
Visual Servo Aircraft Control for Tracking Parallel Curves

Pedro Serra, Rita Cunha

Abstract— This paper describes a nonlinear Image-Based
Visual Servo (IBVS) controller for tracking nonlinear parallel
2-D curves, such as catenaries, with a fixed-wing aircraft. Image
features are exploited from the image of the lines to design a
feedback controller for the automatic manoeuvre. For curves in
the vertical plane the proposed solution guarantees exponential
stability in the horizontal direction and ultimate boundedness
in the vertical direction, with bound proportional to the slope
deviation with respect to a straight line. Simulation results are
presented to illustrate the performance of the control approach.

I. INTRODUCTION

Over the last decade, a growing interest in unmanned aerial
vehicles (UAVs) has spread among the research community.
Their potential to perform high precision tasks in challenging
and uncertain operation scenarios is a motivation for the in-
creasing effort on the development of new control algorithms.
Moreover, the new sensor technology and the increasingly
powerful computational systems are potentiating new and
more challenging applications.

Inspection of infrastructures, such as bridges [1] or chim-
neys [2], has spawned a wide range of application with major
interest within the research community where the use of
cameras arises as natural tool for automatic inspection.

The research and development in the area of unmanned
aerial vehicles has been paying off due to the many advan-
tages when comparing to the traditional technologies that
require man presence and intervention, such as

• reduce costs by decreasing the need of manpower;
• reduce costs by decreasing the energy dependence;
• improve reliability of the results in some cases where

human errors are frequent;
• give access to areas that are out-of-range for manned

vehicles;
• expand the range of applications, including in indoor

environments due to high manoeuvrability and small
size;

• reduce risks of accidents and injuries.
The measurement of the vehicle’s position with respect to

the local environment is a major problem when designing
control systems. Global Positioning System (GPS) is being
widely used as the primary navigation aid, however there
has been an increasing interest in developing alternative
systems that provide robust relative pose information to be
used in navigation algorithms. One alternative is the use
of a vision system. Using cameras as primary sensors for
relative position, the flight control problem can be cast into
an Image-Based Visual Servo (IBVS) Control problem ( [3],
[4]), opening the possibility to perform autonomous tasks in
low-structured environments with no external assistance, [5],
[6].

This paper presents a solution to the problem of track-
ing nonlinear parallel 2-D curves, in particular, the typical

catenary curve described by the overhead power lines. The
proposed controller borrows from the work in [6], where
the authors present an IBVS controller to track parallel
straight lines, using the normalized Plücker coordinates of
the straight lines, which can be readily obtained from the
image measurements. The landing manoeuvre of an airplane
is approached in [7] and [8], where the presented solution
is also based in the Plücker coordinates of the lines de-
limiting the runway complemented with the Optical-Flow
for the Flare phase. In this paper, we consider a modified
version of the image error introduced in [6] that can be
used for non-straight lines and is obtained by combining
information from the vanishing point where the curves meet,
with the image coordinates of points on the curves, which
are judiciously chosen. For curves in the vertical plane, the
proposed solution guarantees uniform exponential stability
in the horizontal direction and ultimate boundedness in the
vertical direction. The bound on this error is proportional to
the maximum relative slope of the tangent to the curves, with
the zero-slope direction defined by the vanishing point.

The control architecture is decoupled into an inner-loop
and outer-loop controller. The outer-loop controller stabilizes
the translational (or guidance) dynamics resorting to visual
data and using the roll angle and the angle of attack as control
inputs. The inner-loop controller actuates on the aircraft
control surfaces and provides high-gain stabilization of the
vehicle’s angle of attack, side-slip and roll angles based
on direct measurements of the IMU and pitot tubes. The
time-scale separation between the two loops is considered
sufficient so that the interaction terms can be ignored in
the control design. Detailed studies on the inner/outer loop
approach of controllers design can be found in [9] and [10].

This paper is structured in four sections. Section II
presents the dynamic model of an airplane. Section III
presents the image features that are used in the control
design which, in turn, is presented in section IV. Section
V presents simulation results for the full nonlinear dynamics
of an aircraft. The final section provide a short summary of
conclusions and future research directions.

II. MODELLING

A. Aircraft dynamics
This section briefly describes the aircraft dynamic model

adopted. For a comprehensive coverage of aircraft flight
dynamics, the reader is referred to [11].

Let {I} denote the inertial reference frame and {B} the
body reference frame, attached to the vehicle’s center of
mass. Furthermore, two additional reference frames attached
to the vehicle’s center of mass are introduced, the airspeed
reference frame {W} and the stability reference frame {S},
see Fig. 1. The angle of attack α, defines the orientation
of the stability coordinate frame {S}, which is used for
analysing the effect of perturbations from steady-state flight.



Fig. 1. Reference frames.

The airspeed coordinate frame {W} is obtained from the sta-
bility coordinate frame through a rotation about the z-axis by
the side-slip angle β. Therefore, the rotation matrices from
{S} to {W} and from {B} to {S} are given, respectively,
by

W
S R = RZ(−β), S

BR = RY (α). (1)

The flight-path, heading, and bank angles (γ,χ, µ) are the
so called wind angles and describe the orientation of the
airspeed frame with respect to the inertial frame, such that

I
WR = RZ(χ)RY (γ)RX(µ). (2)

Assuming the presence of wind with velocity vw expressed
in {I}, let vb denote the velocity of the aircraft relative
to the wind expressed in {B}, and let v denote the same
vector expressed {I}. Let Ω = (p, q, r)T denote the angular
velocity also expressed in {B}, ξ = (x, y, z)T the position in
{I} and R = I

BR the rotation matrix from {B} to {I}. For
fixed-wing aircraft, it is convenient to write the equations of
motion using a state vector naturally suited for flight control
design. Instead of vb, the variables V , α, and β are used to
describe the magnitude and direction of the relative airspeed,
which according to (1) satisfy

vb =
B
WR




V

0
0



 = V




cosβ cosα

sinβ
cosβ sinα



 . (3)

In addition, the wind angles (γ,χ, µ), used to describe the
orientation of the vehicle are related with the relative velocity
expressed in {I}. According to (2)

v = I
WR




V

0
0



 = V




cosχ cos γ
sinχ cos γ
− sin γ



 . (4)

Therefore, the dynamic and kinematic equations of motion
for the aircraft can be written as

IΩ̇ = −sk (Ω) IΩ+ Γ (5)
ξ̇ = v + vw (6)
Ṙ = Rsk (Ω) (7)

V̇ =
1

m
(FT cosα cosβ −D)− g sin γ (8)

β̇ = − 1

mV
(FT cosα sinβ +C) +

1

m
g sinµ cos γ − rs (9)

α̇ =− 1

mV cosβ
(FT sinα+ L) +

1

V cosβ
g cosµ cos γ+

+ (q − ps tanβ) (10)

γ̇ = − 1
V
g cos γ + 1

mV
(C sinµ+ L cosµ)+

+ FT

mV
[sinα cosµ+ cosα sinβ sinµ]

(11)

χ̇ = 1
mV cos γ (L sinµ− C cosµ)+

+ FT

mV cos γ [sinα sinµ− cosα sinβ cosµ]
(12)

µ̇ = L [tanβ + tan γ sinµ] /(mV )+
−C tan γ cosµ/(mV )+
+FT [sinα sinµ tan γ + sinα tanβ] /(mV )+
−FT cosα sinβ cosµ tan γ/(mV )+
− cosα sinβ cosµ tan γ/(mV )+
+ ps

mV cos β − g

V
tanβ cos γ cosµ

(13)

where m is vehicle’s mass, I the moment of inertia, Γ the
exogenous torque, FT is the thrust input and g the gravita-
tional acceleration. The aerodynamic force components due
to the drag, D, crosswind C and lift L are described by




−D

−C

−L



 = q̄SRZ(−β)




CD

CY

CL



 (14)

where q̄ = 1
2ρV

2 is the dynamic pressure, ρ is the density
of the air. Assuming that the vehicle is operating close
to a trimming condition, the stability-coefficients can be
described by

CD = CD0 + CDα
∆α

CY = CYβ
β + b

2V

�
CYp

p+ CYr
r
�
+ CYδr

δr

CL = CL0 + CLα
∆α + c̄

2V CLq
q + CLδe

δe.

(15)

where δe, δa, and δr denote the elevator, aileron, and rudder
angles, respectively. To complete the model, the exogenous
moments in (5) can be written as Γ = q̄S(bCl, c̄Cm, bCn)T

and
Cl = Cl0 + Clβ

β + b

2V

�
Clp

p+ Clr
r
�
+ Clδr

δr + Clδa
δa

Cm = Cm0 + Cmα
∆α + c̄

2V Cmq
q + Cmδe

δe

Cn = Cnβ
β + b

2V

�
Cnp

p+ Cnr
r
�
+ Cnδr

δr + Cnδa
δa

(16)
Note that the airplane should not be used when the wind

conditions are higher than a limit identified upon the airplane
conception. Hence, the following assumption is done on wind
velocity.

Assumption 1: There exists ε ∈ [0, 1] such that:
�vw� < εV. (17)

The airplane considered in this paper, is a 1/4 scale Extra-
330 since it is a highly aerobatic aircraft. The parameters for
this aircraft were found resorting to a wind tunnel simulator
and are presented in Table I.

B. The Inner-Loop
The inner-loop is designed resorting to time-scale sepa-

ration, that allows the partitioning of the aircraft dynamics
into slow states and fast states, with the fast states used as
controls for the slow states, [12]. Fig. 2 shows the block
diagram of the inner loop. The references to the inner-loop
are the desired angle of attack, sideslip and bank angles (see
Fig. 2).

The propulsion controlled uses the thrust command in
equation (8) to drive the norm of the airspeed to a desired
constant value.

The surface controller is designed in order to drive the
angular velocity Ω to a desired velocity Ωd, using the control
surfaces δe, δa and δr in equation (5).



TABLE I
MODEL-SPECIFIC PARAMETERS AND COEFFICIENTS.

Longitudinal Lateral-directional

CD0 0.03245 CYβ
-0.2727

CDα
0.0863 CYp

0.0194
CL0 0.1426 CYr

0.2531
CLα

3.7007 Clβ -0.0314
CLq

3.5927 Clp -0.5858
Cmα

-0.2850 Clr 0.07427
Cmq

-4.3732 Cnβ
0.1052

Cnp
-0.03874

Cnr
-0.1156

Elevator Rudder
CLδe

0.3976 CYδr
0.2228

Cmδe
-0.7572 Clδr

0.02194
Cnδr

-0.1003
Aileron
Clδa

0.3707
Cnδa

-0.008
Geometric Data

Ixx, kg.m2 1.4759 S,m2 1.0126
Iyy , kg.m2 2.8563 b,m 2.4079
Izz , kg.m2 4.1190 c̄,m 0.4420
Ixz , kg.m2 0 m, kg 12.7459
α0, deg 1 V,m/s 36.0111











(αd
,β

d
, µ

d)

Ωd

(V,α,β,Ω, µ, γ,χ)

FT

(δe, δa, δr)



Fig. 2. Inner-Loop diagram.

The angular velocity controller, uses Ωd as control input
in equations (9), (10) and (13) in order to drive the angles
α, β and µ to the desired values given as references by the
outer-loop.

Since the inner-loop design is not the main issue addressed
by this paper, the inerested reader is refered to [12] and [13].

C. The outer-loop
The outer-loop has to deal with the guidance dynamics

which were left uncontrolled by the inner-loop, namely the
dynamics of the flight-path angle γ and of the heading angle
χ, which according to (4) define the direction of the relative
velocity vector expressed in {I}.

Hence, considering that V is constant it is possible to write
the velocity dynamics as

v̇ = sk (v)Rz(χ)




0 0
1 0
0 1




�
γ̇

χ̇

�
(18)

where γ̇ and χ̇ are presented in equations (11) and (12)
respectively.

For the application in hand, it is more suited to use the
bank-to-turn manoeuvre and therefore the sideslip angle β

must be driven to zero. The reference for the desired sideslip
angle passed to the inner loop is, then, βd = 0. Finally, the
guidance dynamics can be described by

v̇ =
1

mV
sk (v)ua(0,α

d
, µ

d) (19)

where the function ua(.) is obtained from (18) assuming that
V is constant and β = 0. ua(.) is used as a virtual control
input to be used by the IBVS algorithm presented in the
next sections. αd and µ

d are obtained from the non-linear
inversion of ua(.).

III. VISUAL FEATURES

The goal of this paper is to introduce a new technique
for tracking non-straight lines in 3D space based on visual
features. For a better understanding of this methodology, it
is convenient to first consider the simpler case of tracking
straight lines.

A. Vision-based tracking of straight lines




Fig. 3. Parallel lines and Plücker coordinates.

Consider a set of n ≥ 2 straight lines, as illustrated in
Fig. 3, with unit direction described by u expressed in {I}1.
Consider also a point on the line i (i = 1, 2, . . . , n), li

expressed in {I}. Each line can be described in a convenient
way resorting to the Plücker coordinates, [6], [7], [8], which
comprise the direction u and the vector Hi given by

Hi = pi × u, (20)
where pi = li − ξ. Although Hi cannot be extracted directly
from the image, it is possible to obtain a normalization of
this variable, [6], (as detailed further ahead)

hi = Hi/�Hi�. (21)
Suppose the goal is to steer the airplane along the direction

u, keeping a constant position with respect to the lines. One
possible solution to this problem relies on a single image
feature given by the centroid

q =
�

hi. (22)

1Assume, for now, that this vector is known. In fact, it can be extracted
from the image using different methods that are presented further ahead.



As required, q encodes all the information about the position
of the vehicle with respect to the straight lines, apart from the
coordinate along the direction u (see [6] for further details).
Hence, to achieve the tracking objective, we can define the
error to be driven to zero through a feedback control system
as

δ := q − q
∗ (23)

where q
∗ is constant in {I} defined as desired centroid.

Figure 4 shows some possible positions for the airplane and
the corresponding measured centroids.

 




 

(a) Airplane in the center of
the two lines.

  




(b) Airplane slightly to the
left.

 







(c) Airplane slightly to the
right.

  



(d) Airplane slightly above
the desired position.

  

 

(e) Airplane slightly below
the desired position.

Fig. 4. Different positions and respective centroid measurements.

B. Vision-based tracking of nonlinear curves
Consider a set of n ≥ 2 nonlinear parallel curves, whose

coordinates in {I} can be parametrized by a scalar τ such
that

l̄i(τ) = uτ + σ(τ)u0 + li0 (24)

where σ(τ) is a bounded scalar function with bounded
derivative, u0 and li0 are constant vectors in R3, and u0

satisfies u
T
u0 = 0. In particular, we are interested in

catenary lines of the form
l̄i(τ) = (τ, liy,−a cosh{[τ − (ceil(τ/L)−1)L−L/2]/a})T ,

(25)
where liy and a are constant scalars, L is the length of the
line and ceil(.) is the round toward positive infinity. For this
particular case, we have u = [1 0 0]T , u0 = [0 0 1]T , li0 =
[0 liy 0]T , and σ(τ) = −a cosh{[τ − (ceil(τ/L) − 1)L −
L/2]/a}. Typically, this is the equation obeyed by electric
power lines between towers, see Figure 5.

Consider the plane that passes through the aircraft’s cur-
rent position ξ and is perpendicular to u. The point of inter-
section between this plane and each line i (i = 1, 2, . . . , n)
can be obtained with τξ = −u

T (li0− ξ) and has coordinates
in {B} given by

p̄i = l̄i(τξ)− ξ (26)
= πu(li0 − ξ) + σ(τξ)u0
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Fig. 5. Catenary lines.

where πx denotes the projection matrix given by

πx = I − xx
T

�x�2 . (27)

Following the line of thought used for straight lines, consider
the vectors H̄i = p̄i × u and h̄i = H̄i/�H̄i�, which can be
associated to the Plucker coordinates of virtual straight lines
passing through each p̄i and with direction u. Consider also
a new single image feature given by q̄ =

�
h̄i and finally

the new error δ̄ = q̄ − q
∗.

C. Extracting the visual features from the image information

Considering the case where parallel straight lines are being
viewed by the camera, the normalized Plücker coordinates
hi can be extracted using the external product between two
points in the same line

hi = R
im(P 1

i
)× im(P 2

i
)

�im(P 1
i
)× im(P 2

i
)� , (28)

where im(P j

i
) = P

j

i
/�P j

i
� denotes the image of P j

i
for an

ideal spherical camera and P
j

i
denotes the 3-D coordinates

of a point j on the line i, expressed in the body frame {B}.
Notice that im(P j

i
) can be readily obtained from the image

acquired using a calibrated CCD camera.
Since u is orthogonal to each hi, it can be written as

u =
h1 × h2

�h1 × h2�
. (29)

Consider now the case where the lines are not straight.
Although (29) no longer holds, we can still extract the
direction u from the image, using the vanishing point where
the lines meet [14]. Assuming that the vanishing point is
visible in image plane, it can be shown that it represents a
direct measure of u, since

u = R lim
τ→∞

im(RT (l̄i(τ)− ξ)), (30)

where l̄i(τ) describes the line coordinates in {I}, as intro-
duced in (24). Then, the vectors h̄i can be obtained using

h̄i = R
im(P̄i)×R

T
u

�im(P̄i)×RTu�
, (31)

with P̄i = R
T
p̄i.



IV. CONTROL

Considering, for now, that the wind velocity is negligible,
the dynamics of the points pi can be described by

ṗi = −vt, (32)
where vt = v + vw, and the dynamics of the normalized
Plücker coordinates are given by

ḣi =
1

�Hi�
πhi

sk (u) vt. (33)

Then, for the case of straight lines, the dynamics of the error
δ can be described by

δ̇ = Qsk (u) vt (34)
where the image Jacobian matrix Q is given by

Q =
� 1

�Hi�
πhi

. (35)

It is not possible to extract �Hi� directly from the image,
therefore the measurement of the matrix Q is a difficult
task. Nonetheless, as carefully described in [6], it is always
possible to define Q as a positive definite matrix, which
allows for the synthesis of controllers without an explicit
estimate of Q. However, the trajectories considered must be
subject to some bounds in order to avoid ill-conditioning of
the control system. Hence, a region of space is defined by a
pair of uniform bounds on the matrix Q, [6]

λmin(Q) < {λi(Q)} < λmax(Q). (36)
For the case of nonlinear curves, the time derivative of p̄i

can be written as

˙̄pi = −πuvt +
∂σ(τξ)

∂τ
u0u

T
vt, (37)

where τξ = −u
T (li0 − ξ). The partial derivative ∂σ(τξ)

∂τ
is

unknown since the position of the aircraft relatively to the
lines is unknown.

Using (37) to compute ˙̄
Hi and consequently ˙̄

hi, it follows
that

˙̄
δ = Qsk (u) (I −

∂σ(τξ)

∂τ
u0u

T )vt. (38)

A comparison between (38) and (34) highlights the fact that δ̄
can be interpreted as a generalization of δ, since (38) reduces
to (34) when the lines are straight, or, equivalently, when
∂σ(τξ)

∂τ
= 0. In view of this result, we proceed with the design

of a control law for the general case of nonlinear curves,
which is also applicable to straight lines.

Let v̂w be an estimate of vw × u, therefore, ṽw = vw ×
u− v̂w. Choose the following dynamics for v̂w

˙̂vw = Pπuuw (39)
where uw acts as the innovation of the wind estimator and

P = ε
�
V

�
1− �v̂w�2

ε�2V 2

�
I − v̂wv̂w

T

ε�2V 2

�
, ε

� ∈
�
1 + ε

2
, 1

�
.

(40)
Choosing the innovation term of the wind estimate, uw, as
uw = −k2δ̄ with k2 > 0 and given that the error dynamics
(38) has no actuation input, let vd be the desired velocity
defined as

vd = sk (u) (k1δ̄ − v̂w) + u

�
V 2 − �k1δ̄ − v̂w�2, (41)

and consider the new error term given by
δv = sk (u) (v − vd). (42)

Using (42), the error dynamics can be rewritten as

˙̄
δ = −k1Qδ̄ −Qṽw +Qδv −Qsk (u)

∂σ(τξ)

∂τ
u0u

T
vt (43)

and with (19)
δ̇v = − 1

mV
sk (u) sk (v)ua + k1Qδv − k

2
1Qδ̄+

−k1sk (u)Qsk (u)
∂σ(τξ)

∂τ
u0u

T
vt − k2sk (u)Pδ̄

(44)
The following theorem shows that if σ(τ) has a bounded
derivative the state (δ̄, δv, ṽw) is uniformly ultimately
bounded.

Theorem 1: Consider the dynamics given by (43) and (44)
and assume that |∂σ(τ)

∂τ
| ≤ c0, for all τ ∈ R, the initial

velocity satisfies v(0)Tu > 0, the desired position is the
middle of the curves, i.e.

q
∗

�q∗� = sk (u)u0. (45)

Then, with gains K, k1, k2 and k3 that satisfy

K <
2

k1
(46)

λmax(Q)

λmin(Q)
< k1 <

V

2max{�δ̄�}
(47)

k2 < k1
λmin(Q)− 2λmax(Q)

2ε�V
(48)

k3 >
k2

2
ε
�
V +

�
k
2
1

2
+

1

K
+ k1

�
λmax(Q) (49)

the control law
ua = −k3

mV

vTu
δv (50)

ensures uniform ultimate boundedness of the solution
(δ̄(t), δv(t)), with bound given by

b =
c0λmax(Q)V k1

ρ(k1λmin(Q)− 1)
, 0 < ρ < 1. (51)

Proof: Consider the Storage function given by

S1 = �δ̄�2 + 2

k1
ṽ
T

w
δ̄ +

4

k
2
1

�ṽw�2. (52)

Its derivative can by written as

Ṡ1 = 2
�
δ̄ + ṽw

k1

�T

Qδv +
2k2
k1

�
δ̄ + 4 ṽw

k1

�T

Pδ+

−2k1
�
δ̄ + ṽw

k1

�T

+

−2
�
δ̄ + ṽw

k1

�T

Qsk (u)
∂σ(τξ)

∂τ
u0u

T
vt

(53)

Applying the control law (50) to the first term of (44) yields

− 1

mV
δ
T

v
sk (v)ua = −k3�δv�2, (54)

hence, let S2 be a second Storage function given by

S2 =
K

2
�δv�2. (55)

The derivative is given by

Ṡ2 = −k3K�δv�2 +Kk
2
1δ

T

v
sk (u)Q

�
δ̄ + ṽw

k1

�
+

−Kk1δ
T

v
sk (u)Qδv −Kk2δ

T

v
sk (u)Pδ̄+

+Kk1δ
T

v
sk (u)Qsk (u)

∂σ(τξ)
∂τ

u0u
T
vt

(56)



Now consider a Lyapunov function given by L = S1 + S2.
Applying the Cauchy-Swartz inequality, the derivative of L
can be upper bounded by

L̇ ≤
�
δ̄ + ṽw

k1

�T �
−k1Q+ 2k2

k1
P+Q

�
1 + Kk1

2

���
δ̄ + ṽw

k1

�

+δ
T

v

�
−k3KI + Kk2

2 P+
�

Kk
2
1

2 + 1−Kk1

�
Q

�
δv

−k2δ̄
TPδ̄

�
1
k1

− K

2

�
+

+
�
Kk1�δv�+ 2�δ̄�+ 2�ṽw�

k1

�
λmax(Q)c0(1 + ε)V

(57)
Therefore the system is uniformly ultimately bounded pro-
vided that the gains K, k1, k2 and k3 satisfy (46), (47) , (48)
and (49).

It remains to be proven that v(t)Tu > 0 for all t > t0.
Consider the following storage function

S = V − v
T
u =

1

2V
�v − V u�2. (58)

The derivative is given by

Ṡ = − k3

vTu
(V + v

T
u)S +

k1k3

vTu
(v − V u)T sk (u) δ̄ (59)

and can be upper bounded by

Ṡ ≤ − k3

vTu
�v − V u�

�
1

2V
(V + v

T
u)�v − V u� − k1�δ̄�

�

(60)
which is negative definite as long as k

2
1�δ̄�2 ≤ V

2

2 which
falls onto the conditions of the proposed theorem.

A. Horizontal alignment
Although the proposed controlled only guarantees that the

error is ultimately bounded, it is possible to prove that the
error in the lateral direction converges to zero exponentially.
The horizontal alignment error is given by

δ2 = πq∗ δ̄ = πq∗

� H̄i

�H̄i�
. (61)

Assuming that q∗ satisfies (45), δ2 can also be expressed as

δ2 = −u0u
T

0

� H̄i

�H̄i�
. (62)

The following lemma establishes a relation between
�

H̄i

�H̄i�
and

�
H̄i and shows that we can use a new representation

for the horizontal alignment error given by

φ =
1

n
u
T

0

�
H̄i. (63)

Lemma 1: Assume that q(t)T q∗ > 0 for all t > t0 and let




θ =

u
T

0

� H̄i

�H̄i�
φ

, for φ �= 0

θ = n
2

�
H̄i

, for φ = 0
(64)

then, δ2 = −φθu0, θ > 0 and φ = 0 ⇔ δ2 = 0.
Proof: Consider the case where we have two parallel

lines, as shown in Fig. 6 Notice that uT

0 H̄i = u
T

1 πup̄i and
consider, from now on, the abuse of notation

pi = πup̄i (65)
Hence we want to prove that

�
u
T

1
pi

�pi�
= φ

�
u
T

1 pi, φ > 0 (66)

u1u

u0

b

c

Fig. 6. Reference frames.

Firstly, consider the case where
�

u
T

1 pi = 0 ⇔
�

u
T

1
pi

�pi�
= 0 (67)

this is the case in Fig. 6, where the camera is in the center
of the lines. It is simple to verify that

�
p1 = bu0 − c

2u1

p2 = bu0 +
c

2u1
(68)

and �p1� = �p2�, and consequently
1

�p1�
�

u
T

1 pi = θ

�
u
T

1 p1 ⇒ θ =
1

�p1�
=

1

�p2�
> 0.

(69)
Now, consider the case where

�
u
T

1 pi �= 0. For this case it
is possible to write

θ =

�
u
T

1
pi

�pi��
u
T

1 pi
(70)

and it remains to be proven that θ > 0. Consider the case
where

�
u
T

1 pi > 0, then necessarily we have

u
T

1 p1 > −u
T

1 p2 ⇔ u
T

1 p1 = − c

2
+ ε, ε > 0 (71)

u
T

1 p2 =
c

2
+ ε (72)

From the image it is easy to verify that c = −2uT

1 p1 when
the camera is in the middle of the two lines, hence

u
T

1 p1

�p1�
=

− c

2 + ε

b2 +
�
− c

2 + ε
�2 (73)

u
T

1 p2

�p2�
=

c

2 + ε

b2 +
�
c

2 + ε
�2 (74)

The necessary condition can be written as
�
u
T

1 p1

�p1�

�2

<

�
u
T

1 p2

�p2�

�2

⇔ (75)

⇔
�
− c

2 + ε
�2

b2 +
�
c

2 − ε
�2 <

�
c

2 + ε
�2

b2 +
�
c

2 + ε
�2 ⇒ (76)

⇒ ε > 0 ∧ b �= 0 (77)
The resulting condition b = 0 is not an issue, since the
restrictions defined on matrix Q to avoid ill-conditioning of
the control synthesis, require the camera to be above the lines
by some distance greater than zero. Analogously, for the case�

u
T

1 pi < 0, we can follow the same line-of-thought, and
the resulting condition is the same.



This result can be easily extended for the generic case
where n lines are considered, but the notation is much
heavier.

To show that φ converges to zero we can apply the
backstepping technique to obtain

φ̇ = −k4φ+ φv (78)
where φv = u

T

0 sk (u) v+ k4φ. The derivative of φv is given
by

φ̇v = u
T

0 sk (u) sk (v)ua − k
2
4φ+ k4φv. (79)

Using the control law for ua defined in Theorem 1, and
noting that

u
T

0 sk (u) sk (v)ua = −k3

�
u
T

0 sk (u) v − θk1φ
�

(80)
we can write

φ̇v = −(k3(k1θ − k4) + k
2
4)φ− (k3 − k4)φv. (81)

Proposition 1: Consider the dynamics given by (78) and
(81). Then, there exist gains k3 and k4 such that origin of
the system is exponentially stable.
The proof of this proposition is based on the following
Lyapunov function

Vy =
k
2
4

2
�φ�2 + 1

2
�φv�2 (82)

whose derivative is given by

V̇y = −k
4
4�φ�2 +−k3 (k1θ − k4)φ

T

v
φ− (k3 − k4)�φv�2.

(83)
From Theorem 1, δ̄ is bounded and consequently δ2 and φ

are also bounded, hence θ is bounded. Therefore it can be
shown that there exist a set of gains that ensure that V̇y is
negative definite.

V. SIMULATION RESULTS

The IBVS control scheme described is simulated using
the UAV model described in Section II. The aircraft model
incorporates the nonlinear flight dynamics including aerody-
namic effects and saturation on control surfaces deflection
and thrust. Simulations have been undertaken resorting to
Simulink R�. The control scheme used is represented in
Figure 7. The camera simulator (see Figure 7) generates the

(x, y, z, R)











(V,α,β, R)

(FT , δe, δa, δr)

(V,α,β, µ, γ,χ,Ω)

(αd
, 0, µd)

Image

Fig. 7. Simulation scheme.

image seen by the airplane’s camera at a fixed frequency
of 20 frames per second. Every time that each new frame is

generated, the IBVS controller is triggered and the algorithm
is applied.

In the simulations presented, the airplane is set to follow
a pair of catenary lines in the presence of a constant wind
disturbance.

The lines are aligned with the x-axis of the inertial
coordinate frame {I} at an average height of 10 meters above
the ground. Figures 8, 9 and 10 show the results obtained
with k1 = 1 and k2 = 0.01. The desired velocity that the
inner-loop maintains is the nominal velocity for the aircraft’s
model presented, 9.11 ms−1. The wind intensity throughout
the simulations is of 1 ms−1 which is more than 10 % of
the relative airspeed velocity.

Figure 11 shows the 3-D path described by the aircraft
with the representation of the curves that are being followed.
The results show that the algorithm presented suits the
application proposed. After an initial transient, the position
error converges to zero in the horizontal direction and is
bounded in the vertical direction. As discussed in Section IV,
the trajectory described by the vehicle reflects the averaging
effect of the IBVS guidance controller, which is acting as
a first order filter on the curvature of the lines given by
|∂σ(τξ)

∂τ
|. As illustrated in Figure 12, reducing the curvature’s

variation allows for considerable a improvement in position
tracking.
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Fig. 8. Aircraft’s position (x, y, |z|).

VI. CONCLUDING REMARKS

This paper proposed a nonlinear IBVS controller scheme
for fixed-wing aircraft, without direct measurement of the
aircraft position. The proposed controller allows the UAV to
follow a set of parallel non-straight lines in 3-D space. The
algorithm presented has been theoretically proved and tested
in simulation with a nonlinear model of an UAV. Results
show that the control approach is suitable for the task and is
robust to wind gust.

Future work includes image treatment in the simulation
architecture, using images from a flight simulator such as
FlightGear R�. Also simulations with other types of wind gust
models, such as Dryden spectrum are planed. The inclusion
of a pan & tilt camera to ensure that the target surface is
always visible is also one of the goals for future work.
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