
1

Predicting visual stimuli from self-induced actions:
an adaptive model of a corollary discharge circuit

Jonas Ruesch, Ricardo Ferreira, Alexandre Bernardino

Abstract—Neural circuits which route motor activity to sensory
structures play a fundamental role in perception. Their purpose
is to aid basic cognitive processes by integrating knowledge about
an organism’s actions and to predict the perceptual consequences
of those actions. This work develops a biologically inspired
model of a visual stimulus prediction circuit and proposes a
mathematical formulation for a computational implementation.
We consider an agent with a visual sensory area consisting
of an unknown rigid configuration of light-sensitive receptive
fields which move with respect to the environment according
to a given number of degrees of freedom. From the agent’s
perspective, every movement induces a initially unknown change
to the recorded stimulus. In line with evidence collected from
studies on ontogenetic development and the plasticity of neural
circuits, the proposed model adapts its structure with respect
to experienced stimuli collected during the execution of a set of
exploratory actions. We discuss the tendency of the proposed
model to organize such that the prediction function is built
using a particularly sparse feedforward network which requires
a minimum amount of wiring and computational operations.
We also observe a dualism between the organization of an
intermediate layer of the network and the concept of self-
similarity as introduced by [1].

Index Terms—visual stimulus prediction, reafference, corollary
discharge, plasticity, sparse neural networks, self-similarity.

I. I NTRODUCTION

The ability to learn and recognize causal relationships
between motor actions and sensory feedback is fundamental
to autonomous systems. In biological organisms, this mapping
is done by neural circuits which are continuously trained
and refined while the system interacts with its environment.
Human infants for example learn to predict sensory feedback
during playful interaction from the earliest period of their life
on [2]. The skills acquired during this phase of sensorimotor
learning allow them later to perceive the world in a spatially
and temporally coherent manner where sensory experiences
are interlaced over sequences of actions. As adults, we know
from our own experience that predicted sensory feedback
usually integrates with effectively experienced stimuli in such
a seamless manner that we are hardly aware of its ubiquitous
presence. For example, when we grasp an object, our senses
report a vast amount of visual and tactile feedback which we
– well accustomed to our body and environment – merely
use to acknowledge anticipated sensations. Rather disturbing
on the other hand, is the situation where expected feedback
is inaccurately predicted: anybody climbing a stair in the
dark expecting a nonexistent step is acquainted with that
experience [3].
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In Neuroscience, studies carried out with a great number
of different species showed that there is strong evidence to
believe that neural pathways which route motor commands
to sensory structures – also called corollary discharge circuits
– are fundamental to nervous systems of all levels of com-
plexity [4], [5]. In particular, the prediction of sensory stimuli
plays an important role in early sensorimotor processing and
is active much before we consciously execute a movement
to grasp an object or climb a stair. In visual perception for
example, a neural circuit discussed further in Sect. II, actively
predicts changes in visual stimuli when we move our eyes.

In this work we develop an adaptive model of a corollary
discharge circuit which learns to predict visual stimuli based
on self-initiated displacement actions. The model consists of
a layer of corollary discharge neurons (CDNs) integrating
input from a visual motor area projecting to a region which
processes visual sensory signals. A learning process is pro-
posed, capable of minimizing the prediction error based on
the adaptation of the spatial layout of corollary discharge
neurons. Observing the resulting configurations of this model,
we discuss that the introduced layer of corollary discharge
neurons tends to cover the motor space according to the given
(but unknown) topology of the recording visual sensor. We
note that such an organization leads to a particularly simple
prediction model able to predict a visual stimulus with less
computational operations and physical connections.

A. Related Work

In robotics and artificial intelligence, the learning of sensori-
motor relationships traditionally focuses on tuning a system’s
parameters such that sensory input can be translated into a
motor action appropriate for a task at hand [6]. This typically
involves learning a generally nonlinear coordinate transforma-
tion from a sensor related reference frame to motor space [7].
In this sense, work in visual sensorimotor learning often
concentrates on the learning of oculomotor actions required
to center a target stimulus on the visual sensor, or on how to
translate visual signals into coordinated eye-hand movements
for reaching [8], [9]. A recent review on sensorimotor learning
focusing more in depth on mappings in the opposite direction
– i.e. forward models like the one proposed in this work – can
be found in [10].

In developmental robotics, prediction of sensory feedback
has been previously addressed for example in work described
in [11]. There, a general concept referred to asexpected
perceptionis advocated. Related, in [12] an implementation
of predictive visuomotor coordination for visual trackingof a
swinging pendulum is presented. By tuning the parameters of
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a predefined motion model, a binocular visual system learns
to follow and predict the sinusoidal movement of a pendulum.

Directly modeled after the same biological prototype we
consider in this work, Quaia et al. propose in [13] a model
describing a remapping process which can keep track of the
location of saccade targets in eye-centered coordinates. The
model is inspired by results obtained from recordings in the
SC-MD-FEF pathway reviewed in Sect. II-B and aims at
explaining observations made during a double saccade (a.k.a.
double-step task in the literature).

In a broader context, [14] analyses the causal structure
present in the information flow induced by sensorimotor
activity using information theoretic measures. Their results
essentially confirm that the characteristics of the generated
signals have strong ties to spatiotemporal relationships defined
by the physical embodiment and the movement strategies exe-
cuted by the system under consideration. Based on this insight,
it is concluded that a tight coupling between physical structure
behavior and neural information processing is essential for
embodied systems.

Work on explicitly deducing the topology of unknown visual
sensor layouts has been described in [15]. There, an unknown
sensoritopic map of a visual sensor is reconstructed using an
entropy maximization method relying on information distance
measures between sensor elements. Furthermore, in a second
part of the work, a method to deduce sensorimotor laws is
proposed. The approach relies on a second learning stage
where the sensor topology learned in the first step is known
and optical flow computed according to the Lucas-Kanade
algorithm is used.

The authors of this article investigated in previous work
the structure of linear stimulus prediction models for visual
sensors composed of an unknown distribution of light sensitive
receptors. We found that the pairing of a particular sensor
topology and sensor actuation strategy has a profound impact
on the complexity of the prediction operator [16]. This means,
the prediction of visual stimuli can become computationally
less complex when combining a sensor topology with a
suitable action space or vice versa.

B. Contribution

We formulate an adaptive computational model of a visual
stimulus prediction circuit primarily inspired by a well studied
corollary discharge pathway found in primates. The model is
developed from a representation which has a direct translation
to a physical implementation of a signal transmitting circuit.
The versatility of the model is demonstrated by training it
to correctly predict future visual stimuli from visuomotor
commands by minimizing the prediction error for a set of
explorative motor actions and stimulus samples. We show that
the model is able to learn a continuous prediction function
covering the given motor space, and that the proposed opti-
mization discovers configurations which are particularly easy
to construct in a physical realization while at the same time
minimizing the prediction error and computational operations.

Referring to the three key topics in sensorimotor learning as
discussed in [10], this paper proposes a forward model (whatis

learned?), obtained by an error-based learning strategy (how is
it learned?), stored as the spatial layout of a number of corol-
lary discharge neurons and the strength of their feedforward
connections (how are sensorimotor relationships represented?).

Despite similar inspirations, our model differs in important
ways from the implementations presented e.g. in [11] and [12].
This is due to mainly two reasons. First, we believe it is
in general desirable to keep knowledge required to train
the agent or robot to a minimum. Secondly, we think it is
absolutely crucial for a truly adaptive system that it does
not require any externally designed model to solve a task
at hand. This constraint is violated if for example a priori
knowledge about the motion model of an observed object is
assumed. Thus, different from the approach described in [12],
the work presented in this paper attempts to implement the
prediction of sensory stimuli with meansintrinsic to the agent,
i.e. by exploiting the structure of the agent’s own sensorimotor
system. Consequently, learning to predict sensory feedback
involves the adaptation of the agent’s internal structure and not
merely the tuning of parameters of a model which is unrelated
to the agent’s embodiment. Compared to the model described
in [13], our model aims at predicting the complete sensory
feedback and does not focus on tracking a single target stimu-
lus. Furthermore, we focus on learning the spatial organization
of the prediction circuit which is not considered in [13]. On
the other hand, we do not address the dynamics of an action,
but consider a one-step ballistic movement which is elicited by
the selection of a particular location in a given action space.
This means, we consider actions to be signals denoting a
change in motor position with respect to the current state. The
biological analogy to this setup are motor spaces spanned by
neural motor layers using population coding to select particular
actions according to the sum of activated motor neurons. Such
motor layers exist for example in the superior colliculus (SC)
controlling visual saccades and body orientation as reviewed
in Sect. II-B. We also note, we do not intend to present
a model able to explain specific empirical data recorded in
neuroscientific experiments; but we propose a general model
– i.e. one based on a very limited set of assumptions - which
is able to acquire the functionality provided by the SC-MD-
FEF pathway as described in recent neuroscientific studies
reviewed in Sect. II-B, and which is adaptive in the sense of
neural plasticity as reviewed in Sect. II-C. In particular,this
means that the proposed model adapts its stimulus prediction
circuit such that a non-linear function is implemented capable
of predicting visual stimuli for any action in the given action
space. This function is optimized by observing visual stimuli
experienced before and after executing actions defined through
a set of randomly chosen action signals covering the given
action space in the sense of an agent exploring its sensorimotor
mapping by executing available motor actions and observing
the resulting stimulus after taking the action.

Following ideas presented in [14], the adaptation process
of the proposed model discovers and exploits spatiotemporal
causalities induced by sensorimotor activities in order toshape
the organization of the predictive circuit according to thegiven
sensor layout and action space. In this way, the mapping
of sensor and motor spaces is achieved in a topologically
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coherent manner. As we will see, this means the given but
completely unknown topology of the visual area influences
the organization of the corollary discharge layer on the motor
side. Such an adaptation procedure is partly related to [15],
where the previously unknown topology of a visual sensor is
deduced. Though, our methodology differs from [15] insofar
as in our approach the learning of sensorimotor laws and the
discovery of spatial relationships take place conjointly in one
step, guided solely by the minimization of the prediction error.

The structure of this paper is organized as follows. To give
an overview of forward models and their importance in living
organisms, we first review in the next section a number of
examples of stimulus prediction in nature. In particular, we
discuss in Sect. II-B the corollary discharge circuit whichwe
consider the closest biological prototype to the model proposed
in this work. This circuit, found in primates, is believed to
be responsible for the prediction of visual stimuli based on
visuomotor commands. It leads from the motor layers of the
superior colliculus (SC) to the frontal eye field (FEF, a visual
sensory area in the frontal cortex). In Sect. II-C, a brief review
of neural plasticity and ontogenetic adaptivity in the superior
colliculus (SC) – the motor side of the previously discussed
circuit – is presented. Plasticity in the SC is of major relevance
to this work, as its motor layers represent the biological
equivalent to the motor space from which corollary discharge
neurons as proposed in this work integrate input. Based on
the reviewed material, we deduce a graphical interpretation of
the discussed circuit. Subsequently in Sect. III, we formulate
a mathematical model of the introduced network architecture.
Analogously to the biological prototype, this formulationlinks
the action space of the considered neural motor layer (in the
SC) to a visual sensory area (the FEF) and does not include
any motor plant present between the neural motor layers and
peripheral actuators, e.g. the pathway between SC and the
oculomotor plant.

The proposed model features two important properties: 1) it
is based on a reduced set of initial assumptions which allows
us to consider given but unknown sensor topologies and action
spaces, and 2) it is able to learn, thus, the circuit can adaptto
different sensor topologies and sensor movement strategies. In
Sect. V, we demonstrate the learning process for two different
sensor topologies and action spaces. With a regular grid-like
layout we address stimulus prediction for sensor configurations
commonly found in artificial image sensors, e.g. CCD sensors
available off-the-shelf. A non-uniform fovea-inspired layout
serves to investigate the organization of the modeled circuit
for sensors as found in animals relying on binocular vision.
The obtained results are discussed in Sect. VI. We observe two
interesting and interrelated properties: the circuit connecting
motor and sensor areas converges to a particularly sparse
configuration in terms of number of connections; and the
geometry of the circuit’s connection nodes shows strong self-
similarity properties.

II. STIMULUS PREDICTION IN L IVING ORGANISMS

Research targeted at corollary discharge circuits became
especially popular during the last century when thereaffer-

ence principlewas proposed in [17].1 The proposed concept
provided an explanation for why sensory stimuli caused by
self-initiated movements(reafference)can be distinguished
from external signals(exafference). Von Holst and Mittelstaedt
suggested that a copy of a motor command, theefference copy
(EC), is used to distinguish the reafferent part of the signal
from the exafferent part. At the same time, similar conclusions
led Sperry coin the termcorollary discharge (CD) [18].
Nowadays, despite the conceptual similarity between EC and
CD, the commonly used terminology makes a slight difference
between the two. CD is in general used to refer to signals
which are transmitted along feedforward connections from the
motor pathway to the sensory processing stream. These circuits
can connect from any tier of the motor pathway to any other
tier in the sensory processing stream. EC on the other hand
is considered to be a motor signal affecting sensory channels
close to the effector / sensor periphery. Fig. 1 illustratesthe
different levels of feedforward connections. For further reading
on these circuits including this definition and an attempt to
classify them, see [4], [5].

A. General Mechanisms of Stimulus Prediction

On a first level, prediction of sensory feedback is often used
by an organism to distinguish between external signals (with
origin in the environment) and signals induced by self-initiated
actions. Male crickets for example filter their self-produced
bursts of sound by generating a neural signal which anticipates
the auditory stimulus [19], [20]. By doing so, the animal is able
to suppress its own chirping while focusing on the response of
female crickets. The same filtering strategy has been discov-
ered in a number of other species which elicit escape reactions
depending on whether a sensory signal is self-generated or
results from an event in the environment [21], [22].

On a higher level, stimulus prediction is believed to be
a basic mechanism used to achieve stable perception. For
any organism, the acquisition of a coherent percept of the
environment is not a passive one-step action but is the result
of a continuous process of sensorimotor interactions which
take place over a number of iterations. Rats for example
explore objects by tactile whisking; bats “see” the world by
listening to the echo of their self-produced ultrasonic waves,
and many animals relying on vision continuously have to
move their eyes and body to sweep their visual field over
an observed scene [23], [24]. The motor actions involved in
these exploration movements often induce drastic changes in
sensory stimuli which we can understand when trying to focus
for example on the image stream recorded by an abruptly
moved camera. The question arises, how is the brain able to
assemble a stable and coherent percept in light of such radical
stimulus changes? Neuroscientists suggest that the nervous
system takes advantage of knowing how motor actions affect
sensory stimuli in order to relate sensory input recorded during
action sequences. We will resume on this topic in particular
for visual perception in the next section.

1In neuroscientific terms,afferencecomprises all the sensory signals coming
from the periphery of the central nervous system. These signals are composed
of reafferent signals which are self-induced stimuli and exafferent signals
caused by changes in the environment.
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Last but not least, stimulus prediction is important for
fast action sequences from a dynamical point of view. If
a signal providing sensory feedback for a previous action
reaches the motor system onlyafter the next action has to
be initiated, then prediction is indispensable to plan accurate
motor commands. This is for example the case for a sequence
of fast eye movements (saccades). Studies with primates
showed that the brain actually relies on a predictive control
strategy: motor commands for subsequent saccades are issued
before proprioceptive or visual sensory feedback from the
previous movement is available to the motor system [25]–
[29]. Furthermore, considering that primates execute up to
three visual saccades per second during normal behavior, and
knowing that neurons in the frontal and parietal visual areas
of the primate brain record afferent signals with a latency of at
least 60 ms, relying on purely passive afferent signals would
mean that the cortical representation of the visual world is
inaccurate during almost 20% of the time [13], [30], [31].
Such delay and accuracy is likely to be compensated by neural
pathways like the one discussed in the next section.

B. The SC-MD-FEF Pathway

An important and well studied neural circuit for stimulus
prediction in higher vertebrates is the SC-MD-FEF pathway
in the primate cortex leading from the superior colliculus (SC)
via the medial dorsal nucleus (MD) to the frontal eye field
(FEF). This circuit is responsible for visual stimulus adaptation
during eye saccades and serves as the biological prototype for
our model.

At the beginning of the SC-MD-FEF pathway lies the
superior colliculus, a phylogenetically ancient structure in the
vertebrate midbrain known to be responsible for triggering
eye and head movements [32]. The outer layers of the SC
receive multi-modal somatosensory input, while the deeper
layers of the SC are concerned with attention orienting motor
movements. Optic input layers are retinotopically organized,
meaning the topological map of the recording sensor (the
retina) is still present in the SC. This topology is preserved
through several layers and as far as down to the deeper
motor areas. As a result, neural activity in the motor layers
of the SC code eye saccades in a gaze-related retinotopic
reference frame. This layout of movement fields in the SC was
first revealed in studies done by [33]. Using microstimulation
the spatial layout of the motor map was deduced in terms
of relative gaze orientation angles. In [34] further evidence
was collected which supports a population coding theory
for the motor layers in the SC which remains valid until
today. According to this theory, a blob-like activation of a
number of neurons in the motor layer triggers a saccade
to a target location which is encoded as the sum of all
active motor neurons where each neuron acts like a spatial
target vector weighted according to its activation.2 The motor
signals generated by this activation do not only command

2We note, to eventually move the eyes, retinotopic motor signals have
to undergo a non-trivial transformation while travelling from the SC to the
oculomotor nuclei [35]. However, in this work, we consider the remaining
motor pathway as given.

Fig. 1. Efference copy and corollary discharge circuits along the sensory
processing stream and motor pathway. Adapted from [4].

eye movements via the motor pathway, they also travel in
the opposite direction ascending the SC-MD-FEF pathway
through which they eventually reach the frontal eye field, see
Fig. 2.

In the frontal eye field, the corollary discharge signals from
the SC are integrated with visual signals which reach the
FEF through the main sensory processing stream. Typically,
the receptive field (RF) of a stimulus processing neuron is
spatially fixed with respect to the underlying input neurons.
But, neuroscientific studies showed that in several areas in
the visual system, there are neurons which feature so called
shifting receptive fields. In the FEF these neurons modify
their RFs influenced by the CD signal arriving from the SC-
MD-FEF pathway. That is, when a saccade is executed, the
RFs of these neurons are modulated to integrate visual signals
from the target location of the saccade. A shifted RF is then
called future field (FF). Consequently, the presaccadic FF
and the postsaccadic RF sample the same absolute location
in visual space. Comparison of presaccadic and postsaccadic
FEF neuron activation can therefore in principle be used for
both, stabilization purposes, and to distinguish exafferent from
reafferent stimuli (filtering). This view is held by a number
of authors: [36]–[38] hypothesize that neurons with shifting
RFs are able to perform comparative operations. The SC-MD-
FEF pathway in general has been extensively studied by [25],
[38]–[42]. Other areas in the visual system where neurons with
shifting RFs have been found include the lateral intraparietal
sulcus (LIP) [36], [43], [44] and extrastriate visual areaslike
V4 [45], [46].

Fig. 2. The SC-MD-FEF corollary discharge circuit connecting the Superior
Colliculus via the Medial Dorsal Nucleus with the Frontal Eye Field. Note
the inverted (feedforward) direction with respect to the motor pathway and
sensory processing stream.
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Fig. 3. Model of a visual corollary discharge circuit. A population of motor
neurons in the superior colliculus (SC) codes visual saccades in a retinotopic
reference frame (a). An intermediate layer of corollary discharge neurons
(b) collects activation from the underlying motor layer andprojects through
feedforward connections (c) to the frontal eye field (FEF), avisual area (d).
The corollary discharge signals modulate the activation ofvisual receptive
fields and their connections such as to predict a future visual stimulus resulting
from an activation in (a).

In Fig. 3, we introduce a graphical interpretation of the
topological and functional relationships reviewed here. Signals
travelling along the SC-MD-FEF pathway originate from a
peak of activation in a layer of SC motor neurons coding
eye movements in a retinotopic reference frame which is de-
noted (a) in Fig. 3. Along the corollary discharge pathway, this
activation is integrated by corollary discharge neurons (CDNs,
(b) in Fig. 3). The CDNs project in turn through feedforward
connections (c), to visual neurons and their connections (d).
We will resume on this interpretation when proposing the
computational model of the SC-MD-FEF circuit in the next
section.

C. Plasticity

In addition to highly dynamical prediction mechanisms, the
visual cortex is long known for its plasticity during early
life. The influential work described in [47], [48] showed that
ontogenetic development of the visual areas V1–V5 involves
a high degree of adaptivity. Based on single-unit recordings,
the formation of orientation sensitive cells in striate and
extrastriate cortices could be observed, clearly influenced by
experienced stimuli [49]. Since then, a great body of work
confirmed that plasticity is present along the entire visual
sensory processing stream, see e.g. [50]. Moreover, plasticity
also plays a major role in the superior colliculus. In [51]
it is for example described how visual and auditory maps
in the SC are topographically aligned during early life; and
recent work reported in [52] studied alterations of the visual

map in the SC due to lacking neuronal activity in the early
retina. It was found that without previous visual stimuli, the
projection layers in the SC are a coarse retinotopic map
given by morphogenetic development. Subsequently, during
growth, the spatially correlated firing of retinal ganglioncells
refines the organization of the retinotopic layers in the SC.
This organization is defective if natural neural activity due
to lacking or disturbed visual input is not present after birth.
Hence, like in the striate and extrastriate cortices, the fine tun-
ing of the SC clearly depends on sensorimotor contingencies
experienced while the animal interacts with its environment.
This form of reafference exploration is a commonly found
learning strategy in nature [53]. An equivalent methodology
termedmotor babblingcan be applied in artificial embodied
systems.

As described later, the CD circuit proposed in Fig. 3
incorporates plasticity by implementing a flexible network
topology: corollary discharge neurons and their receptivefields
(b) adapt in shape and position with respect to the underlying
SC motor layer while feedforward connections (c) can alter
their amount of discharge.

III. C OMPUTATIONAL MODEL

After compiling the graphical model shown in Fig. 3, we
unfold our interpretation in this section into a mathematical
model.

A. Observation and Action Model

We consider an agent with an arbitrary number of degrees
of freedom and a given rigid visual sensor consisting ofN

spatially distributed visual receptive fields. The receptive fields
are located on a surface which reflects a projection of the
environment given as a functionis : R

2 → R defining a
luminance value for each point on the surface when the agent
is in a certain states. Given such ais(x), we model visual
receptive fields by a functionfn like

on(is) =

∫

fn(x)is(x) dx, (1)

whereon(is) is the value observed by then-th receptive field
and the receptive field functionfn is modeled as a multivariate
Gaussian onis(x). We choose Gaussians as a possible set
of functions for fn because Gaussians are particularly well
suited to describe receptive field functions, both for biolog-
ical plausibility as well as for their amenable mathematical
properties [7].

After observing states, the agent can perform an action
which can changeis. Here we assume that an actiona is linear
and changesis in a predictable way toa(is). Appendix A
describes the constraints posed ona and how it relates to a
physical agent acting in a 3-dimensional world. Hence, after
taking actiona the agent observes

on (a(is)) =

∫

fn(x)a(is)(x) dx. (2)

For convenience we defineis+1 = a(is). In what follows,
we use the notationos andos+1 to denote the receptive field
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activation values before and after applying actiona:

os =











o1(is)
o2(is)

...
oN (is)











, os+1 =











o1(is+1)
o2(is+1)

...
oN (is+1)











. (3)

In some occasions we writea instead ofa when referring
to a particular location in the action space which induces a
transformationa as shown in Fig. 4. This notation directly
relates to a peak of activation in the motor layer as shown in
Fig. 3.

B. Prediction Model

The general form of stimulus prediction for the agent
described refers to functionspa : RN → R

N which, when
applied to the initially observed sensor valuesos are able to
approximate the sensor values obtained after applying actiona:

os+1 ≈ pa (os) . (4)

Considering a static world and a spatially rigid sensor layout,
we observe that the class of functions from whichpa should
be chosen can be restricted. In Appendix B, we provide an
argument that motivates a reduction of these functions to the
linear function set. The argument relies on the assumption that
the actions executed by the agent lead to perfectly predictable
changes ofi(x) on the sensor surface. Taking into account
linear prediction functions, we can rewrite Eq. 4 as

os+1 ≈ P(a)os. (5)

In summary, we make the following assumptions:
• Predictability: The agent only executes actions inducing

predictable transformationsa on i(x), i.e. of the form
is+1 = a(is). See appendix A for a full description.

• Linearity: We model prediction of observationsos+1 with
a linear prediction functionpa. This constrains the action
transformationa to be linear. As the example at the end of
appendix A shows, this is not as restrictive as it appears.

Fig. 4. Relation of locations in the action spacea and transformation
functionsa: the selection of locationsa1 or a2 induces the transformation
functions a1 or a2. The action space corresponds to the motor area (a) in
Fig. 3 where a locationa is coded by a peak of activation.

• Gaussian Receptive Fields: We model receptive field
functions with multivariate Gaussians.

Under these assumptions, we can now write the prediction
model following directly Fig. 3. We interpret feedforward
connections (gray) as manipulators which control the discharge
rate of receptive field connections (yellow). Grouping the
connections of a single corollary discharge neuron (CDN)
together, we can write the feedforward connection weights
of the j-th CDN as a matrixPj , where an entry(q, r)
specifies how much the observationoq(is) of receptive fieldq
contributes to the predicted observationor(is+1) of receptive
field r. Combining contributions of different corollary dis-
charge neurons according to the CDN layer (b) of Fig. 3, we
compose the eventually predicted sensor stimulus as a linear
combination

os+1 =





∑

j

λj(a)Pj



os, (6)

where λj(a) denotes the activation of a particular CDN
depending on the actiona coded by the underlying motor
neurons. Hence, matricesPj and their activation functions
λj together define the prediction functionP(a) defined over
the entire action space. Because the functionλj models the
receptive field of a CDNj on the underlying population
of motor neurons, we follow our previous assumption and
implement eachλj as a multivariate Gaussian like

λj(a) = e−
1
2 (a−µj)

⊤
Σ

−1
j

(a−µj), (7)

whereΣj is the covariance matrix andµj is the location of the
receptive field of CDNj. Measurements motivating a Gaussian
model for movement fields in the SC-MD-FEF pathway are
presented in [39]. Additionally to the argument for biological
plausibility given in this section, we will present in Sect.V
results which reveal the actual required shape for this receptive
field (see also Fig. 10).

In conclusion, the free parameters of our model arePj , Σj ,
and µj. These parameters define the plasticity of the mod-
eled corollary discharge circuit. WhilePj directly defines a
prediction operator based on feedforward connection weights,
Σj andµj code for topological plasticity in the CDN layer
allowing for changes in position and shape of each field with
respect to the underlying motor area. Note, a natural constraint
for the entries ofPj is to require them to be greater or equal to
zero. Negative values would not make sense in the described
scenario. Also note, given the equivalence of the biologically
inspired interpretation of the corollary discharge circuit as
described in the previous section and the mathematical model
proposed in this section, we use in the reminder of this article
the terms “feedforward connection activation” and “prediction
matrix entry” interchangeably as they have the same meaning
to us.

C. Plasticity

To learn the free parameters of our model, the agent
executes a number of actions to experience and cover a given
action space in the sense of reafference exploration or motor
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babbling described in II-C. During this exploration phase,
triplets (aa,oa

s ,o
a
s+1) consisting of before and after stimuli

for a given action are sampled. Given such stimulus samples,
we choose the adaptation process of the model to follow a
minimization on the prediction error like

(

P∗

j ,Σ
∗

j ,µ
∗

j

)

=

argmin
∑

a

∥

∥

∥

∑

j λj (a
a)Pj o

a
s − oa

s+1

∥

∥

∥

2

s.t. Pj ≥ 0

(8)

This optimization problem can be addressed by a number of
methods. For example, to find a (locally optimal) solution,
different gradient descent methods are applicable and readily
available in both batch and online versions. In a batch ver-
sion, the optimization is solved given a number of collected
(aa,oa

s ,o
a
s+1) triplets, while in the online case, sample pairs

are sequentially becoming available as experienced. A partic-
ular approach to solve Eq. 8 is presented in the next section.

IV. M ETHOD

To find P∗

j , Σ∗

j andµ∗

j , we first collect a batch of triplets
(aa,oa

s ,o
a
s+1) sampled from the considered motor space and

a given environment. Each triplet is acquired as follows: First,
the agent is placed at a randomly chosen position at which it
records stimulusoa

s . Then, a random actionaa is chosen and
the agent is displaced in a discrete step to a new position at
which it records the stimulusoa

s+1. The number of triplets used
to train a setup of the model as presented in Sect. V is 5000.
We then solve Eq. 8 with the Levenberg-Marquardt algorithm
which we found to have nice convergence properties while
being relatively simple to implement, see for example [54].
Based on empirical evidence presented in Sect. V-D, we reduce
Σj to a diagonal matrix thereby constraining the receptive field
functions of corollary discharge neuronsλj to be axis-aligned
Gaussians. The constraintPj ≥ 0 was implemented by adding
an exponential penalty function to the optimization. Whileit is
no problem to find a solution forP∗

j , Σ∗

j andµ∗

j with an online
method, convergence is much slower, we therefore choose here
the batch approach for practical reasons. However, we note
that under different circumstances an online implementation
might be preferable, e.g. for a purely biologically inspired
implementation in a robot with stronger memory constraints
and a longer exploration phase.

The experiments presented in Sect. V were initialized as
follows: The locations of CDN receptive fieldsµj were set
according to a uniform random distribution. The sizesΣj of
CDN receptive fields were set to a fixed value. The prediction
matrices (feedforward connections) were initialized to zero.
It is important to note that with a randomized initialization,
nothing prevents the adaptation process from converging to
a locally optimal solution. However, from a biological per-
spective the initialization of the CDN layer corresponds to
a topology generated by ontogenetic development (compare
Sect. II-C). Hence, we can in fact expect a coarse structure to
be present before ontogentic adaptation starts. We conjecture
here that an initialization provided by morphogenetic devel-
opment might be relatively close to the final solution.

In experiments which include actions leading to a dilation
of the stimulus, the action is encoded likeζ = log(z) where
z can be seen as a zoom factor whileζ can be interpreted
as the distance of the visual sensor to the observed scene.
For example, in a setup as introduced in the next section and
illustrated in Fig. 5, an actionζ means moving the sensor along
the vertical direction changing the distance to the observed
imagei0. With this choice, we obtain a situation-independent,
and at the same time energetically plausible representation
of an action dilating the stimulus. Situation independenceis
achieved in the sense that an action composition like+ζa−ζa
leaves the sensor stimuluso0 invariant. This means the agent’s
current state does not influence the effect of an actionζa.
Energetically plausible refers to the fact that in a physical
setup,ζ might directly relate to voltage or current applied
to an actuator moving the agent for example towards or away
from an observed scene. Thus, encoding dilation asζ = log(z)
appears reasonable, as moving away (−ζa) or towards (+ζa)
a scene requires the same amount of energy which would not
be reflected by the zoom factorz.

V. RESULTS

We will now consider a specific instance of the model
introduced above. An agent with four degrees of freedom and
a given sensor topology observes a2-dimensional environment
given as a grayscale imagei0(x). The agent can modify
the current observationos by executing actions from a 4-
dimensional action space spanned by translations (x- and y-
direction), rotations, and changes in distance toi0 (dilation).
The setup and the four available degrees of freedom are
illustrated in Fig. 5. The sensor can be seen as moving over
i0 which in Eq. 2 is expressed as moving fromis to is+1.

Note, the oculomotor system of primates and other animals
with binocular vision does not directly implement actions
leading to stimulus rotation and dilation. However, confirming
the versatility of the proposed model, we are going to present
in this section an experiment which also covers self-induced
stimulus rotation and dilation. Such actions are in particular
relevant for the development of artificial systems as the related
sensorimotor interaction patterns do play an important role
e.g. for visual processing during locomotion or for visual
perception during object manipulation.

In what follows, we explore two specific sensor layouts
as shown in Fig. 6. The foveal layout shown in Fig. 6(b)
was generated according to a logarithmic spiral. Retinotopic
layouts found in living organisms with binocular vision follow
closely such a density distribution up to a small area in
the very center which deviates from this law. In [55] an
approximation of this deviation is formulated, however we
do not consider this area. We investigate each layout under
a subspace of the full 4-dimensional action space. For the
grid layout, we choose to analyze the adaptation process of
the proposed model under translational actions (subsequently
calledgrid/translationsetup). The foveal layout is used to train
the model for rotation and dilation actions (subsequently called
fovea/rotation-dilationsetup). A more in depth discussion on
the choice of this pairing of sensor topologies and action
spaces is given in Sect. VI.
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Fig. 5. Model instantiation considered in Sect. V. The agent, a rigid
sensor with a given configuration of a number of receptive fields (yellow),
observes a2-dimensional worldi0(x). The action model is implemented
as sensor translation actions in x- and y-directions, rotation around the axis
perpendicular toi0, and changes in distance toi0.

A. Visualization

The results for the investigated topologies and action spaces
are summarized in Fig. 7 and Fig. 8. On the left of Fig. 7 and
Fig. 8 the motor layer of the respective setup is shown. For
the grid/translation setup shown in Fig. 7, the motor layer
covers the shown range of actions inducing horizontal and
vertical stimulus shifts. For thefovea/rotation-dilationsetup
shown in Fig. 8 the motor layer covers the actions leading
to stimulus rotations and dilations in a range as denoted.
Each point on the motor layer represents an action relative
to the sensor’s original position. Thus, in Fig. 7 each point
on the motor layer corresponds to a motor signal leading
to a shift in horizontal or vertical direction of the visual
stimulus. In Fig. 8 each point on the motor layer corresponds
to a motor signal triggering an action inducing a rotation or
dilation of the visual stimulus. Comparing with the graphical
model introduced in Sect. II-B, the selection of a particular
location in the motor layers shown on the left in Fig. 7 and
Fig. 8 is analogous to determining the resulting motor signal
for a population coded motor layer by summing active motor
neurons as illustrated in red in Fig. 3 layer (a); hence a point in
the shown motor layers is the analogon to a peak in activation
in the red layer in Fig. 3. Points in light gray depict the 5000
random actions taken while training the model. Black ellipses
depict the location and variance of the multivariate Gaussian
used to model the corollary discharge neurons (CDNs) on the
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Fig. 6. The two sensor topologies considered for the presented results. Circles
represent the standard deviation of the Gaussian receptivefields. Axis units
refer to the size of the2-dimensional world on which the sensor moves and
which extends over a range of[−1,+1] in x- and y-direction. Outlined areas
denote action sampling ranges. a) Uniform grid-like5 × 5 layout with 25
receptive fields. b) Foveal layout parametrized according to a growth spiral
with 12 branches each with3 receptive fields followingρ = 0.0063e0.33φ .

motor layer as described in Sect. III and by Eq. 7. Comparing
with Fig. 3 these ellipses represent the gray layer (b). The
center of each ellipse is determined by the correspondingµj

of the depicted CDN, the size and shape of each ellipse is
drawn according to the correspondingΣj . In both figures,
Fig 7 and Fig. 8, the sub-figures (a) illustrate the initial
configuration from which the optimization was started: CDN
locationsµj were initialized randomly and allΣj were set
to a default value. Sub-figures (b) illustrate CDNs in their
converged configuration asµ∗

j andΣ∗

j , optimized according
to Eq. 8. Note, we have to be aware of boundary effects
when inspecting the results of the motor layer organization.
This is due to the fact that we inevitably have to rely on a
finite range for action sampling. Thus, we expect to observe
some disturbances for corollary discharge neurons locatedat
the sampling border. Sub-figures on the right side of Fig. 7
and Fig. 8 show the activation of feedforward connections in
matrix format for nine selected CDNs. Comparing with the
graphical model of the proposed corollary discharge circuit as
shown in Fig. 3, each depicted matrix describes the activation
of feedforward connections linking one CDN in layer (b) to
the visual area (d). The activation of all connections coded
by a matrixPj is initially set to zero (black). In sub-figures
(b) of Fig 7 and Fig. 8, matricesPj are plotted after one
iteration of maximizing Eq. 8. Sub-figures (d) show the same
matrices but now in converged configurationP∗

j . As described
in Sect. III, an activation matrixPj is in mathematical terms
a linear prediction operator which can be used to predict a
future stimulusos+1, given the current stimulusos and an
actiona as shown in Eq. 6. Hence, the 9 prediction operators
shown in Fig. 7 (d) and Fig. 8 (d) are the prediction operators
valid for the 9 central nodes and their influence areas learned
asΣ∗

j andµ
∗

j in Fig. 7 (c) and Fig. 8 (c). Their values are
shown grayscale coded.

In summary, sub-figures (c) and (d) in Fig 7 and Fig. 8
illustrate the visual stimulus prediction function as learned
by the proposed model. Sub-figure (d) depicts the activation
of feedforward connections or the prediction operatorP∗

j

learned for each CDN. Sub-figure (c) illustrate the topological
organization and influence area of each CDN as defined byµ

∗

j

andΣ∗

j . The result is a smooth, non-linear prediction function
constructed as the combination of linear prediction operators
with overlapping influence areas.

How this model and the learned function can be used
to predict visual stimuli for any action contained in the
covered motor space is illustrated in Fig. 9. In Fig. 9 (a)
the converged configuration for thegrid/translation setup is
shown and a randomly selected motor action – not contained
in the set of actions used to train the model – is marked bold
red. Indices in this sub-figure enumerate corollary discharge
neurons. According to the previously learned CDN topology
shown in Fig. 9 (a), CDN24 and CDN21 are the corollary
discharge neurons most activated by the chosen action. Their
activations are given by Eq. 7 according to their receptive
fields yieldingλ24 = 0.71 and λ21 = 0.24 for the chosen
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action.3 Fig. 9 (b) shows the prediction operatorsP24 and
P21. They are linearly combined according to Eq. 6 using
λ24 andλ21 to obtain the prediction operator optimal for the
chosen action. In the upper half of Fig. 9 (c) an example input
stimulus is shown. Circles correspond to visual receptive fields
as shown in layer (d) in Fig. 3. The grayscale color-code of
each circle filling represents the recorded input stimulus for
each visual receptive field. At the bottom of Fig. 9 (c) the
predicted stimulus is shown as obtained from the given input
stimulus and the prediction operator assembled according to
the triggered action. Note, the action selected in sub-figure
(a) corresponds to a shift of the visual area by one visual
receptive field distance to the right and a bit more than
half a visual receptive field distance upwards. Therefore, the
predicted visual stimulus is shifted one visual receptive field
distance to the left and approximately half a visual receptive
field distance down. The downward shift results in a blur due
to the resolution of the visual system. Also note, indices in
sub-figures (b) and (c) are related and denote visual receptive
fields.

B. Results Grid Layout

When training the model using the grid layout under transla-
tional actions, we find that the motor layer converges to a con-
figuration where corollary discharge neurons are distributed in
the action space on a regular grid. This is visible in Fig. 8(a),
in particular for non-boundary CDNs. Notably, their locations
in action space coincide with the spacing of receptive fields
in the sensor layout. We note that the prediction matrix of the
CDN with index14 converged to zero and has no impact on
the final cost function. From our privileged perspective, wecan
see that CDN14 should have been placed somewhere between
CDN 16 and4 to improve the present solution. In the shown
case, the algorithm converged to a local optimal solution where
CDN 14 has no contribution and the area between CDN16
and4 is covered by slightly more outstretched neighbor CDN
receptive fields. This slightly increases the prediction error in
this neighborhood of the action space but has no severe impact
on the prediction ability.

In Fig. 8(b), the learned prediction matrices of nine selected
CDNs are shown. For a graphical interpretation of the shown
prediction matrices, read an entryq in row r of a prediction
matrix for action a as the activation of the receptive field
connection between receptive fieldq and r. For example,
CDN number15 located in the action space at(0, 0), not
surprisingly shows a single diagonal of non-zero entries. Other
Pj show non-zero entries with according offsets. For example
CDN number25 covers actions where the values of the first
column of visual receptive fields (indices1 to 5) contribute
to predict future values of the second column (indices6 to
10 in Fig. 6(a)). Interestingly, the entries for the unpredictable
receptive fields1 to 5 converged to be non-zero in the diagonal.
This is due to the fact that for natural images with low
spatial frequency and small sensor translation distances,the
future activation of a receptive field with unpredictable input

3In favour of a comprehensive illustration, we discard in this example the
contribution of all other less activated CDNs.

is best described by values of previously close receptive
fields. Despite the fact that we expectPj to be sparse in
general due to spatiotemporal relationships between visual
receptive fields, we find the converged configuration to feature
prediction matrices with an exceptionally small number of
non-zero entries. We will get back to this observation in more
detail in Sect. VI.

To address questions regarding the global optimal solution,
we ran a number of optimizations where each run started from
a different randomly initialized configuration. Measuringfor
each converged configuration the total prediction error over all
sampled actions, we are able to confirm with a high degree
of certainty that the globally optimal configuration is the one
where all 25 CDNs are arranged on a regular5 × 5 grid.
We were unable to find another configuration with a smaller
overall prediction error.

C. Results Foveal Layout

When training the model using the foveal layout with
actions leading to stimulus rotation and dilation, we find
that the CDN layer converges to a configuration where CDN
receptive fields are regularly distributed on concentric circles.
This configuration can be seen in Fig. 8(c), where the location
and size of CDNs is plotted with respect toζ as described in
Sect. IV (x-axis), and the angle of rotation (y-axis). Note,
as the vertical axis in Fig. 8 (a) and (c) denotes rotation,
vertical lines in these plots describe circular arcs, and vertically
aligned CDNs lie on concentric circles. Thus, as for the
grid layout, the organization of CDN receptive fields in the
action space happens to reflect the spatial layout of the visual
receptive fields in the sensor area. In Fig. 8(d) the learned
prediction matrices of nine selected CDNs are shown. As
for the grid layout, visual receptive fields which cannot be
predicted accurately happen to be approximated by their own
previous value (diagonal entries). And again, we observe that
all Pj are exceptionally sparse.

Unlike for the grid-like setup, the results presented for the
foveal setup represent what we suspect to be the global optimal
solution. This assumption is supported again by the fact that
no other solution found led to a smaller overall prediction
error. We therefore have strong reasons to believe that the
positioning of the CDNs as shown in Fig. 8(c) corresponds to
the globally optimal one.

D. Result Validation

From the above presented results it is not directly visible
why the organization of the motor layer converges to the
described configurations. To get a notion of the driving force
behind the organizing process, it is useful to first inspect the
underlying functionP(a). This is difficult asP(a) defines for
every action a matrixPa of sizeN ×N . Nonetheless, to get
an impression of what the trained model is actually approx-
imating, we visualize a particular entry of this matrix for a
number of random actions. In Fig. 10(a) we plot the selected
entry using prediction matricesPa learned by linear regression
from multiple samples for each action. For a comparison,
Fig. 10(b) shows the same matrix entry obtained from our
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(a) Initial configuration of the receptive fields of each corollary discharge
neuron on the motor space (iteration0).
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(b) Prediction matrices after one iteration of the Levenberg–Marquardt opti-
mization algorithm. Each matrix was initialized to zero at iteration0 (black).
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(c) Final configuration of the receptive fields of each corollary discharge neuron
(CDN) on the motor space (iteration 1000). Note, CDN 14 was suppressed
during the optimization, see also Sect V-B.
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(d) Prediction matrices after 1000 iterations of the Levenberg–Marquardt
optimization algorithm. The prediction matrices associated to the corollary
discharge neurons covering the center area of the motor space are shown.

Fig. 7. Optimization of the proposed model for a visual sensor area receiving input according to a retinotopic mapping asshown in Fig. 6(a) and a motor
space covering translational actions. Left: Representation of the visual motor space for translations where each point represents a shift relative to the sensor’s
original position. In grey, the sampled displacements usedto train the model (5000). In black, the receptive fields (visualized as ellipses) of each corollary
discharge neuron (Σ,µ). Right: Feedforward connection weights of nine corollarydischarge neurons displayed in the format of prediction matrices P as
described in Sect. III. Each matrixPj is shown as a table of size25× 25 with matrix entries color-coded in grayscale (black= 0, white= 1). Note, without
any specific assumptions, the receptive fields of corollary discharge neurons converged to locations in the motor space which correspond to translational
actions which match exact shifts of visual receptive fields,and which allow for a particularly small number of feedforward connections (i.e. particularly sparse
prediction operatorsPj ).

model
∑

j λj(a)Pj using the parameters learned in Sect. V-C.
Comparing the two plots, two things become apparent: first
of all, the values plotted in Fig. 10(a) resemble closely a
multivariate Gaussian and are therefore well approximated
by the linear interpolation shown in Fig. 10(b); secondly,
even though we sampled a selected prediction matrix entry
for the non-uniform sensor layout and the rotation-dilation
action space, the resulting distribution resembles an axis-
aligned Gaussian. The second observation justifies the previous
decision to restrictΣj to be diagonal matrices.

VI. D ISCUSSION

We have proposed an adaptive model of a visual corollary
discharge circuit (CDC) following state of the art functional
understanding of a particular visual CDC in the primate
brain. The mathematical formulation of the proposed model is
directly deduced from a biologically inspired representation,
where we translated neurons and neural feedforward connec-
tions to a weighted linear combination of prediction matrices.
In particular, we were interested in modelling the capability
of a CDC to adapt during ontogenetic development in order
to optimize the prediction of visual stimuli for previously
unknown sensor topologies and movement behaviors. Inspired
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(a) Initial configuration of the receptive fields of each corollary discharge
neuron on the motor space (iteration0).
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(b) Prediction matrices after one iteration of the Levenberg–Marquardt opti-
mization algorithm. Each matrix was initialized to zero at iteration0 (black).
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(c) Final configuration of the receptive fields of each corollary discharge neuron
on the motor space (iteration600).
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(d) Prediction matrices after600 iterations of the Levenberg–Marquardt
optimization algorithm. The prediction matrices associated to the corollary
discharge neurons covering the center area of the motor space are shown.

Fig. 8. Optimization of the proposed model for a visual sensor area receiving input according to a retinotopic mapping asshown in Fig. 6(b) and a motor
space covering rotational actions and dilation. Left: Representation of the visual motor space for rotations and dilations where each point represents a rotation
and change in distancez relative to the sensor’s original position. In grey, the sampled displacements used to train the model (5000). In black,the receptive
fields (visualized as ellipses) of each corollary dischargeneuron (Σ,µ). Right: Feedforward connection weights of nine corollarydischarge neurons displayed
in the format of prediction matricesP as described in Sect. III. Each matrixPj is shown as a table of size36 × 36 with matrix entries color-coded in
grayscale (black= 0, white = 1). Note, without any specific assumptions, the receptive fields of corollary discharge neurons converged to locations inthe
motor space which correspond to rotational actions and dilations which match exact shifts of visual receptive fields, and which allow for a particularly small
number of feedforward connections (i.e. particularly sparse prediction operatorsPj ).

by neuroscientific evidence of neural plasticity, we introduced
an adaptive intermediate layer of corollary discharge neurons
(CDNs) able to adjust to an unknown sensor layout and
movement behavior by changing location and size of their
receptive fields with respect to the underlying layer of motor
neurons. We presented results which demonstrate the resulting
adaptation process which is driven by the minimization of the
stimulus prediction error. Notably, we deliberately kept at all
time the layout of the sensor and the effects of executed actions
as a black box implementation of which we knew nothing
about. Considering a physical agent acting in a 3-dimensio-
nal world, the proposed model is applicable respecting the
constraint described in Appendix A. For a sensor following

the typical pinhole camera model, the imposed constraint is
fulfilled for example for a spatially fixed camera allowed to
rotate along all axes, or for a camera observing a planar
scene and moving such that it is always facing the plane. The
requirement is violated if a given action in combination with
the observed environment leads to motion parallax.

On the basis of the obtained results, we observed that
optimal configurations of the proposed model feature corollary
discharge neurons with very sparsely activated feedforward
connections, or in other words, have particularly sparse pre-
diction matrices associated. Hence, the optimization discovers
and takes advantage of locations in the action space where
visual stimulus prediction can be done with an especially
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(a) Motor space with a particular action marked red. Receptive fields of
corollary discharge neurons are shown according to the finalconfiguration
shown in Fig. 7.
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(b) Feedforward connections of
corollary discharge neurons24 and
21 (in the format of prediction
matricesP24 andP21).
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Predicted Stimulus

(c) Input stimulus (top), and pre-
dicted stimulus (bottom), where the
latter was obtained using a predic-
tion operatorP according to Eq. 6.

Fig. 9. Example usage of the obtained corollary discharge circuit as presented in Fig. 7: a) The agent selects an action inthe available motor space; the action
is marked red and corresponds to a shift of the visual area with a horizontal component to the right and a vertical component upwards. Indices enumerate
CDNs. b) Corollary discharge neurons (CDNs) are activated according to their receptive fields. For the action shown in red, the two CDNs with highest
contribution are24 and 21 with activationsλ24 = 0.71 and λ21 = 0.24 (according to Eq. 7). c) Using feedforward connectionsPj activated according
to Eq. 6, the future stimulus can be predicted from a given example stimulus. Note, the selected location in the motor space corresponds to a shift of the
visual area by one visual receptive field distance to the right and a bit more than half a visual receptive field distance upwards. Therefore, the predicted visual
stimulus is shifted one visual receptive field distance to the left and approximately half a visual receptive field distance down. The downward shift results in
a blur due to the resolution of the visual system. Note, indices in sub-figures (b) and (c) are related and denote visual receptive fields. In sub-figure (c), the
activation of visual receptive fields is color-coded in grayscale.

simple prediction model. Even though we expect the activation
of feedforward connections to be sparse in general due to
spatiotemporal constraints between visual receptive fields, the
number of active (non-zero) feedforward connections in the
found solutions is sparser than expected. Of course, actions
which fall in between such locations still require a more com-
plex prediction operator, however, with the proposed model,
appropriate prediction networks are accurately composed for
such locations by linearly interpolating the result of several
CDNs as described by Eq. 6. Inspecting Fig. 7 and Fig. 8, it
also becomes apparent that the organization of CDNs on the
motor space follows the discretization of the visual area. This
essentially means, the density distribution of receptive fields
in the visual area is projected onto the motor space, which,
according to the above stated observation, proves to be an
efficient mapping for a corollary discharge circuit.

The reason for the observed tendency towards solutions
with a sparser feedforward network can be understood starting
from observations made in Sect. V-D. As shown in Fig. 10(a),
the activation of a single entry of a linear prediction matrix
plotted over the action space resembles closely a multivariate
Gaussian. Therefore, to best approximate such an activation
function, a CDN with a Gaussian receptive field has to be
located at the center of this distribution adapting its receptive
field size according to the given shape of the activation area.
Configurations for which this can be best achieved for all
receptive field connections of the CDN’s prediction matrix

approximate best the actually required activation of recep-
tive field connections and are at the same time particularly
sparse. However, the existence of actions which allow for
such configurations is defined by a particular sensor/actions
pairing (SAP). In [16], we investigated the relationship be-
tween sensor topology, sensor movements and linear stimulus
predictors by presenting a measure which – given a particular
sensor layout and behavior – qualifies locations in the action
space according to the complexity of the prediction model
required at that location. The application of this measure to
the grid and foveal sensor layout under translation, rotation
and dilation showed that, while the SAP grid/translation and
fovea/rotation-dilation define a clear set of actions for which
particularly simple prediction models exist, the remaining
combinations, grid/rotation-dilation and fovea/translation, do
not define a similarly clear defined set of actions suitable for
simple prediction models. In the present work, we presented
results for SAPs which are known to define a set of actions
with particularly sparse prediction matrices. We observedthat
this choice facilitates a clear and unique organization of
the CDN layer. For other pairings, the adaptive organization
of the introduced model finds just as well a solution, but
optimal configurations are not as well defined as for the
chosen pairings. This means, for the grid/rotation-dilation and
the fovea/translation pairings we could not identify solutions
which we reproducibly and conclusively encountered to be
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globally optimal configurations.
In conclusion, particularly sparse CDCs have a number of

advantages. First of all, considering a physical implementation,
the feedforward network of a sparse CDC can be built with
a small number of neural connections. With respect to the
visualization of the model in Fig. 3 this means, a majority of
the feedforward connections (c) can be completely removed.
Furthermore – in a computational sense – the generation
of the predicted stimulus is facilitated because a smaller
number of operations is required due to the reduced number
of connections.

Apart from direct physiological and computational implica-
tions, a second characteristic of the obtained solutions was
observed. We find that the tendency of the CDN layer to
organize as a sparsely activated feedforward network has
parallels with a concept termedself-similarity introduced by
[1]. They showed in an inventive work the following: a
set of points randomly distributed on a disk converges to a
stable configuration with a highly regular structure if, i) the
points are conjointly transformed by rotations, dilationsand
translations applied according to a given probability distribu-
tion; and ii) when after each iteration each point is moved
towards transformed points lying closest. Interestingly,under
the introduced rules, certain action probability distributions
induce point distributions which resemble closely receptive
field distributions as found in foveal sensor layouts. The action
probability distributions which lead to such configurations are
composed of rotation and dilation actions uniformly distributed
over an arbitrary range, combined with translation actions
distributed over alimited range. For a visualization, the reader
might refer to Fig. 11 in [1]. With respect to our work, the
organization of such a set of visual receptors – representedas
simple points – can be seen in a duality with the adaptation
of the CDN layer. Receptors distributed on a disk are in
our situation spatially extended receptive fields of corollary
discharge neurons integrating input from the motor space.
Self-similarity, measured by Clippingdale and Wilson as the
average distance of transformed receptors to closest previous
receptors, is expressed in our case by the sparsity of prediction
matricesPj specifying how many previous receptors influence
a transformed receptor. The following listing summarizes
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Fig. 10. Activation of the receptive field connection(18, 18) in the foveal
layout plotted over the rotation-dilation action space. The left plot shows
P(18,18) , where for each locationP was explicitly computed by linear regres-
sion. The right plot showsP(18,18) approximated by

∑
j λj(a)Pj(18,18)

with parameters learned as shown in Fig. 8(c) and 8(d).Otherentries inP than
(18, 18) show similar activation distributions centered at different locations.

correspondences for the two scenarios:

Clippingdale Our work
receptors CDNs
receptor distances non-zeroP entries
actions are fixed topology of visual area fixed
finds opt. receptor conf. finds optimal actions

According to these relations, the duality between both situ-
ations can be sketched as follows: while Clippingdale and
Wilson consider a given set of actions and find a receptor
configuration which has optimal self-similarity in terms of
point distances, we consider a given sensor layout and find
transformation actions that transform this layout in such away
that the activation of transformed receptors can be predicted
using input from a minimum number of previous receptors.
Note, in our case we observe this tendency even though we
do not explicitly optimize for self-similarity.

In summary, the introduced model of a corollary discharge
circuit successfully learns to predict visual stimuli while at
the same time optimizes its topological structure as to increase
the sparsity of feedforward connections. Hence, the adaptation
process implicitly not only optimizes prediction ability of
the network but also discovers – if they exist – locations in
the given action space which allow for a particularly simple
prediction model with the given sensor layout. Applications
exploiting this relationship remain to be explored in future
work. For example, if we are interested in generating behaviors
supporting simplified corollary discharge signals, CDNs with
a particularly sparse feedforward network are good candidates
to compose corresponding action sequences. Or conversely,in
search for a good sensor/actions pairing, a good combination
might be found by tracing the presence of corollary discharge
neurons with a particularly sparse feedforward network.

APPENDIX A
RELATIONS BETWEENSTATES AND OBSERVATIONS

The introduced model of a corollary discharge circuit as-
sumes that actions can be modeled by Eq. 2. Here we revisit
this point and provide more detail as to how this model links
with real world agents.

When modeling agents one usually considers a state space
S describing not just the agent but the whole world. An agent
action is represented by a functionh : S → S which changes
this world state. In this work, the agent is allowed to observe
the world using a visual sensor which works in two steps.
First it is assumed that there is a surface onto which light is
projected represented as a functiong : S → I. HereI is a
function space where each elementi : R2 → R is a function
returning the projected intensity at each point on the surface.
As a second step, this surface has several receptive fields which
are able to integrate the projected intensities on a particular
area, each producing a stimulus to the agent. In the diagram
shown in Fig. 11, the space of these stimulus is calledO, and
is captured by the observation model presented in the text as
Eq. 1.

Considering the establishment of the proposed CD circuit,
a constraint is posed on the agent actionh, requiring that it
induces a transformationa : I → I. This means that the
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projection on the sensor surface after an actionh must be
perfectly reconstructable solely from the previous projection.
If one constrains the set of actions to have this property, then
for all agent purposes an action can be fully described as the
function a instead of considering the full agent state model
acted on by functionsh. Unfortunately this requirement is
too strict to satisfy exactly for most general applications. One
particular exception arising in biology is the considered case
of eye movement actions. In this case the surface onto which
the world is projected is a sphere and the eye movement rotates
the projection on the sphere.

This work focuses not on representinga but instead in
predicting the observed stimulus after an action is taken,
solely from the previously observed stimulus. Notice that the
existence ofa does not guarantee that the observed stimuli are
predictable. For this to happen, the action must be such thatthe
integrating receptive fields line up before and after the action is
taken, corresponding to a permutation of the observed stimulus
in line with the concept of self-similarity introduced by [1]. We
emphasize that it is this interrelation which we explore in this
work and which allows for a particularly sparse feedforward
network. The fact that the organization of such a network is
implicitly dependent on a well concerted pairing of sensor
topology and action space is consistent with observations
made for living organisms. Animals typically feature a highly
specific pairing of behavior and sensor structure which is
favorable from this point of view, see also [16].

The model presented in Sect. III-A also imposes thata be
linear for technical reasons. Note that sincea is actually an
operator acting from a function space to a function space, this
is not as limiting as it might seem at first glance. Consider the
examplea(i)(x) = as(x)i(ap(x)) whereas(x) : R2 → R and
ap(x) : R2 → R

2 are any linear or nonlinear functions. The
corresponding operatora is linear as can be quickly checked
for all x:

(αi1 + βi2)(x) = as(x)(αi1 + βi2)(ap(x))

= αas(x) i1(ap(x)) + βas(x) i2(ap(x))

= αa(i1)(x) + βa(i2)(x).

APPENDIX B
PROOF OFL INEARITY

Considering actions which lead to perfectly predictable
changes in observations, the argument for linearity is a direct
consequence of the world, action and sensor model. First note
that the observation function (1) is linear ini. Then, with
perfectly predictable observations, equation (4) is perfectly
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Fig. 11. Relationships and constraints between the state spaceS, the sensor
surfaceI, and the space of sensor stimuliO. Functionsh, a and p denote
action transitions. Functionsg ando describe howI is generated fromS and
sampled inO.

satisfied, meaning that each receptive field value satisfies

os+1 = pa(os)

⇐⇒
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Sincea andoi are linear, given any two imagesi1 andi2 and
any two scale factors,α andβ, the previous satisfies
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which, when equation (9) is replaced on the left hand side
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αpa(x) + βpa(y) = pa (αx+ βy) ,

proves linearity ofpa whenever the action is perfectly pre-
dictable.
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