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Abstract: In this paper we address the problem of optimizing the Time Window Controller
(TW-Controller). This controller was first introduced in 2001 as a supervising mechanism for
distributed scheduling of multiclass queuing networks with the objective of stabilizing those
networks. It was then also shown that the TW-Controller possesses the ability to improve
performance of stable networks. We revise the controller and present a series of formal results
concerning its main properties and features. Then, we propose to use Simulated Annealing on
a simulation-based optimization approach and present numerical results that demonstrate the
controller’s ability to improve performance over any given scheduling policy.
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1. INTRODUCTION

In this work we address the issue of stability and per-
formance improvement for multiclass, non-acyclic, and
stochastic queuing networks. The stability problem has
gained relevance when a series of published results showed
that the Traffic Intensity Condition, although a necessary
condition for stability of a network, is not sufficient. Ex-
amples of such results are Lu and Kumar (1991); Seidman
(1994); Dai (1995), all operating with distributed and non-
idling scheduling policies. These, and other similar exam-
ples, motivated a long series of work to address the issue
of determining the stability of general queuing networks.
Many authors focused on topological issues, by trying to
identify features concerning the number of servers, the flow
of customers, and individual processing times for which
stability could be established for all, or a subset, of non-
idling and distributed policies. Others focused on deriving
provably stable scheduling policies for broad classes of
queuing networks’ topologies. This paper proposes that
the concept of stability should be replaced by that of
stabilizability. That is, given a queuing network that is
unstable under some non-idling and distributed scheduling
policy, what changes can be made to the policy in order
to stabilize the network.

Such was the approach of the Time Window Controller
(TW-Controller), Moreira (2001). This controller was pre-
sented as a supervisor of any given network, influencing the
scheduling decisions of a given scheduling policy. Initially
this controller was constructed with the purpose of prov-
ably stabilize a given network, Moreira and Bispo (2002).
After that, the issue of performance improvement became
a question to be taken into account, Moreira and Bispo
(2003). It is in that line of development that this work
was inspired. The main objective of this work is develop an
optimizing block to be added to the TW-Controller, which
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operates in parallel with the controller, see Figure 1. This
block uses Simulated Annealing and a discrete-event sim-
ulator to produce performance estimates. The Simulated
Annealing approach has been proven to be very effective
when applied to non convex optimization, for which gradi-
ent based algorithms may fail to produce good solutions,
Cerný (1985); Marques et al. (1991); A.S.N. Silva and
Alvarenga (2005); Kolahan et al. (2007). The utilization
of this optimization algorithm will allow the evaluation
of the TW-Controller’s potential to improve performance
over any given scheduling policy. In the revision of the
TW-Controller we present a set of formal results which
characterize the controller’s main features and properties.
The main property is the fact that the controller stabilizes
a large set of queuing networks.

Fig. 1. Global architecture.

1.1 Stability of Queuing Networks

Queuing networks is one of the most used tools to model
Discrete Event Dynamic System (DEDS), Cassandras and
Lafortune (1999), useful to model realities like communica-
tion networks or manufacturing systems. Customers arrive
to the network entering into some queue, or buffer, where
they wait their turn to be processed. Each server chooses
customers from a set of queues. After being processed, each
customer may move to other buffer or leave the network.



The number of customers waiting in a queue can alterna-
tively be designated as the queue’s inventory. A queuing
network is constituted by two parts: the queuing net-
work topology and a control policy. The queuing network
topology contains the layout of the network in the form
of the routing each customer must follow. The topology
also includes the description for the customer arrival and
processing time distributions. The control policy performs
two functions: controlling the admission of new customers
into the queuing network, which is usually referred as
the admission policy and deciding how each server pro-
cesses customers, which is known as the scheduling policy.
Although all queuing networks must have a scheduling
policy, it is not mandatory to possess an admission policy.
Queuing networks are divided in two major classes: open
and closed networks. The difference is that while in open
queuing networks customers arrive and leave the queuing
network at a variable rate, in closed queuing networks the
number of customers is fixed, or the entry of new customers
into the system is controlled by an admission policy.

The queuing network topology can be classified in two
groups. The first group named acyclic queuing networks, is
characterized by the non existence of cycles in the flow of
customers. The second group named non-acyclic queuing
networks does not have any restrictions on the routing of
customers. The models for the arrival and processing of
customers can be classified into deterministic and stochas-
tic models. A typical example of a stochastic model for
the arrival of customers to the queuing network is the
Poisson process, Ross (1996). For the processing time of
customers, a typical model is the exponential distribution,
Ross (1987). The scheduling policy of a queuing network
is classified by two main properties: locality and idleness.
The locality of a scheduling policy refers to the amount of
information that the scheduling policy needs to perform its
scheduling decisions. A scheduling policy can be classified
concerning its locality as a distributed (local) or non-
local scheduling policy. In a distributed (local) scheduling
policy, each server performs its scheduling decisions using
information that is local to the server or its respective
customers. In a non-local scheduling policy, each server
uses some or all the information contained in the entire
queuing network to perform its scheduling decisions. The
idleness of a scheduling policy refers to the ability of
a server to stay idle even in the presence of customers
waiting to be processed. In an idling scheduling policy,
each server has the possibility of staying idle even when
there are customers waiting. In a non-idling scheduling
policy, each server will keep processing customers as long
as there exists, at least, one customer waiting to be served.

A queuing network is classified concerning the existence of
multiple classes as a single class or a multiclass queuing
network. In a single class queuing network, all customers
arriving to a given server are indistinguishable. That is,
independently of their past history, they are processed in
the same manner. In a multiclass queuing network, there
exists the possibility of a server differentiating customers
by their past history and in consequence process those
customers in different manners.

Determining the stability of a queuing network is of crucial
importance since it determines the ability of the queuing
network to process all the customers arriving to the system

within reasonable bounds in terms of the flow time. The
classical method to determine the stability of a network
is to compute the invariant probability distribution for
the number of customers, Kleinrock (1975); Kelly (1979);
Walrand (1988). The stability of the network is then
asserted by computing the average value of the invariant
distribution which, if finite, implies stability.

The problem with this approach is that, outside the narrow
class of networks possessing a product form solution for the
invariant, it is very rare to obtain an explicit solution for
the invariant, Baskett et al. (1975); Kelly (1979); Kumar
and Kumar (1994). Combined with this, the queuing net-
works community conjectured that the stability problem
was linked to the question of whether each server in the
network has enough resources to process all customers
that arrive to it. This idea was materialized in a stability
condition known as the Traffic Intensity Condition, which
is a necessary stability condition but was also conjectured
to be a sufficient stability condition. Before presenting the
Traffic Intensity Condition, it is first necessary to present
the definition of Traffic Intensity

Definition 1. (Traffic Intensity) Consider a multiclass
queuing network composed of I single server stations. If
class k is processed by server i, µk denotes the mean
processing time of class k at server i. If class k arrives
from the outside world, λk denotes the mean arrival rate of
class k at server. Denoting by c(i) the set of classes served
at server i, the Traffic Intensity at server i is computed by
the following expression:

ρi =

K∑
k=1,k∈c(i)

λkµk (1)

Note that class k ∈ c(i) is associated with a virtual buffer
in the service station i that corresponds to a specific
processing stage of the customer. The Traffic Intensity
Condition requires for all servers i = 1, 2, . . . , I that
ρi < 1.

In the early 90s several authors published a series of dif-
ferent networks which, combined with certain scheduling
policies, were unstable even though all of them satisfied the
Traffic Intensity Condition. One of the best known cases
is the network proposed in Lu and Kumar (1991), which
presented a relatively simple network with only two servers
and four classes, combined with buffer priority scheduling
policies as simple as the Last Buffer First Served (LBFS)
and the First Buffer First Served (FBFS). In the specific
case of this network, the combination that generates insta-
bility is to apply the policy LBFS to the first server and the
FBFS the second server. This phenomenon was shown to
also occur in more complex networks, as the one proposed
in Seidman (1994), composed of four servers and twelve
classes, which when combined with the First In First Out
(FIFO) policy became unstable. An also unstable variant
of Lu and Kumar (1991) was presented in Dai (1995)
and Bramson (1994a,b) presents a demonstration of the
instability generated by FIFO policies for some topologies.
The initial conjecture that the Traffic Intensity Condition
was sufficient to guarantee the stability of any network was
proved to be wrong with these and other examples, even
though it is sufficient for a large number of networks, as
the Jackson network is an example, Jackson (1957).



The realization that the Traffic Intensity Condition is not
sufficient to ensure stability for general networks when
the policy is non idling originated a long series of work.
Examples of stability determination as a function of the
topology can be found in Kumar and Kumar (1994);
Kumar and Meyn (1995); Dai and Meyn (1995); Kumar
and Meyn (1996); Bertsimas et al. (1996); Bramson (1998,
1999); Chen and Zhang (2000); Lotker et al. (2004). We
refer the reader more specifically to Chen and Zhang
(2000) for a more detailed literature review on the subject.
Other authors choose the path of proposing provably
stable policies as in Perkins and Kumar (1989); Demers
et al. (1990); Lu and Kumar (1991); Parekh and Gallager
(1993); Bramson (1998); Maglaras (1999); Dai and Lin
(2005, 2008).

One relevant exception is Kumar and Seidman (1990),
where the focus was placed on stabilizability for the
Clear-a-Fraction policies. That is, a supervisor mechanism
was proposed to regulate the performance of the policies
ensuring that stability is always attainable. Using the
authors’ own words “... there exists an “universal” safety
mechanism, which can moreover be trivially implemented
by a supervisor, in a distributed fashion, at the various
machines. Essentially this mechanism consists simply of:
1) truncating all long production runs; and 2) maintaining
a separate first-come first-serve (FCFS) priority queue
Qm for large buffers, at each machine m.” The term
universal is misleading as their results are established
only for deterministic arrival and processing rates. To our
knowledge there is no supervisor mechanism that provably
stabilizes any policy for any network in a stochastic
setting. Other examples in the area of regulation are
Humes, Jr. (1994); Anantharam and Konstantopoulos
(1994); Winograd and Kumar (1996)

Along a similar path is Moreira (2001); Moreira and Bispo
(2002, 2003) which presented a supervisor mechanism that
provably stabilizes any non idling distributed scheduling
policy for a wide range of networks in a stochastic setting.
We propose to review that approach complementing it
with a general optimization procedure. We will be focusing
on the MaxPressure policies of Dai and Lin (2005, 2008)
because, besides ensuring stability for a wide class of
networks, they are asymptotically optimal in heavy-traffic
for quadratic queuing costs and ε-asymptotically optimal
for linear costs. Also, their application does not require
the knowledge of the external arrival rates, which is a very
interesting property given that estimating those can be
very difficult and because, in general, those rates are not
stationary. Another interesting feature of the MaxPressure
policies is the fact that they may exhibit an idling behavior
in general. However, these policies are not distributed, as
each server has to know the state of the overall system
in order to chose which buffer to serve next. We will be
using our regulator on these policies to demonstrate its
performance improvement capabilities.

The paper is organized as follows. We start by introducing
the TW-Controller, as in Moreira (2001), and present its
formal guarantees, Section 2. In Section 3 we describe
the Simulated Annealing implementation and how it in-
teracts with the controller. A sample of numerical data is
presented in Section 4, displaying the controller’s ability
to improve performance even over very good scheduling

policies. The paper ends with the presentation of a set
of main conclusions and directions for future research in
Section 5.

2. THE TIME WINDOW CONTROLLER

This controller was presented for the first time in Moreira
(2001). The idea behind its development was that it would
work as a mechanism of supervision for any scheduling
policy, rather than as a scheduling policy. Here we describe
the main concepts behind the operation of this controller
and how they are implemented. Latter in this section we
will present the formal guarantees of stabilizability and
performance improvement.

We construct the TW-Controller by presenting all of its
constituents. The first of them is the Processing History
for each class.

Definition 2. For each class k = 1, 2, . . . ,K, the Process-
ing History of class k is defined as the function Hk(t), such
that Hk(t) = 1 if any customer of class k is being processed
at the time instant t and Hk(t) = 0 if there is no client of
class k being processed at that instant.

FunctionHk(t) describes the time intervals in which class k
was being processed, since the beginning until the present
time. The next constituent to be described is the Time
Window.

Definition 3. For each class k = 1, 2, . . . ,K, the Time
Window, also designated TW, associated to that class is
defined as the finite interval of length Tk, starting at t−Tk
and ending at t, with t being the present time.

The Time Window of a class represents the amount of the
class history that will be needed by the TW-Controller to
make decisions concerning each class.

Definition 4. The Time Fraction of class k with a Time
Window of size Tk at time t is defined as fk(t) and is
computed by the following expression

fk(t) = βk

t∫
t−Tk

eαk(τ−t)Hk(τ)dτ, (2)

where αk ∈ [0,∞[ is the Smoothing Parameter and βk is
the normalization parameter that ensures fk(t) = 1 when
Hk(τ) = 1 for τ ∈ [t−Tk, t]. This normalization parameter
is given by

βk =
αk

(1− eαkTk)
. (3)

The Time Fraction of a class represents the fraction of the
total time contained in its Time Window during which the
server was processing customers of that class. If αk = 0,
the Time Fraction is the exact percentage of time during
which, in the last Tk units of time, clients of class k were
served. The objective of using a Smoothing Parameter
bigger than zero is to weight the recent processing history
differently than the older.

The next constituent of the controller is the concept of
Blocked Class, which has the following definition.

Definition 5. A class k is said to be Blocked at time t if
fk(t) > fmax

k , where fmax
k , is the maximum time fraction

allowed in terms of short/medium range for class k.



A Blocked class is a class that has exceeded its share,
in terms of short/medium range, of workload that was
imposed to the server that processes it. Grouping all the
above constituents, we are able to define the Time Window
Controller.

Definition 6. The Time Window Controller, or TW-
Controller, can be applied to any multiclass, non-acyclic,
queuing network, where each server is controlled by a non-
idling scheduling policy. It is constructed through a K-
tuple, [fmax

1 , fmax
2 , . . . , fmax

K ], together with a value Tk =
T , for k = 1, 2, . . . ,K, determining a single Time Win-
dow length and a value αk = 0 for k = 1, 2, . . . ,K, as
a single Smoothing Parameter for all the classes. Each
server chooses which class to serve based on its scheduling
policy, being that clients on buffers from blocked classes
are invisible in the decision process.

Before going any further, it is important to describe the
dynamics of the decision process when the TW-Controller
is operating. While all the classes served by a given server
are not blocked, all the scheduling decisions are made as if
the controller does not exist. When one or more classes are
blocked, the scheduling decisions may be affected, given
that the group of eligible classes for processing is reduced.
Let tb be the time instant in which class k turns to the
state of blocked, i.e., fk(tb) > fmax

k . While that class is
blocked, the value of its fraction will drop, because there
are no more clients of that class being processed, until it
is exactly equal to fk(tu) = fmax

k for some tu > tb, in
which it becomes again an eligible class for processing.
Over time, and depending on the scheduling policy used
by each server, the different classes will turn, or not, to the
blocked state and will always unblock in a finite amount
of time.

It is important to take in account that it could happen
that a given server does not start any job after concluding
another, because all the waiting customers belong to
classes that are blocked. Under these circumstances, a
server will remain idle until the arrival of a customer of
an unblocked class, or until one of the blocked classes
that has waiting customers, reaches its unblocking instant.
This type of idleness is termed Active Idleness, because
it corresponds to a choice made by the controller. On
the other hand, the idleness that happens due to the
absolute lack of customers, in a context without controller,
is called Passive Idleness. The instability that occurs in
many queuing networks published in the past, stems from
the fact that many buffers spend a lot of the time empty,
inducing idleness in the server. The problem is that this
type of idleness happens by accident and due to the
scheduling policies being local. One of the ideas behind
the development of this controller, is that is preferable to
choose the idling instants in an active way, than to suffer
the consequences of the Passive Idleness. The objective
of the controller is to reduce all the network idleness by
introducing some Active Idleness.

2.1 Formal guarantees

In this section we present the formal guarantee that will
allow us to state that this controller stabilizes a broad
class of networks. The Stabilizable Networks are now
introduced.

Definition 7. Stabilizable Networks - Let Ω be a multiclass,
non-acyclic, queuing network, with I servers and K classes
of customers, where each service station is controlled by the
non-idling scheduling policy Λ. Furthermore, the network
satisfies the Traffic Intensity Condition. Assume that there
exists a maximum processing time for each client of each
class, Ψk. That is, no client of class k has a processing
time larger than Ψk. Each class is served at a single server
and, after being processed, each customer of a given class
always moves to the same buffer.

The assumption of a maximum processing time is a formal
limitation but has no serious consequences in the real
world, because there is always some sort of bound on the
service duration in real settings.

Lemma 1. Under the conditions for the construction of
the controller explained in Definition 6, for the networks
described in Definition 7 and given the conditions (a) to
(d), presented below, the sum of the fractions of all the
classes served by the same server, at any instant tc, at
which any given service is concluded, verifies the following
equation:

K∑
k=1,k∈c(i)

fk(tc) < 1, i = 1, 2, . . . , I. (4)

(a)
∑K
k=1,k∈c(i)(λkµk)+εi = 1, i = 1, 2, . . . , I and εi > 0

(b) αk = 0, k = 1, 2, . . . ,K

(c) fmax
k = λkµk + εi/(2Ni), k ∈ c(i)

where Ni is the total number of classes processed by server
i.

(d) Tk >
Ψk
εi

2Ni

, k = 1, 2, . . . ,K and k ∈ c(i).

This proof, as well as all others, is presented in the
Appendix. Here we describe the meaning of the conditions
stated above. The first condition, (a), describes the Traffic
Intensity Condition. Basically it says that each server has
a non-negative slack. Meaning that, the average work load
in each server is below the existent capacity. Condition
(b) states that there is no smoothing, the value is equal to
zero. Condition (c) defines the maximum fraction value for
each class. The value defined is slightly over the long term
necessary value for each class, taking it from the existing
slack. The last condition, (d), imposes the minimum value
for the size of the Time Window for each class.

Lemma 1 establishes that all buffers have access to their
fractions without their Time Fraction ever exceeding
λkµk + εi/Ni, thus making the system uncoupled. What is
sought with this is to allow an independent analysis of the
different cycles in the network, reducing each analysis to a
simple tandem and thereby also reducing the complexity
of the problem.

Theorem 1. For a network under the conditions of defini-
tion 7, there exists an instance of the controller parameters
(T, α, fmax) that stabilizes the network, in the following
sense. The long term arrival rate of each class to its buffer
equals the external arrival rate of the buffer that ”feeds”
it. The stabilizing instance is defined in conditions (a) to
(d) of Lemma 1.



This result allows us to draw a set of interesting conse-
quences and conclusions.

Corollary 1. Let (T ∗, α∗, f∗max) be the optimal instance
of the controller’s parameters for some given performance
criterion. If all the buffers are visible by that cost function,
this instance guarantees stability.

Corollary 2. No matter what scheduling policy is chosen,
there exists an instance of the controller’s parameters that
does not influence its decisions.

Corollary 3. If, for any cost function, the optimal Maxi-
mum Time Fraction is equal to one for every class, then
the scheduling policy being used is optimal for the perfor-
mance criterion applied.

At this time, we should discuss the meaning of the sum
of all the Maximum Time Fractions being more than
one. The Maximum Time Fractions defined in Lemma 1,
have only the purpose of allowing us to construct an
instance of the controller to establish Theorem 1. They
serve the objective of ensuring the uncoupling of the classes
served by each server. Normally, it does not make sense
to break up the total processing capacity of each server
in a way that does not allow taking advantage of its
flexibility in serving more than one class. If at a given
instant of time there are too few customers of a given
class, the processing capacity that is allocated to it, is
lost. As a result, the general solution for the value of the
Maximum Time Fraction, would be allowing some kind
of coupling between the different classes served on the
same server to occur. This is done by letting the sum
of these fractions to be above one. Because the optimum
fractions are obtained after a search process on all the
solution space, the resulting coupling would naturally be
the optimal such coupling.

Corollary 4. For a given instance of the controller param-

eters (T ∗, α∗, f∗max), we can have
∑K
k=1,k∈c(i) f

max
k > 1,

and still ensure the system to be stable.

Corollary 5. Under the conditions of Definition 7 and
Lemma 1, the Traffic Intensity Condition is necessary and
sufficient for stabilizability.

2.2 Determination of the unblocking instant

When a class becomes blocked, it is necessary to determine
at which instant of time it will become again available to
being considered for processing. In the following we present
two results that allow us to construct the algorithm that
generates the unblocking instant. These two results will be
presented without proof as they are simply instrumental
to constructing the simulator, and their proofs do not add
to such an objective.

Theorem 2. For a given class k that got blocked at the
end of a service at time tc, when the waiting time until
unblocking is done by only removing inactivity from its
History at the far end of the Time Window, the waiting
time until unblocking is calculated according to the follow-
ing expression

∆ = − 1

α
ln(

fmax
k

fk(tc)
) (5)

Theorem 3. For a given class k that got blocked at the
end of a service at time tc, when the waiting time until

the unblocking is done by only removing service time
from its History at the far end of the Time Window, the
waiting time until unblocking is calculated according to the
following expression

∆ = − 1

α
ln(

αfmax
k + βe−αT

αfk(tc) + βe−αT
) (6)

To compute the actual unblocking instant for any class
that gets blocked we use these two results in the following
algorithm.

Algorithm to determinate the unblocking time

S1: Identify if the Time Window shift will imply the exit
of inactivity, or on the contrary implies the exit of
activity. Make z = 0 and let tc be the current time.
If we are in the first situation go to S2, otherwise go
to S3.

S2: Using Theorem 2, determine the necessary shift with-
out removing any activity. If the obtained shift is such
that it does not imply the exiting of any activity,
then go to S4, adding to z the value now calculated.
Otherwise, it is necessary update the Time Fraction
of the class until the time instant where the first
activity begins in the Time Window and advance to
S3, adding to z the calculated value.

S3: In this step, the beginning of the Time Window is
set on the time instant in which an activity starts,
therefore, we use Theorem 3 to determinate the
necessary shift. In case this shift does not exceed
the duration of the activity we pretend to remove,
the value of this shift is added to z and go to S4.
Otherwise, the maximum shift possible, under these
circumstances, is added to z and the Time Fraction
of the class is updated. Go back to S2.

S4: It has already been determined, with success, the
necessary shift for the Time Fraction to be equal to
the Maximum Time Fraction. So, the buffer will get
unblocked at the time instant tc + z.

3. SIMULATED ANNEALING

Simulated Annealing, Kirkpatrick (1984), is a known opti-
mization method used in functions with a behavior which
limits the success of gradient-based algorithms. The pro-
cedures that this algorithm uses are easy to find in the
literature. One crucial choice when setting up this type
of approach concerns the neighborhood generation. Since
we will be concerned with Maximum Time Fractions, our
neighborhood generator will produce a neighbor simply by
changing one of the parameters at a time. We tested alter-
native generators, but this achieved the most interesting
results.

Another important topic, in terms of implementation, is
to define how the temperature and step of the system will
change along the simulation. This variation may occur
in different ways, one of the most common and easy
implementation being the geometric series of ratio r, or
the harmonic series. In this case the geometric series was
used to define the variation of temperature during the
simulation, and the ratio is φ. Normally one defines this
value between 0.70 and 0.99. For the step variation, the
harmonic series was chosen. The reason relates to the fact



that, the sum of all the elements of a harmonic series is
unbounded, which is relevant for line search algorithms.

Two stopping conditions were defined for the simulated an-
nealing. One is the total number of simulations executed.
The second, concerns the concept of phase change.

Definition 8. Phase Change. By keeping track of the cost
reduction for every temperature decrease, a phase change
is said to have occurred when there is a significant cost
reduction for a small temperature reduction. We say that
no phase change is occurring if the successive costs do not
present significant reductions.

Consider C(zi) as the cost of configuration zi. We say
that a phase change happens when, for a certain neighbor
configuration z(i+ 1), the corresponding cost satisfies the
following condition:

C(zi+1) ≤ 0.95C(zi). (7)

The particular choices of values for the maximum number
of simulations, maximum number of simulations between
phase changes, and the value 0.95 used in (7) derive from
several tests conducted.

4. RESULTS

We will present three different sets of numerical data that
illustrate the capacity of the Time Window Controller,
together with Simulated Annealing, to improve the perfor-
mance of systems that are already stable by introducing a
certain amount of Active Idleness. In the first two experi-
ences, the performance measure consists of linear queuing
costs, while the last experience will use pure quadratic
costs on the queue lengths.

4.1 Lu and Kumar topology with linear costs

In this first case we will use the Lu and Kumar network,
Lu and Kumar (1991). For this experience the simulation
time was 20000 periods and the costs assumed to be linear.

Table 1. Network parameters.

Parameter λ1 µ1 µ2 µ3 µ4
Value 1.00 0.01 0.90 0.01 0.90

The scheduling policy applied was the Last Buffer First
Served to all the servers. In Table 1 we present the arrival
rate at buffer 1, λ1, and the average processing time of each
class, µi, and in Table 2 we present the initial parameters
for the controller.

Table 2. Initial prameters of the controller.

fmax T α

[1.0 1.0 1.0 1.0] 50 0.2

Figure2 presents the evolution of the average cost for
the configurations that were accepted by the Simulated
Annealing.

Just by looking at the figure we can understand why a
gradient based algorithm would not be as effective as the
Simulated Annealing, as very small changes in each of the
Maximum Time Fractions may induce drastic variations
in performance. Table 3 displays the cost of the original

Fig. 2. Average cost of the configurations accepted by the
Simulated Annealing.

Table 3. Average cost and improvement re-
garding the performance of the system without

the controller

Configuration Cost Improvement

[1.0 1.0 1.0 1.0] 99.52 –
[0.883 1.0 0.998 0.982] 29.54 70.32%

policy and the best solution obtained with Simulated
Annealing.

The improvement obtained with the controller is about
70% regarding the performance of the network when the
controller is not used. This improvement was obtained by
forcing one of the buffers to stay idle for a very small
amount of time, therefore introducing active idleness on
the network. The active idleness was obtained by blocking
buffer 4 for about 164 periods, which represent 0.82%
of the total simulation time. This is a very considerable
improvement, even more if we consider that the Lu and
Kumar topology is a low complexity network, which makes
it harder to obtain substantial improvements than on
bigger and more complex networks.

4.2 Seidman topology with linear costs

For this experience a more complex network was chosen,
so it would be possible to apply a more efficient scheduling
policy and yet we could see some improvement on the
network’s performance. The chosen network was the Seid-
man’s network, Seidman (1994), along with the Maximum
Pressure scheduling policy, Dai and Lin (2005).

Table 4. Network parameters.

Parameter λ2 λ3 λ10 λ11 µ1 µ2
Value 1.0 1.0 1.0 1.0 0.9 1E-3

Parameter µ3 µ4 µ5 µ6 µ7 µ8
Value 1E-3 1E-3 1E-3 0.9 0.9 1E-3

Parameter µ9 µ10 µ11 µ12
Value 1E-3 1E-3 1E-3 0.9

This policy guarantees stability and assures an ε-asymptotic
optimality, when traffic approaches 100% – Heavy Traffic.
The parameters for this network are as in Tables 4 and 5.

Table 5. Initial parameters of the controller.

fmax T α

[1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0] 50 0.2



Using the network configuration and the controller’s pa-
rameters above described the result obtained for the evo-
lution of network’s average cost, is as shown in Figure 3.

Fig. 3. Average cost of the configurations accepted by the
Simulated Annealing.

A very significant improvement on the performance of the
network is visible. Initial value was close to 260 and the
best found is close to 90. Let us analyze it more precisely,
as we look to Table 6, which presents the exact initial cost
with no controller and the improvement brought by the
controller.

Table 6. Average cost and improvement re-
garding the performance of the system without

the controller

Configuration Cost Improvement

[1.0000 1 1 1 1 1 1 1 1 1 1 1] 258.9 –
[0.9012 1 1 1 1 1 1 1 1 1 1 1] 87.5 66.2%

The improvement produced by the controller was of 66%.
This improvement was obtained by forcing buffer 1 to be
idle for some periods of time. Specifically, in 378 periods
of all simulation time. This idleness only represents about
7.5% of the total time and made the cost of the network
drop by 66%, regarding the initial policy.

4.3 Seidman topology with quadratic costs

For Seidman’s network we also tested with quadratic costs,
and used the Max Pressure policy, which is asymptotically
optimal with quadratic costs. The topology, the network
parameters, and the duration of each simulation are all
the same. The Simulated Annealing was used and the final
result is as shown on Table 7

Table 7. Average cost and improvement re-
garding the performance of the system without

the controller

Configuration Cost Improvement

[1.0000 1 1 1 1 1 1 1 1 1 1 1] 34405 –
[0.9012 1 1 1 1 1 1 1 1 1 1 1] 2952 91.42%

The influence of the controller in the original scheduling
decisions has produced some Active Idleness in the system.
More specifically, buffer 1 was forced to be idle 375
periods of all simulation time. This kind of inactivity
represented 7,5% of the total simulation time. Forcing this

buffer to be blocked during a small amount of the total
time, has produced a huge improvement on the system’s
performance.

5. CONCLUSIONS

The main contributions and achievements of this work are
the following.

• There was a formal ”arrangement” or ”cleanup” on
the properties of the Time Window Controller.

• The Time Window Controller keeps improving the
performance of the systems, even when they use more
elaborated and effective scheduling policies, as the
Maximum Pressure Policies.

• The Simulated Annealing revealed to be an effective
tool to obtain a set of Maximum Time Fraction which
improves the performance of any given network under
any scheduling policy.

The first topic is related with the theorems, proofs, and
mathematical expressions presented in this work, which
represent an important contribution concerning the work
published until now. In these contributions we can high-
light the formal guarantee of stability of the controller and
the expressions that enable to computation the unblocking
time of each buffer, which are new.

The second topic constitutes the major contribution of this
work, given the theoretical properties of the Maximum
Pressure policies and the type of gains we were able to
achieve. It is the first time the TW-Controller with Active
Idleness is tested against extreme quality policies. This
was only possible through Simulated Annealing, given it
provides the needed generality to test different policies and
optimize the parameters of our controller.
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Appendix A. PROOFS

All proofs were omitted because their inclusion would exceed the
page limit of the submission. The 9 pages long version is available at
http://users.isr.ist.utl.pt/˜cfb/INCOM2012.pdf


