
  

  
Abstract— Automatic Karyotyping is the process of 

classifying chromosomes from an unordered karyogram, into 
their respective classes to create an ordered karyogram. 
Automatic karyotyping algorithms typically perform 
geometrical correction of deformed chromosomes for feature 
extraction; these features are used by classifier algorithms for 
classifying the chromosomes.  Karyograms of bone marrow 
cells are known to have poor image quality. An example of such 
karyograms is the Lisbon-K1 (LK1) dataset, which is used in 
our work. Thus, to correct the geometrical deformation of 
chromosomes from LK1, a robust method to obtain the medial 
axis of the chromosome was necessary. To address this 
problem, we developed an algorithm that uses the seed points to 
make a primary prediction. Subsequently, the algorithm 
computes the distance of boundary from the predicted point, 
and the gradients at algorithm-specified points on the 
boundary to compute two auxiliary predictions. Primary 
prediction is then corrected using auxiliary predictions, and a 
final prediction is obtained to be included in the seed region. A 
medial axis is obtained in this way, which is further used for 
geometrical correction of the chromosomes. This algorithm was 
found capable of correcting geometrical deformations in even 
highly distorted chromosomes with forked ends. 

I. INTRODUCTION 

Automatic Karyotyping is the process of ordering and 
classifying the chromosomes into their respective classes; 22 
pairs of autosomes and a pair of allosomes. Ordered 
karyograms are created using karyotyping, which are used to 
study chromosomal morphology. These studies are useful for 
detection of diseases, particularly cancer, such as leukemia. 
By identifying the aberration in chromosome features, such 
as, position of centromere, length of chromosome, area of the 
chromosome and band pattern etc., clinicians are able to 
judge whether the samples contain signatures of a disease.  
Automatic karyotyping algorithms extract features of 
chromosomes, and use those features to classify the 
chromosomes. However, karyotyping of chromosomes from 
bone marrow cells poses a challenging task due to poor 
details in images; a feature typical of unordered karyograms 
of bone marrow cells. The data set that we are working on, is 
a set of ordered karyograms of bone marrow cells, and is 
called Lisbon-K1 (LK1) [1]. Thus, extraction of features from 
LK1 chromosomes is a challenging problem.  
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Several features of chromosomes are used for the 
classification of chromosomes. Some of the most prominent 
features are band profile, position of centromere and 
dimension of the chromosomes. However, chromosomes 
from LK1 are inadequately condensed and elongated for 
reliable identification of the centromere position. Thus, an 
accurate band profile of chromosome becomes even more 
important [2]-[5]. Band profile computation, in turn requires 
an accurate geometric correction of chromosomal 
deformations. In previous studies, several algorithms for 
geometric correction of chromosomes have been presented. 
Use of MAT [1],[6]-[7] and infinite thinning [8] has been 
previously used to obtain a medial axis to correct the shape of 
the chromosome. Different methods of geometric correction 
using vessel-tracking algorithm [4], and by segmenting the 
chromosome into polygons have also been proposed [3]. 
Most of these algorithms obtain an initial guess and 
extrapolate it to obtain the medial axis, which is then used for 
geometric correction. The extrapolation techniques overlook 
the variations in the boundary and rely solely on the seeds, 
thus introducing inaccuracies in medial axis towards the ends 
of the chromosome, which in turn affects the geometrical 
correction. 

The motivation of our work was to reduce these 
inaccuracies and to extract more accurate features for the 
classification of chromosomes. We previously developed an 
algorithm that obtains the initial seed region by pruning the 
skeleton of the chromosomes [9]. The seed region was then 
extrapolated. To account for the variations in the boundary, 
the algorithm kept track of the distances of extrapolated 
point, from the boundary of chromosomes. While this 
algorithm worked well, it had two shortcomings: 1) In the 
cases where chromosomes had “forked” towards the end, the 
medial axis wasn’t obtained in such a way that it could 
capture the forked portions, 2) While the medial axis, and 
band profile were computed with high accuracy, the 
algorithm couldn’t correct the deformation in chromosome 
shapes with as much fidelity as is necessary. With our new 
algorithm, we have addressed these issues. In addition to the 
primary prediction and distances from the boundary, the 
algorithm considers the gradients along the boundary to 
extrapolate the seed region. This leads to improvements in 
band profiles, and geometrical. This paper, describes the 
working of our new algorithm.  

II. METHOD 
To accomplish geometric correction, the algorithm has 

three main sections: 1) Seed Region Extraction, 2) Medial 
Axis Estimation, 3) Axis Smoothing and Geometric 
Correction. These are described in order: 
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1) Seed Region Extraction 

The karyograms in LK1 dataset are ordered. The 
algorithm begins with the extraction of chromosome, which 
is then processed in subsequent steps. The karyogram is first 
binarized and segmented. Connected components in the 
segmented karyogram represent chromosome, and are 
extracted by calculating the dimensions of a bounding box 
that encloses each chromosome. Chromosome extraction is 
followed by skeleton computation, which is further used for 
seed region extraction. 

Since the chromosomes from LK1 dataset have highly 
irregular boundary, existing algorithms produce skeletons 
with too many branches. Thus, an algorithm developed by X. 
Bai et al. [10] was chosen, which can generate a skeleton 
with desired number of branches. The algorithm is fast, and 
robust with respect to irregularities in the boundary of the 
input shape. To help in the further discussion of the 
algorithm, few definitions are noted below. To help the 
reader in relating the notations to chromosome image, Fig. 1 
shows several intermediate steps of geometrical correction of 
chromosomes with annotations. 

Let us define a 2-dimensional space ℝ2 containing a 
connected subset D that has a boundary ∂D constituting of 
analytic closed curves, Fig. 1 (c)-(d). Then, the skeleton S(D) 
of a set D is the locus of the center of a disk that touches ∂D 
and is independent of other disks in D [11]. T(s), is a set 
resulting from operation { ∂D ∩ Disk(s) }, where Disk(s) is a 
maximal disk centered at s where s ∈ S(D). Degree of s, 
deg(s) is defined as cardinality of T(s). Then, the bifurcation 
points of S(D) are defined as b  := {s ∈ S ( D ) : deg(s) ≥ 3}. 
An end point is defined as e := { S(D) ∩ ∂D }. The algorithm 
described in [10] returns a skeleton with 4 branches, 4 end 
points and 2 bifurcation points. Then, Seed Region, SR(D), is 
defined as SR(D) := {s ∈ S(D) : s is between b} and is 
obtained from the skeleton of the chromosome, Fig. 1 (d). 

2) Medial Axis Estimation 

Once the seed region has been obtained, it is extrapolated 
into a medial axis. To accomplish this, the boundary is 
smoothened by first fitting a piecewise cubic spline to ∂D and 
using regression to find the smooth boundary, ∂D2, Fig. 1 (e). 
∂D2, is then differentiated with respect to x, at all x ∈ ∂D2, to 
estimate the boundary derivative ∂D2’. Medial axis M(D) ≡ 
[Mx My] is then defined as an axis of symmetry obtained by 
extrapolating the seed region, so that M(D) traverses D and 
Mx is nonstrictly increasing with respect to x, Fig. 1 (g). Note 
that for a given vector V, Vx and Vy refer to its components in 
the x and y directions respectively. Further, f’ is assumed to 
be the derivative of f with respect to x. Extrapolation from 
SR(D) to M(D) is performed using the rules described below.  

To grow M(D) is to append a new element eM such that : 
if C is the curve describing the spatial distribution of M(D), 
then C’(eM) is the tangent to C at eM and norm(C)  at eM is the 
normal to C’(eM) at eM, Fig. 1(e). Let d := {d ∈ C : d ∈ C ∩ 
norm(C)   at eM } be the set of points that describe the 
intersection of the normal to C and C, Fig.1(e). Subsequently, 
eM  is a valid point as long as it satisfies all or one of the 
conditions described below (cannot be generalized to all D): 

Condition 1: || eM – µd || ≤ ψ, where ψ is the error limit; 
here “|| . ||” operator is the l2- norm and µd is the midpoint of 
line connecting the points in d. 

Condition 2: C’(eM) ≈ mean (∂D2’(d)) ; where ∂D2’(d) is 
the gradient of the smoothened boundary ∂D2’ at the points in 
d. This condition ensures that the gradient of C at eM varies 
with the variations in the boundary ∂D2’ at the intersection 
points d. This is an intuitive measure and follows from the 
idea that we need M(D) to be as spatially dynamic as the 
boundary ∂D2. 

Condition 3: || eM – e(1 or 2) || ≤ γ , where e1 and e2 are the 
end points of M(D) before inclusion of eM, and γ is a 
threshold parameter that ensures that eM  lies in the vicinity of 
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Figure 1.  (a) Ordered Karyogram, (b) Binarized and segmented karyogram, bounding box is shown for one of the chromosomes, (c) Extracted 
chromosome, (d) Chromosome with skeleton, seed region is marked, (e)-(h) Annotated chromosome processing stages, (i) Geometrically corrected 
chromosome, obtained from (h), correspondence between chromosomes from (g) and (i) can be observed. 



  

the end points of M(D). If this condition is violated, 
unwanted irregularities may be induced. 

The algorithm estimates eM as a weighted sum of a 
primary prediction PI and two auxiliary predictions PII and 
PIII, which are obtained using a 3-step process described 
below.  

Step 1 : To begin the algorithm, assign M(D) = {s ∈ 
SR(D)}. A training set S is formed by sampling Np (Np = 6) 
points at the extremities of M(D). The primary prediction, PI 
is obtained by the technique described in our previous work 
[9]. Since Mx is assumed to be nonstrictly increasing with 
respect to x,  let  PIx =  x , where x is the x-coordinate of the 
next eM to be appended to the SR(D)  A hypothesis hθ is then 
defined as, hθ (x) = θ0 + θ1 x, where hθ (x) is the function 
used to predict y-coordinates of PIy for input PIx. Hypothesis, 
hθ (x), is calculated by fitting a weighted linear polynomial to 
S as described in [9]. Once hθ (x) is available, PIy  is given by 
PIy = h θ (P I x ) . This method of prediction ensures that 
Condition 1 is satisfied for all cases with low value of ψ. 

Next, for estimating the auxiliary predictions PII and PIII, 
points of intersection of the orthogonal to C at PI (called 
norm(C) at PI ) and ∂D2 are required. The points of 
intersection are d. 

To calculate PII, the x-coordinate of PIIx (x-coordinate of 
PII) is set to be PIIx  =x, and the y-coordinate PIIy is assigned 
the mean of the y-coordinates of points in d (d ≡ [dx dy]). 
Then, 

                                PII = [ x  µdy ]          (1) 

where µdy is the mean of dy. 

To calculate PIII, the derivatives of ∂D2 at the points d are 
considered. These are represented by ∂D2’(d). The x-
coordinate of PIII, PIIIx, is set to be PIIIx = x, and its y-
coordinate PIIIy is calculated as follows. Further, prediction 
PIII is required to satisfy Condition 3 . This means that a line 
joining the end point e(1 or 2) of M(D), to PIII has a gradient 
that is a function of the gradients of boundary at the points in 
d. This line, hξ(x), is obtained using equations (2)-(4)  

                              hξ(x) = ξ0 + ξ1 x              (2) 

                          ξ1 = mean (∂D2’(d))                      (3) 

                  ξ0 =  eiy – ξ1 eix ;  for i = 1 or 2                   (4) 

Here ξ1 is the slope of the line hξ(x), and ξ0 is its y-
intercept. PIIIy is assigned the value hξ(x) and hence, 

                              PIII = [ x  hξ(x) ]                                  (5) 

We have all three predictions: PI, PII and PIII, Fig. 1 (f). 

Step 2: The auxiliary predictions are validated by 
checking if || PI – PII || ≤ TOL (TOL is set to a default of 1.5). 
This check ensures that prediction doesn’t lie outside the 
expected region; it’s done to suppress unexpected deviations 
in M(D). Note that the algorithm checks only for PII to be in 
the vicinity of PI. If the inequality is true, then PII and PIII are 
valid and the algorithm continues. If the inequality is not true, 
then: eM = PI. Once PII and PII have been validated, eM is 
estimated as a weighted mean of the 3 predictions: 

     eM = (WI×PI + WII×PII + WIII×PIII) / (WI +WII +WIII)   (6) 

The weight vector W = [ WI WII WIII ] is assigned a 
default value of [1 1 1] and can be modified to suit specific 
cases where the boundary ∂D is too irregular to be used with 
default weights. Such a weighting allows more control over 
the seed region extrapolation and aids in processing 
chromosomes with large variations in boundaries.  

Step 3: The estimate eM is appended to M(D) at the e1 or 
e2 end for extrapolation in the upper or lower portion of D. 
The algorithm iterates through Steps 1 to 3 till M(D) extends 
through the length of the chromosome D. 

3) Axis Smoothing and Geometric Correction 

This step of the algorithm produces geometrically 
corrected or “straightened” chromosome D2. Some 
preliminary processing is required before geometric 
correction. This is summarized below. Splines with knots at 
intervals of 3,4 and 8 points are fitted through M(D) 
successively to eliminate noise and provide a smoothened 
medial axis M(D)S. Then, M(D)S is differentiated at every 
point with respect to x, so M’(D)S is the vector describing the 
slope at each point (x, y) of D. Orthogonal lines N(M) are 
calculated at each point on M(D) S by, 
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Figure 2.  (a) Band Profile of chromosomes from the same class, straightened chromosome is shown along with the original deformed chromosome (b) 
A case of a chromosome with small seed region that was accurately corrected.  



  

  Ni(Mi) =  –( Mi’(D))-1
x + (Miy –Mi’(D)×Mix)             (7) 

 Where Ni(Mi) is the orthogonal line corresponding to the 
ith point on M(D)S, Fig. 1 (g). Let INi be the points of 
intersection of Ni(Mi) with the original unsmooth 
chromosome boundary ∂D0, Fig. 1 (g). Using this original 
boundary ensures that the parts of the chromosome which 
were eroded due to boundary smoothening are not lost during 
the geometrical correction. This further leads to more 
accurate feature extraction. For geometric correction a new 
destination image D2 is created such that its width is twice the 
width of original chromosome D1, Fig. 1 (g). The following 
discussion describes a chromosome as an image or matrix 
where d1ij is the intensity value at the pixel belonging to ith 

row and jth column. Then, D2 is populated as described 
below. 

The profile ρi of the image between the two points of the 
INi corresponding to ith point on M(D)S is obtained by 
connecting a straight path Ai of l points connecting the two 
points in INi. Here, l is the number of pixels in D that are 
traversed by Ai. The values in ρi are calculated by Nearest 
Neighbor Interpolation (NNI) method. Continuing this way, 
we obtain D2, Fig. 1(i). 

III. RESULTS 
This algorithm was tested on karyograms from LK1 

dataset. Fig. 3 shows few of the highly distorted and forked 
chromosomes that were geometrically corrected using our 
algorithm. The results show correspondence between the 
regions of deformed chromosome, and the regions of the 
geometrically corrected chromosome. Further, to test our 
algorithm’s accuracy in revealing similarity between spatial 
distribution of intensity on chromosomes from the same 
class, band profiles of a pair of chromosomes from the same 
class was computed and has been shown in Fig. 2 (a). 
Additionally, we tested our algorithm on chromosomes from 
a high quality dataset from Grisan et al., [4] the results of 
geometrical correction have been shown, Fig. 3 (c). 
Algorithm was found capable of extrapolating small seeds 
into medial axis spanning the entire chromosome, Fig. 2(b). 
Additionally, forked portion of the chromosomes were also 
recovered in the straightened chromosomes, Fig. 3 (a). The 
inclusion of a third parameter for extrapolation of seeds 

improved the geometrical correction results that we obtained 
previously. Thus, we were able to successfully correct the 
chromosomes that suffered from forking towards the ends, 
and correct the geometrical deformation that will help in 
more accurate feature extraction. 

IV. FUTURE WORK 
Using this algorithm, we have extracted features from 

chromosomes, which will be used for the classification 
process. We are working on the development of a robust 
classifier method to automatically karyotype the 
chromosomes from LK1 dataset. 
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Figure 3. (a) A forked chromosomes that was geometrically corrected. (b) Examples of distorted and forked chromosome from LK1 (c) The 
chromosomes with black background from Grisan et al. [4] data set that were geometrically corrected. 


