is generated as

Ak+1 = Ek+1 exp(−α
(

Ck+1
−

)2
),

where a value ofα = 0.1 provides good results. This
attenuation results in a good compromise between detection
of unexpected changes and ignoring repeatably unexpected
image areas. The segmentation of the unexpected event
is then done in the image space, detecting what is not
predictable by the system, by applying a threshold (in this
case the hand moving independently).

B. The Disparity Map

The previous description makes use of a precomputed
disparity map (inverse depth information) to be able to
predict both the image at the next time instantLk+1

−
and

the cumulative errorCk+1
−

. This map needs to be updated
and is the proposed output of the algorithm here presented.
Using a stereo pair of images at the initial time instant,L0

andR0, we obtain an initial disparity mapD0 that is used
to bootstrap the algorithm. This information is used as long
as it is valid and generates predicted images consistent with
the ones acquired. At each time instant the disparity map is
updated from the odometry information through a function
pD as

Dk+1
−

= pD(Dk;Tk+1)

which performs a rigid transformation of the 3D points
represented as the disparity mapDk. This prediction is then
used to apply the expected perception concept as described
previously to detect which areas require full disparity re-
computation. Only these areas are updated reducing the
computation time.

For the disparity map information used in this paper we
used the Semi-Global Block Matching algorithm available in
OpenCV, based on [16].

V. RESULTS

In order to test the proposed perception methodology
in a real setup, an experiment was conducted with the
iCub robotic head (figure 1(a)). The robotic head allows
the synchronous acquisition of stereo images and odometry
information, namely the angles associated to each joint (see
figure 1(b)). The intrinsic and extrinsic parameters of the
cameras have been previously calibrated using a Matlab’s
calibration toolbox [17]. During the experiment, the robot’s

Fig. 5. Implementation of the EP Generator and Visual Comparator
modules.

head moves randomly and an independently moving object
(hand) appears in the fields of view of the cameras (see
figure 6(a), (b), (c) and (d)). The movement of the hand
is also random and thus there is no information describing
it.

Given an input image acquired at the timek, the angles
of the joints observed at timek + 1 and a dense disparities
map representing the imaged world at timek, one can
predict the input image atk + 1 (figure 6(f)). This image
is expected to have compensated most of the self-motion,
however one finds that due to some illumination variance
and to some imprecision on the encoders, there are some
differences between the predicted and the real images, mostly
near the image edges (flickering lights are examples of image
differences not motivated by motion).

Figure 6(g) shows the brightness difference between the
real and predicted images. This error image shows not only
the hand but all the small misalignments near the edges.
However, the accumulated error image (figure 6(h)) takes
these misalignments into account since they are predictable,
constantly appearing in the same places, allowing their
attenuation along time (figure 6(i)). Figure 6(k) compares
the mean errors before and after the attenuation process
(figure 6(g) and (i)), where it is noticeable the decrease
of the mean error value after this process, meaning that
mostly of the image error is now due to the presence of
unpredictable events. Now the hand appears clearly salient.
This clear saliency allows to find independent motion by
simple thresholding, as shown in figure 6(j).

Figure 6(l) shows the updated disparity map. This map is
constructed in an iterative manner, being guided by unex-
pected perception detected on the image (differences). The
larger disparities correspond to the hand, which in fact is
closer to the iCub’s cameras than the rest of the background.
The qualitatively correct information on the disparities map
shows that it can be constructed iteratively using just some
specific information at each time sample.



(a) Real Image (frame30) (b) Real Image (frame50) (c) Real Image (frame70) (d) Real Image (frame90)

(e) Real Image (f) Predicted Image (g) Error Image (h) Accumulated Error
Image
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Fig. 6. Updating the expected disparities map given stereo images and the joints motion. Input stereo-sequence of images, frames30, 50, 70, 90 (a,b,c,d).
Real Image at timek + 1 (e). Predicted Image at timek + 1 (f). Error image (brightness difference between (e) and (f))at timek + 1 (g). Accumulated
error images up to timek (h). Attenuated error image at timek + 1 (i). Unexpected perception at timek + 1 (j). Means of (g) and (i) along time, resp.
in dash-dotted-red and blue-continuous lines (k). Updateddisparities map at timek + 1 (l).

VI. CONCLUSION

In this paper we have applied the Expected Perception
concept to the problem of maintaining a valid 3D recon-
struction of visible space. The current 3D knowledge of the
system is used to create predictions of the future perceptions
at the sensor level. This allows a very quick assessment of
the validity of the prediction through direct sensor based
correlations. We have shown in a real robotic head, that
predictions of image data can support direct comparison with
freshly acquired images to detect regions where the world
has changed. Even with a significant amount of ego-motion,
camera noise and encoder uncertainty, Expected Perceptions
mechanisms can be implemented at a low-level, very close
to the direct camera readings. This is a key finding for
the development of truly efficient and automated cognitive
systems.
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