
Self-Organization of Visual Sensor TopologiesBased on Spatiotemporal Cross-CorrelationJonas Ruesh, Riardo Ferreira, and Alexandre BernardinoInstituto Superior Ténio, 1049-001 Lisbon, Portugal,jruesh,riardo,alex�isr.ist.utl.ptAbstrat. In living organisms, the morphology of sensory organs and thebehavior of a sensor's host are strongly tied together. For visual organs, thisinterrelationship is heavily in�uened by the spatial topology of the sensorand how it is moved with respet to an organism's environment. Here wepresent a omputational approah to the organization of spatial layouts ofvisual sensors aording to given sensor-environment interation patterns.We propose that predition and spatiotemporal orrelation are key prini-ples for the development of visual sensors well-adapted to an agent's inter-ation with its environment. This proposition is �rst motivated by studyingthe interdependeny of morphology and behavior of a number of visualsystems in nature. Subsequently, we enode the harateristis observed inliving organisms by formulating an optimization problem whih maximizesthe average spatiotemporal orrelation between atual and predited stim-uli. We demonstrate that the proposed formulation leads to spatial self-or-ganization of visual reeptive �elds, and leads to di�erent sensor topologiesaording to di�erent sensor displaement patterns. The obtained resultsdemonstrate the explanatory power of our approah with respet to i) thedevelopment of spatially oherent light reeptive �elds on a visual sensorsurfae, and ii) the partiular topologial organization of reeptive �eldsdepending on sensorimotor ativity.Keywords: visual sensor topology, self-organization, sensorimotor oupling1 IntrodutionBy simply observing the ative behavior and visual organs of di�erent animalspeies, important hints an be obtained on how an organism onstruts visualperepts. Primates use a sophistiated oulomotor system to sequentially moveand stabilize their eyes with relation to di�erent target loations [1℄. Most air-borne insets on the other hand, have their eyes rigidly attahed to their bodyor head; instead of fousing on partiular target loations, these animals ana-lyze how the projetion of the environment translates on their sensors during�ight [2℄. In general, three interrelated aspets ontribute to how biologial vi-sion systems reord raw visual stimuli: i) the harateristis of the environmentin whih an animal is living, ii) the way a sensor is moved with respet to theenvironment, and iii) the physial and morphologial design of a visual organ.



In this work, we onsider i) to be a general environment and we investigate apossible priniple how ii) in�uenes iii).A loser look at the morphology of biologial visual sensors reveals profounddi�erenes between di�erent organisms. While all visual organs found in na-ture reord visual stimuli through a number of light sensitive reeptors � andhene always reord a spatially disretized stimulus � the spatial density distri-bution of visual reeptors varies greatly between speies. Studies measuring thedistribution of retinal ganglion ells in amera-type eyes, or the ommatidia dis-tribution in ompound eyes, suggest that reeptor distributions are diretly tiedto an animal's behavior and environment. Most prominently, primates and othermammalians with binoular vision feature a fovea � a small, high-resolution areain the enter of their retina � and a radially lose to logarithmially dereasingreeptor density. In [3℄, it is pointed out that suh a log-polar-like reeptor dis-tribution orresponds to a mapping funtion whih transforms image rotationsand dilations (zoom) into simple oordinate shifts in the log-polar oordinatesystem. Thus, if an eye featuring suh a reeptor distribution is fousing on anobjet and that objet is rotated or saled, the projeted image is merely shiftedalong the log-polar oordinate axes. It was argued that this property results inan advantage for the human visual ortex, as it ould ahieve image invarianefor these transformations at a low omputational ost by simply shifting theimage. Similar to ganglion ell distributions found in amera-type eyes, the den-sity of ommatidia in arthropods varies signi�antly over the spatial extensionof their ompound eye. Many �ying insets for example have about a two timeshigher spatial resolution in the frontal visual eye �eld than ompared to thelateral part [4℄. A possible advantage of suh a distribution is disussed in [5℄.There, it is demonstrated that high density of light reording reeptors in frontaland audal regions, and dereasing density in lateral regions, leads to a uniformtranslation of projeted stimuli on the eye during straight loomotion and anfailitate visual distane estimation.Motivated by observations related to the relationship of behavior and mor-phology in natural visual systems, we explore in this paper the hypothesis thatvisual organs develop suh as to simplify neural iruitry for prediting on av-erage experiened stimulus �ow patterns. We �rst propose a riterion basedon spatiotemporal ross-orrelation to evaluate suh a reeptor-to-reeptor �owproperty, and we subsequently use the introdued riterion as a ost funtion tosynthesize visual sensor topologies on a given sensor surfae using a given setof stimulus transformations. The obtained results suggest that the introduedriterion is able to apture important properties of the relationship between thespatial layout of a visual sensor and the way the sensor is moved with respetto the environment.1.1 Related WorkIn an inventive work [6℄, Clippingdale and Wilson present a numerial experi-ment motivated by the spatial organization of visual sensors in nature. Using anabstrat setup where visual reeptors are represented as a set of points on a disk,



an appealing priniple is motivated on how to apture the relationship betweenform and behavior. In line with our observations for natural visual systems, thebasi idea is a rule apable of generating sensor layouts whih simplify stimulustransformation patterns under a given behavior: assuming the given points aretransformed by a set of sensor displaement ations, the relative position of eahpoint is updated suh as to redue the overall motion-predition error betweenpoints. Interestingly, this update rule leads to foveal point distributions whenonsidering stimulus transformations plausible e.g. for the mammalian visualsystem. Furthermore, using di�erent ation probability distributions for hori-zontal and vertial translations, ellipti (visual streak-like) point layouts an beobtained. For an illustration see Figure 10 in [6℄. Formally, Clippingdale andWilson proved the following: a set of points randomly distributed on a diskonverges to a stable on�guration given: i) points are onjointly transformedby rotations, dilations and translations whih are applied aording to a givenprobability distribution; and ii) after a transformation ation is applied, eahpoint is moved towards transformed points whih are lying losest to the pointunder onsideration. It was shown, the �nal point distribution is the on�gura-tion where eah point has on average the smallest possible distane to the nextlosest transformed point under the given ation probability distribution. Thisapproah is based on two important assumptions: visual reeptors have no spa-tial extension (i.e. are points), and the error between original and transformedreeptors an be measured as an Eulidean distane between spatial loations ofreeptors. The �rst assumption is learly an abstration of a real visual sensor.The seond assumption an be further divided into two requirements: the spatiallayout of the visual sensor is known to the algorithm, and the predition errorof visual stimuli is diretly related to spatial distane. While it is arguable ifan agent an have omplete knowledge of the spatial layout of its sensor, theassumption that the predition error is equivalent to spatial distane is unlikelyto hold for spatially extended visual reeptors of di�erent sizes.Related to the question of how the distane measure underlying the opti-mization proposed by Clippingdale and Wilson ould be translated to real visualsensors, the authors of this paper investigated in previous work how the interrela-tionship between form and behavior ould be quanti�ed for sensors with spatiallyextended reeptors and unknown topologies [7℄. Based on the omplexity of themodel required to predit stimulus hanges, a measure was introdued whihevaluates the oupling between sensor displaements and sensor topologies. Ithas been shown that a given sensor topology impliitly de�nes ations for whihfuture sensory stimuli an be predited with less parameters. In this work weuse a similar strategy to optimize the oupling between a sensor's topology andexeuted motor ations.1.2 ContributionWe develop a omputational method for synthesizing visual sensor topologiesaording to on average experiened stimulus transformations. To establish a



relation between a sensor's spatial layout and experiened stimulus transforma-tions, we adopt the basi priniple proposed in [6℄. Though, instead of onsider-ing point-like sensor elements, we simulate a realisti visual sensor whih reordsstimuli through reeptors where eah reeptor integrates luminane aording toa reeptive �eld. Di�erent from [6℄, we impose that the algorithm has no a-ess to information about the topologial layout of the sensor being organized.This means, the organization of the sensor layout has to be ahieved solely byobserving the ativation of an orderless array of visual reeptors. Hene, theimplementation of a rule similar to the one proposed in [6℄ beomes onsider-ably more hallenging. In partiular, the Eulidean distane measure betweentransformed and original points has to be replaed with a measure related tohow ativation is transported between visual reeptors when the reorded stim-ulus hanges. We will address this issue by introduing a riterion based onspatiotemporal ross-orrelation of reeptor ativation. This riterion allows usthen to implement an optimization whih organizes the layout of visual reep-tors depending on sensorimotor ativity. At the same time, we also required thealgorithm to �nd a suitable shape for the reeptive �elds (RFs) of the spatiallyextended reeptors. We show that spatially oherent RFs an evolve driven onlyby the low spatial frequeny of natural images. By rewarding spatial orrela-tion within RFs, smoothly overlapping lusters organize on the sensor surfaewithout any further onstraint on the spatial shape of a reeptor's integrationarea. In pratie, reeptors an be initialized with a randomly hosen luminaneintegration funtion and eventually develop into ompat reeptive �elds.The following steps summarize the approah followed in this paper:1. A system with a given sensor surfae, a given motor spae and a prede�nednumber of visual reeptive �elds is onsidered.2. Eah visual reeptive �eld is desribed as a disretized, randomly initializedfuntion aording to whih visual input is integrated from the sensor surfae.3. By maximizing spatial orrelation of visual stimuli reorded through reep-tive �elds, the development of spatially oherent visual reeptors is ahieved.4. By extending spatial orrelation to spatiotemporal orrelation between visualstimuli of transformed and original reeptors, sensor topologies dependenton the agent's motor ativity are developed.2 ApproahAn arti�ial agent with a given sensor surfae I ⊂ R
2 and a given number ofmotion degrees of freedom is onsidered. The sensor surfae reords a proje-tion of the environment given as a funtion is : I → R de�ning a luminanevalue for eah point on the surfae when the agent is in state s. For numerialpurposes, i is sampled at N spatial loations xn as a disrete graysale image

i = [i(x1) i(x2) . . . i(xN )]⊤. The topology of the visual sensor is omposed of Mvisual reeptors, where M is a parameter of the proposed method and is muhsmaller than N . Eah visual reeptor m integrates a visual stimulus througha reeptive �eld (RF). The RF is desribed as a vetor of weights rm de�ning



how muh eah entry in i ontributes to reeptor m. Note that rm is allowedto enode any reeptive �eld funtion and no spatial oherene is assumed. Byassembling weight vetors rm for all M visual reeptors as the rows of a matrix
R, a stimulus reorded by the agent in state s an be written as Ris.After observing state s, the agent an hoose to take an ation a from a dis-rete set of ations A representative of the agent's behavior. This ation induesa hange in the observed graysale image from i

−
s to i

+
s ; here we assume thatthis hange is preditable.1 As the agent explores its environment, we olletbefore and after images for eah partiular ation a in the matries (I−a , I

+
a ),where samples are arranged in olumns. For the whole set of ations A, thesematries are olleted in a dataset D = {(I−a , I+a ) , a ∈ A}.With the introdued terminology, we now proeed to develop an optimizationproblem whih evolves the sensor topology R suh that the previously desribedproperties are indued: i) spatially oherent reeptive �elds are formed, and ii)the topologial layout of the sensor re�ets stimulus translations indued by thebehavior of the host. We propose to �nd an optimal R as the solution to anoptimization problem:

R
∗ = argmax

R∈R

[F (D,R)−G (R)], (1)where F denotes a funtion evaluating the spatiotemporal ross-orrelation of aset of samples (I−a , I+a ), and G represents a ost for growing reeptive �elds. Theonstraint set R is hosen as R = {R : R ≥ 0, R⊤
1 = 1}, suh as to guaranteethat the visual reeptive �elds oupy the whole sensor surfae and luminaneannot be subtrated. In the remainder of this setion, we unroll the ompletede�nition of this optimization problem by developing F and G.Consider �rst an immobile agent with a single null ation leading to a redueddata set D̄ = {I−} of stimuli reorded in di�erent states s. In this ase, weonsider a reasonable sensor topologyR to be one whih leads to high orrelationwithin a bath of reorded stimuli Ris. The rational behind this is that biggerdi�erenes between simultaneous reeptive �eld ativations indiate that theagent is able to pik-up more information from the images is, in an informationtheoreti sense. Furthermore, orrelation must be normalized with respet to thesize of a reeptive �eld suh that di�erent sized reeptive �elds are omparable.Implementing these two requests, we propose a �rst version of F for an immobileagent to be a size normalized orrelation between stimuli is like:
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, (2)where in R̂ the division and square root operators are applied element wise.In a seond step, an ative agent and a full data set D = {(I−a , I+a )} isonsidered. To establish a temporal relationship between reeptive �elds, we1 See also [8℄, Appendix A for the onstraints posed on suh ations and how thissituation relates to a physial agent ating in a 3-dimensional world.



now adapt F̄ to ompute orrelation between pre- and post-ation stimuli. Weremind the reader that it is a priori unknown how to temporally relate reeptive�elds and how stimuli hange under an ation a. This is naturally solved byonsidering a predition operator whih desribes a mapping of reeptors for agiven ation, allowing for omparison of stimuli at di�erent points in time. In [9℄Crapse and Sommer provide an exellent review of the ubiquity of stimuluspredition in living organisms and [8℄ gives an argument for the use of linearpredition. Thus, assuming that for an ation a we an predit a visual stimulusas Ri
+
a = P
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, (3)where a predition operator Pa
(R) is learnt from a bath of samples (I−a , I+a ). Werequest Pa

(R) ≥ 0 and propose Pa
(R) to be the solution to a positive least squaresproblem. As demonstrated in [7℄ this yields a preditor re�eting the omplexityof stimulus �ow patterns under ations.Finally G (R) is hosen in suh a way as to impose a ost on the growth ofreeptive �elds. Choosing G(R) = ω‖R‖22 provides ontrol over the smoothnessof the reeptive �eld boundaries. For ω = 0 solutions with hard reeptive �eldboundaries are obtained.3 MethodWe onsider the sensor surfae to be a disk, disretized at N = 2877 loations ina grid-like layout, and being organized into M = 48 reeptive �elds. The envi-ronment is given as a plane textured by a very high resolution image depitinga real world sene. A state s onsists of a position of the sensor surfae withrespet to this plane. In this paper we assume the sensor surfae to be paral-lel to the plane and eah loation reords luminane over the overed area intodisrete graysale images i. This sensor interats with the environment throughfour types of ations, translations in x- and y-diretions, rotations and hangesin distane to the plane (zoom). An ation set A is obtained by sampling a par-tiular ation probability distribution representative of the agent's behavior. Forthe results presented in this paper eah behavior is represented with 60 samplesas shown in Fig. 2. For eah ation a a pair of samples is obtained by positioningthe agent in a random state on the environment and taking the hosen ation

a. This proess is repeated 68 (> M) times for eah a, aquiring the dataset
D = {(I−a , I+a )}.To �nd R

∗ we iteratively improve the optimization problem given in Eq. (1)using a projeted gradient desent method [10℄. At eah iteration we learn predi-torsPa
(R) that best satisfyRi

+
a = P

a
(R)Ri

−
a in a positive least squares sense usingthe optimization method known from [11℄. Note that, even though P

a
(R) annotbe obtained as a losed form solution, the gradient needed to iterate Eq. (1)
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(b) Topology of R∗ on the Sensor SurfaeFig. 1. Emergent lustering of reeptive �elds (RFs). Left: A onverged but topologi-ally orderless matrix R as seen by the algorithm; eah entry spei�es the ontributionof a loation on the sensor surfae to a reeptive �eld (RF); the sensor surfae is dis-retized into 2877 pixels (x-axis), and the matrixR odes for 48 RFs. Right: The sensorsurfae and the overage of 7 seleted RFs at spatial loations where their ontributionis predominant; this view reveals the impliitly present topologial lustering in R.an still be found in losed form by applying the impliit funtion theorem tothe Karush-Kuhn-Tuker optimality onditions of the positive least squares op-timization problem [12℄. While it is no problem to �nd a solution for R with anonline method, onvergene is muh slower, we therefore hoose here the bathapproah for pratial reasons. However, we note that under di�erent irum-stanes an online implementation might be preferable, e.g. for a purely biologi-ally inspired implementation in a robot with stronger memory onstraints anda longer exploration phase.The experiments presented in Set. 4 were initialized as follows: the topologyof the sensor R was randomly initialized aording to a uniform distributionbetween zero and one, and then projeted to obey the onstraints R. The ostfor growing reeptive �elds was kept at a onstant level ω = 0.3. It is importantto note that with a randomized initialization, nothing prevents the adaptationproess from onverging to a loally optimal solution. From a biologial point ofview, we aept these solutions as possible branhes of evolutionary development.4 ResultsTo demonstrate the orrelation priniple introdued in Eq.(2) we start by show-ing the results for an immobile agent. This example, although disarding anymeaningful behavior, shows a ruial apability of the proposed method namelythe requested property i) the development of spatially oherent light reeptive�elds on a visual sensor surfae. Figure 1 highlights the disovery of topologialorder from the orderless sampling of the underlying image.
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(b) Rotation and ZoomFig. 2. Two di�erent behaviors represented as ation distributions. Left: uniform 2-dimensional translations in a given range overing 10 times the distane between dis-rete sampling loations on the sensor surfae in eah diretion. Shift units are normal-ized with respet to the environment. Right: independent zoom and rotation ationsdistributed uniformly on eah axis. Rotations are given in radians and dilations aregiven as a sale fator. Both operate with respet to the enter of the sensor surfae.Zoom ations range from 0.6 to 1.66 and rotations over −π to π.As external observers we have the privilege of knowing the spatial loationswhere the sensor surfae was sampled and as suh we are able to plot the topo-logial ordering of reeptive �elds on the sensor surfae as shown in Fig. 1(b). Inthe two dimensional visualization we hoose to show at eah disrete sensor sur-fae loation the predominant reeptor. The lustering property of the reeptive�eld elements is learly demonstrated. Sine in this ase no ation is taken, thislustering is a sole onsequene of the interation between the orrelation basedost funtion and the low frequeny harateristi of the observed environment.Note that the agent does not have aess to the sampling loations of the sensorsurfae and is thus unaware of the �nal topologial ordering. The proposed al-gorithm operates solely on matrix R whih is absent of any topologial meaningeven in the �nal onverged state, as shown in Fig. 1(a).For ative agents we will now onsider two di�erent behaviors as shown inFig. 2(a) and Fig. 2(b). The �rst onsists of a uniform ation probability dis-tribution of 2-dimensional translations over the sensor surfae in a given range.This senario relates to translational unbiased oulomotor ontrol ausing ran-dom stimulus displaements. The seond behavior is omposed of independentzoom and rotation ations distributed uniformly on eah axis. This mimis thebehavior of an objet manipulating agent where the oulomotor system stabilizesthe sensor on target, mehanially ompensating for image translations but notimage rotations or saling. These setups demonstrate that the agent's behaviorindues di�erent topologies of reeptive �elds on the sensor surfae.In Fig. 2 the onverged layouts for the two onsidered ation distributionsare shown. The nature of the two onverged topologies exhibits marosopi



(a) Shift (b) Rotation and ZoomFig. 3. Sensor topologies obtained under behaviors visualized in Fig. 2(a) and Fig. 2(b).di�erenes: in the translation only ase we an identify a tendeny for hexagonaltiling strutures over the entire sensor surfae (apart from boundary e�ets),whereas in the rotation and zoom ase the reeptors organize radially in learirular rings. Unlike in Fig. 1, the 3-dimensional perspetive shows the smoothoverlapping between reeptive �eld elements.To better omprehend the resulting sensor layouts, we refer bak to the workof Clippingdale and Wilson [6℄, where the �tness of a layout relates diretly tothe distane between predited and original point loations. In our ase, justas in [6℄ a perfet sensor layout is one where reeptors exatly map one ontoanother for every onsidered ation resulting in P
a
(R) matries where eah rowontains exatly one non-zero entry. Any deviation from this ase leads to aninrease in predition error and lowers orrelation. This fat allows us to replaethe Eulidean distane as used by Clippingdale and Wilson by one based solelyon orrelation between sensory readings disregarding any knowledge about thesensor topology.5 Conlusion and OutlookThis paper explored how the behavior of an arti�ial agent an shape the topol-ogy of a visual sensor. We proposed that a well suited sensor is one whih sim-pli�es stimulus �ow patterns � and hene stimulus predition � under a givenset of ations. We showed that this quality is aptured by spatiotemporal ross-orrelation and an be used to self-organize visual sensor topologies on a givensurfae. The method proposed in this work simultaneously develops spatiallyoherent reeptive �elds and organizes their layout aording to an exeutedbehavior.Reognizing the mutual oupling of morphology and ative behavior in or-ganisms evolved in nature, we believe that in arti�ial agents physial strutureand atuation should eventually emerge through a o-developmental proess.
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