
Robotics and Autonomous Systems 39 (2002) 205–221

Foveated active tracking with redundant 2D motion parameters�

Alexandre Bernardinoa,∗, José Santos-Victora, Giulio Sandinib
a Instituto Superior Técnico, Instituto de Sistemas e Robótica, 1049-001 Lisboa, Portugal

b DIST, University of Genoa, Genoa, Italy

Abstract

This work presents a real-time active vision tracking system based on log-polar image motion estimation with 2D geometric
deformation models. We present a very efficient parametric motion estimation method, where most computation can be done
offline. We propose a redundant parameterization for the geometric deformations, which improve the convergence range of
the algorithm. A foveated image representation provides extra computational savings and attenuation of background effects.
A proper choice of motion models and a hierarchical organization of the iterations provide additional robustness. We present
a fully integrated system with real-time performance and robustness to moderate deviations from the assumed deformation
models. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Visual fixation systems have increasingly important
applications in robotics. The attempt to use robots
on dynamic environments raised the need for better
sensors and algorithms to keep track of the changes
occurring in the external environment. Ranging from
underwater vehicles or airships that must dock or
keep their positions relative to a static surface despite
external disturbances [15], to land robots that must
follow or avoid moving objects [11], visual fixation
can play an important role.

In this paper we present a system capable of fixating
objects whose changes in appearance follow some a
priori geometric deformation model. Often considered
geometric models are theaffine, scaled-Euclideanand
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Euclidean. The proposed algorithms cope with any
parametric deformation model, including the general
projective (planar) model. Many researchers have
proposed methods to track the relative motion of pla-
nar patches [12]. Many rely on optic flow techniques
[1,10] which are known to accumulate errors along
time and drift from the expected solution. As in [8],
our tracking algorithm is based on an initial template
that is registered with the incoming images at every
time step, and thus not prone to velocity estimation
bias. At the algorithmic level we propose a computa-
tional framework with significant improvements over
current methods: computational advantages arise from
the specification of appropriate motion decomposition
rules and the formulation of the optimization strategy
based on time-fixed coordinates; convergence range
is increased by using a redundant parameterization of
geometric deformations; and robustness is improved
by a hierarchical organization of the computations
and a foveated imaging geometry.

We use a foveated log-polar image geometry,
which was first motivated by its resemblance with the

0921-8890/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0921-8890(02)00205-1



206 A. Bernardino et al. / Robotics and Autonomous Systems 39 (2002) 205–221

structure of the retina of some biological vision sys-
tems and by its data compression qualities [13]. When
compared to the usual Cartesian images, the log-polar
images allow faster sampling rates on artificial vision
systems without reducing the size of the field of view
and the resolution on the central part of the retina
(fovea) [14]. In the last years, however, it has been
noticed that the log-polar geometry also provides im-
portant algorithmic benefits [4]. For instance in [2],
it is shown that the use of log-polar images increases
the size range of objects that can be tracked using a
simple translation model. We show that increasing the
“order” of the transformation towards more general
models, these advantages are still observed.

This paper is organized in the following way: Sec-
tion 2 describe the visual tracking algorithm, where
for the sake of simplicity, the usual Cartesian repre-
sentation of images is considered. This algorithm is
easily extended to the log-polar representation, which
is summarized in Section 3. The adopted geomet-
ric deformation models and the hierarchical structure
of the algorithm are described in Section 4. Exper-
iments with simulated and real setups are presented
in Section 5, and finally in Section 6 we draw some
conclusions.

2. Visual tracking with redundant 2D motion
parameters

The tracking problem is formulated as computing
the motion of an image region along time, assuming a
geometric model for the 2D image deformations. Our
contributions on this topic are based on three aspects:
a description of motion as the composition of pre-
dicted and residual motion fields; the formulation of
the objective function in time-fixed coordinates; and
the representation of image deformations in a higher
dimensional space (redundant parameterization).

This section is divided into three sections. First we
review the parametric motion estimation problem, and
develop two similar formulations in parallel. The first
formulation is equivalent to the one presented in [8].
The second formulation, that we propose, is obtained
from a change of time coordinates. The compared so-
lutions are derived simultaneously and with the same
notation, to clearly distinguish between them and real-
ize how the different formulations produce algorithmic

changes. In the second subsection we show that our
formulation leads to significant computational savings
and increased generality of application. Finally, in the
third subsection we propose a redundant parameteri-
zation for the geometric deformations and show that
it extends the convergence range of the algorithm.

2.1. Region based parametric motion estimation

Notation and problem formulation follow those
presented in [8]. LetIt (x) denote image bright-
ness of a pixel located at pointx = (x, y)T and
at time t . We model image motion by the differ-
entiable and invertible motion fieldf (x; µ), where
µ = (µ1, µ2, . . . , µn)

T is the motion parameter vec-
tor. A motion field maps 2D points to 2D points,
representing point displacements (motion). The in-
verse motion field maps back points to their original
locations, as illustrated in Fig. 1. The inverse motion
field is defined such that

f −1(f (x; µ); µ) = f (f −1(x; µ); µ) = x.

Solving the “tracking problem” consists in recovering
the motion parameter vector for each time instant. The
ground truth value is denoted byµ∗(t) and the corre-
sponding estimate byµ(t). Initially, at time t = 0, a
set of image pixels is selected, defining a reference re-
gion R = {x1, . . . , xm}. The reference templateR(x)

Fig. 1. Point coordinatesxi are mapped to pointsyi according to
motion field f , and can be mapped back to original coordinates
with the inverse motion fieldf −1.
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is defined as the pixel gray-level values of regionR at
time t = 0:

R(x) = I0(x) for all x ∈ R.

With the brightness constancy assumption [9], all
changes in image brightness in subsequent time steps
are described by the motion parametersµ∗(t) and the
motion fieldf

I0(x) = It (f (x; µ∗(t))) for all x ∈ R

or equivalently by theinversemotion fieldf −1

It (x) = I0(f
−1(x; µ∗(t)))

for all x ∈ R
∗ = f −1(R, µ∗).

2.1.1. Optimization framework
Usual optimization techniques can recover the

motion parameters by minimizing a least squares
objective function. This function can either express
the difference between the reference template and the
current image transformed by the motion field:

O1(µ) =
∑
x∈R

[It (f (x; µ)) − I0(x)]2 (1)

or express the difference between the current image
and theinversetransformed reference template:

O2(µ) =
∑
x∈R∗

[It (x) − I0(f
−1(x; µ))]2.

Remark 1. In the first formulation the optimization
parameters are contained in atime-varying entity
while in the second formulation they parameterize the
time-fixedreference template. Notwithstanding, both
formulations are equivalent.

2.1.2. Motion decomposition
An usual assumption in this kind of problems is to

consider that motion is “smooth”, i.e. it is continuous
and does not suffer abrupt changes. This is not an un-
realistic assumption since motion arises from the dis-
placement of physical objects, which is constrained
by inertial physical laws. This fact provides a start-
ing point for the search of target motion at time in-
stant t , based on information of past time steps. We
will denominate this starting point as “initial guess”
or “motion prediction” and represent it as̄µ. It can

be obtained simply as the estimate of the motion field
parameters in the previous time instantµ(t − 1) or
by a suitable prediction based on the past time infor-
mation and/or motion model, like in a Kalman filter
[5]. In general, the prediction does not coincide with
the true parameters and a residual errorµ̃ remains.
This residue is also called “innovation term” since it
contains the component of motion that cannot be pre-
dicted and must be computed by image processing al-
gorithms. Using these two components (predictionµ̄

and innovationµ̃), we define the composition rule that
generates the full motion field:

f (x; µ) = f (f (x; µ̄); µ̃).

Given the knowledge of the predicted motion vector
at time t , we can recast the tracking problem as one
of determining the “innovation term”̃µ(t). This can
be obtained by minimizing a least-squares objective
function:

O1(µ̃) =
∑
x∈R

[It (f (f (x; µ̄); µ̃))) − I0(x)]

or equivalently

O2(µ̃) =
∑
x∈R̃

[It (f (x; µ̄)) − I0(f
−1(x; µ̃))].

In the latter case the region of summation is given by
R̃ = f −1(R, µ̃). It is easy to show thatO1 = O2. To
simplify notation, we define the following vectors:

I t (µ)� vec[It (f (x; µ))],

Ī t (µ̃)� vec[It (f (f (x; µ̄); µ̃))],

I0(µ̃)� vec[I0(f
−1(x; µ̃))],

where the operator “vec” represents the stacking of all
image pixels into a long column vector. The objective
functions can be rewritten as

O1(µ̃) =
∑
R

[Ī t (µ̃) − I0(0)]2,

O2(µ̃) =
∑
R′

[Ī t (0) − I0(µ̃)]2.

We call I t (µ) the registered image. Image Ī t (0) =
I t (µ̄) is called thepredicted registrationand can be
computed by rectifying the acquired imageIt (x) with
the predicted motion vector̄µ.
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Remark 2. In both objective functions one of the im-
ages is known and fixed while the other is a variable
dependent of the optimizing parametersµ̃.

2.1.3. Local approximation
Assuming small magnitude for the components of

µ̃ we can make the following approximations:

• The regions of summatioñR andR are similar:

R̃ ≈ R.

• The imageĪ t (µ̃) at fixed timet can be approxi-
mated by a first-order McLaurin series expansion
with respect to the motion parameters:

Ī t (µ̃) ≈ Ī t (0) + M̄ t · µ̃, (2)

where the matrixM̄ t is them × n matrix of partial
derivatives of thepredicted registration̄I t (0) writ-
ten in column form:

M̄ t =
[

∂ Ī t

∂µ̃1
(0)| · · · | ∂ Ī t

∂µ̃n

(0)

]
.

• The image I0(µ̃) can be approximated by a
first-order McLaurin series expansion:

I0(µ̃) ≈ I0(0) + M0 · µ̃,

where the constant matrixM(0) is them×n matrix
of partial derivatives of thereference imageI0(0)

written in column form:

M0 =
[

∂I0

∂µ̃1
(0)| · · · | ∂I0

∂µ̃n

(0)

]
.

With these assumptions we can rewrite the objective
functions as follows:

O1(µ̃) =
∑
R

[Dt + M̄ t · µ̃]2,

O2(µ̃) =
∑
R

[Dt − M0 · µ̃]2, (3)

whereDt = Ī t (0) − I0(0) is the error between the
predicted registration and the reference template.

Remark 3. In the first formulation the matrix of par-
tial derivatives is time-varying while in the second for-
mulation it is fixed for all time instances.

2.1.4. Computing the solution
Since both objective functions are quadratic func-

tions of the residual motion parameters, solutions to
the optimization problem can be obtained in closed
form by solving the set of equations∇O = 0. The
solution yields in the first case

µ̃ = −(M̄
T
t M̄ t )

−1M̄
T
t Dt (4)

and in the second formulation

µ̃ = (MT
0M0)

−1MT
0Dt . (5)

Care should be taken with possible singularities in the

motion covariance matrices̄M
T
t M̄ t andMT

0M0. This
may happen when there is not sufficient texture in
the interest region and certain object motions are not
observable from the image gray-level variations. This
is a generalization of the aperture problem [9].

2.2. Minimizing online computations

The work presented in [8] is based on an objective
function of typeO1. Although derived with a differ-
ent motion decomposition rule and temporal analysis,
the objective function is equivalent to (3). Functions
O1 andO2 have a similar aspect but the former con-
tains a Jacobian matrix̄M t that is time dependent
while the latter contains aconstantJacobian matrix
M0. We propose a formulation based on objective
function O2. An objective function of this type is
computationally advantageous since the Jacobian ma-
trix can be computed at initialization of the reference
template while the previous formulation requires the
computation of the Jacobian (or part of it) at run
time.1

2.2.1. Algorithmic efficiency
In an algorithmic point of view, there are some

operations that can be performed in aoffline phase

1 In [8], the Jacobian is decomposed in the product of: image
spatial gradient; motion field spatial derivatives; and motion field
derivatives with respect to the motion parameters. Image spatial
gradients can be calculated offline, on the reference template. Ad-
ditionally, for some particular motion models, the Jacobian matrix
can be written as a product of a constantm × k matrix and a
time-varyingk ×n matrix, saving some online computation. How-
ever, there is always part of the Jacobian that must be computed
online.
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Table 1
Functional comparison between the proposed tracking algorithms

Framework 1 Framework 2

Offline steps

Define the target region Define the target region
Acquire and store the reference template Acquire and store the reference template
– ComputeM0

– ComputeM+
0 = (MT

0M0)
−1MT

0

Online steps

Acquire new image Acquire new image
Use a suitable motion prediction̄µ to rectify the target

region into the current image
Use a suitable motion prediction̄µ to rectify the target region

into the current image
ComputeDt by taking the difference between the predicted

registration and the reference template
ComputeDt by taking the difference between the predicted

registration and the reference template
ComputeM̄ t –

ComputeM̄
+
t = (M̄

T
t M̄ t )

−1M̄
T
t –

Computeµ̃ = M̄
+
t Dt Computeµ̃ = M+

0 Dt

Computeµ by composing transformations̄µ and µ̂ Computeµ by composing transformations̄µ and µ̂

(initialization) and other are performedonline (at
each time step). Since the derivation of the algorithm
is based on local linearization, for good run-time
performance the sampling period should be kept at
minimum. Therefore, the online computation should
be as fast as possible. Table 1 describes two com-
putational algorithms that implement the solutions
expressed in Eqs. (4) and (5).

2.2.2. Image warping
Image warping is the process of obtaining a new

image by applying a geometric transformations (mo-
tion fields) to an original image. This process is
needed to compute thepredicted registrationimage.
It is also used to compute image partial derivatives.
A very simple means of implementing this procedure
is by using look-up tables expressing the correspon-
dences between pixel locations in the original and
target image regions. More sophisticated methods can
employ some kind of interpolation to improve the
resulting image quality. In terms of computational
complexity, image warping is O(m), wherem is the
number of pixels in the interest region.

2.2.3. Discrete derivatives
In both formulations we must compute partial

derivatives of images with respect to the motion

parameters. In framework 1 we must compute:

Ī
(i)

t (0) = ∂ Ī t (µ̃)

∂µ̃i

∣∣∣∣
µ̃=0

, i = 1, . . . , n

and, in framework 2:

I
(i)
0 (0) = ∂I0(µ̃)

∂µ̃i

∣∣∣∣
µ̃=0

, i = 1, . . . , n.

A possible way to obtain discrete approximations
to the partial derivatives consists in applying the
formulas:

Ī
(i)

t (0) ≈ Ī t (h · ei ) − Ī t (0)

h
,

I
(i)
0 (0) ≈ I0(h · ei ) − I0(0)

h
,

whereh is a “small” constant andei is a vector with
value 1 at positioni and 0 at all other positions. Us-
ing this method, to compute each partial derivative we
must perform one image warping and one image dif-
ference. Therefore, the computation ofM0 has com-
plexity O(n × m).

2.2.4. Online complexity
Let us concentrate on the online complexity of the

algorithms, which is the most important for real-time
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Table 2
Online computational complexity

Step Operation Algorithm Complexity

1 Acquire image 1, 2 –
2 Rectify image 1, 2 O(m)

3 ComputeDt 1, 2 O(m)

4 ComputeM̄ t 1 O(m × n)

5 ComputeM̄
T
t M̄ t 1 O(m × n2)

6 Compute(M̄
T
t M̄ t )

−1 1 O(n3)

7 ComputeM̄
+
t 1 O(m × n2)

8 Computeµ̃ 1, 2 O(m × n)

9 Computeµ 1, 2 O(n)

performance. Table 2 presents the required online op-
erations as well as the computational complexity of
each step. Assuming fixed dimension for the motion
parameter vector, the overall complexity for each case
is O(m). However, we can observe that algorithm
2 saves a great amount of computation because it
does not need to compute online steps 4–7 (they are

Fig. 2. Number of operations for algorithms 1 (∗) and 2 (�) as function of region dimension. Results obtained withn = 8.

computed offline). Fig. 2 presents the total number of
arithmetic operations performed on the online steps of
each algorithm as a function of the number of pixels.
Data is obtained forn = 8 (planar motion model).
The gain in efficiency is obvious. Algorithm 2 online
performance is about 15 times faster.

2.3. Redundant parameterization of geometric
deformations

The motivation to propose a redundant parameter-
ization for the motion vector comes from realizing
that representing image deformations in a Taylor se-
ries expansion like Eq. (2) may not be very powerful.
Considering that image regions may have hundreds
of pixels (i.e. a vector in a very high dimension
space) and that common motions models have few
parameters, then representing one image by a lin-
ear combination of a few basis images (the partial
derivatives) can lead to very bad approximation. Ob-
viously, the approximation quality depends on image
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texture content but in general the approximation is
only valid for very small perturbations. We propose
to improve the approximation by enriching the linear
combination with discrete derivatives at several di-
rections and scales. A similar approach is proposed
in [6].

Let us define a set of redundant sample vectorsV =
{µ̃i , i ∈ (1, . . . , s)}, s � n}. This set must be com-
plete, such that any motion vector can be represented
as a linear combination vectors onV:

µ̃ =
s∑

i=1

ki · µ̃i . (6)

Since this new basis is redundant, multiple solutions
may exist for the coefficients of the linear combina-
tion. Coefficients,k = (k1, . . . , ks)

T represent a new
set of parameters for the geometric deformation and
implicitly define a new representation for image warp-
ing:

I0(k) = I0(µ̃) = I0

(
s∑

i=1

ki · µ̃i

)
.

The discrete partial derivatives of this new represen-
tation come:

∂I0(k)

∂ki

∣∣∣∣
k=0

= I0(h · µ̃i) − I0(0)

h
.

The discretization steph can be made unity and, in
such case, the magnitude of the sample vectorsµ̃i rep-
resent the discretization scale. With this new param-
eterization, the image partial derivatives represent the
derivatives at multiple directions and scales in the orig-
inal representation (direction and scale of eachµ̃i).
The proposed motion estimation algorithm can be ap-
plied with no changes to this new representation. The
Jacobian matrix comes

M0 =
[
∂I0(k)

∂k1

∣∣∣∣
k=0

| · · · | ∂I0(k)

∂ks

∣∣∣∣
k=0

]
which has dimensionm × s. The optimization pro-
cess computes a solution fork and the solution for̃µ
is given by Eq. (6). The computation time increases
with the number of sample vectors, but since most
of the computations are done offline, real-time per-
formance is still obtained. In our experiments, about
100–150 sample vectors are used and the algorithms

run at 25 Hz on a Pentium 400 MHz computer. No-
tice that, even though the redundant basis motion vec-
tors are linearly dependent, in general this does not
happen with the basis imagesI0(µ̃i), since they are
represented in a much higher dimension space. How-
ever, this depends on image texture and care should be
taken when running the optimization algorithm. We
use a damped least-squares method [3] to compute the
Jacobian matrix pseudo-inverse.

One of the advantages of the redundant param-
eterization over the standard one is the ability to
customize the setV of sample vectors according to
the kind and range of expected image deformations.
Also with the increase of computational power, we
can easily add new sample vectors to improve the
estimation results. The algorithm can be customized
in order to estimate the larger and more constrained
motions in the first iterations and the finer and more
generic transformations in the last iterations, which
improve its robustness.

2.3.1. Experiment
Let us consider one simple example and compare

the performance of the standard and the redundant
parameterizations. The experiment consists in sim-
ulating image translations from−30 to 30 pixels in
small steps (0.1 pixels). For each translation we apply
both approaches and compare the solutions. Results
are presented in Fig. 3. The first plot is relative to
translation estimation with the standard representa-
tion. Several curves are presented, corresponding to
the estimated translation with different number of
iterations (10, 20, . . . , 150). We can observe that in
this case the convergence interval is limited to about
±8 pixels. Another aspect of concern is the con-
vergence speed. The number of iterations depends
on the required precision—if translation is small,
good estimates can be obtained with a few iterations,
but more iterations are required in the limits of the
convergence interval. The second plot shows the per-
formance with the redundant parameterization. Again
several curves are presented for the evolution of the
estimation process with different number of iterations
(2, 4, . . . , 14). We can observe that the convergence
interval is much larger in comparison with the pre-
vious method. Also, the convergence rate is higher—
the algorithm reaches a stable solution in about 10
iterations.
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Fig. 3. Comparison of different parameterizations for geometric deformation: standard parameterization (top). Notice the limited convergence
range (about±8 pixels). Different lines correspond to different numbers of iterations (10, 20, . . . , 150). Redundant parameterization
(bottom). Different lines correspond to different numbers of iterations (2, 4, . . . , 14).
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3. Foveated images

The system described in this paper is based on a
log-polar space variant image sampling. One advan-
tage of this kind of sampling is data reduction. This is
obtained by reducing the resolution at the image pe-
riphery, but still keeping the whole field of view and
high resolution in the center (fovea). We map 128×128
Cartesian images to 64×32 log-polar images, achiev-
ing eight times increase in efficiency (both storage and
speed).

The log-polar transformation,l(x), is defined as a
conformal mapping from points on theCartesianplane
x = (x, y) to points in thecortical planez = (ξ, η)

[13]:

l(x) =
[

ξ

η

]
=
[

log(
√

x2 + y2)

arctan(y/x)

]
.

For active tracking purposes, the main advantage of
the log-polar geometry is that objects occupying the
central high resolution part of the visual field become
dominant over coarsely sampled background elements
in the image periphery. This embeds an implicit focus
of attention in the center of the visual field where the
target is expected to be most of the time.

Although the derivation of the motion estimation
algorithm was done considering Cartesian coordi-
nates(x, y), its extension to log-polar coordinates is
straightforward. Notice that intuitive deformations in
the Cartesian image plane (e.g. translation, rotation,
etc.) correspond to not so intuitive deformations in
log-polar coordinates (see Fig. 4). Thus we prefer
to define 2D transformations in Cartesian coordi-
nates. Then we express the corresponding log-polar

Fig. 4. The original log-polar (on the left) is warped according to a transformation that includes translation and rotation (second from the
left). The corresponding retinal images are also shown (right).

deformations in terms of a map between the Cartesian
and log-polar motion fields, in the following way:

f log(z; µ) = l(f (l−1(z); µ)). (7)

In terms of computation complexity, the transforma-
tion of an image according to a deformation field is
the same in Cartesian and log-polar images. However,
since log-polar images have less pixels, these trans-
formations are faster to compute, which is important
to achieve high sampling rates and better tracking
performance. Each image warping takes about 10 ms
on a Pentium 400 MHz computer, including the com-
putation of the log-polar motion fieldf log.

4. Algorithm implementation

To implement an algorithm based on the proposed
method, some design choices must be taken, such as:
(i) the deformation model, (ii) the number and distri-
bution of sample vectors̃µi ; (iii) the iterative (or not)
structure of the algorithm, i.e. the number of iterations
and/or the stopping criteria.

The choice of a deformation model depends on
the considered application. Target shape and motion
should be taken into account when deciding this
point. One thing to take into consideration is that
more constrained transformations (with less parame-
ters) are more robust to non-modeled aspects of the
deformations. Less constrained models (with mode
degrees of freedom) are in general less stable but for
some applications may be required. Planar surfaces
are often used in robotic applications, since they
can be found in many human made environments
and represent good approximations for other kind of
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surfaces. For example, in aerial mapping or ocean
floor exploration, the ground can be approximated by
a plane if the camera is distant enough [7]. Therefore,
planar surfaces provide an adequate and yet manage-
able model to work with. In these cases, the use of a
projective motion model can provide very good mo-
tion estimates which may be needed for precise pose
computation or trajectory generation. In this paper
we use two types of motion models. In the simula-
tions we use the projective model, thus being able to
estimate all deformations of planar surfaces motion.
The projective model has 8 degrees of freedom and
includes deformations such as translation, rotation,
scaling, shear and curl, as illustrated in Fig. 5. In the
active tracking tests, we use a rigid motion model,
composed by translation and rotation.

In terms of number of iterations, we chose to have
a fixed number. Since we are mostly interested in
real-time implementations it is more important to have
a fixed computation time than a very precise tracking,
therefore we fix the number of iterations at 3 for the
planar model an at 2 for the rigid model.

Regarding the choice of the sample vectors, and
after many experiments we chose to create three sets

Fig. 5. 2D planar transformations are composed by translation, rotation, scaling, shear and curl.

for the planar model: one with translation vectors, one
with affine vectors and one with projective vectors.
Each set is composed by 48 vectors with non-uniform
distributions, sampling more densely small defor-
mations but still considering large deformations.
For instance, the sample translation set is composed
by vectors that translate the template by amounts
(x, y) ∈ {−6, −3, −1, 1, 3, 6}2. The idea is to have
good precision when the deformations are small but
still be able to detect large deformations. The three
iterations are organized in the following way:

• The first iteration usessample translation vectors.
Since in the beginning a large deformation is likely
to exist, it is more robust to estimate more con-
strained transformations. This iteration is intended
to center the template with the current image and
leave to the next iterations the estimation of the re-
maining deformations.

• The second iteration usessample affine vectors. This
iteration should estimate most of the rotation, scal-
ing and shear present in the transformation.

• The last iteration usessample projective vectors.
It should estimate the remaining deformations and
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Fig. 6. Performance of the algorithm for translation, rotation, zoom-in and zoom-out transformations. Ground truth (×); first iteration
(translation sample vectors) (�); second iteration (affine sample vectors) (�); third iteration (planar sample vectors) (∗).

Fig. 7. Pan/tilt camera (left). The axis of rotation are assumed to intersect in the camera optical center. Simulated images with targets of
scales 36% and 2.25% (right).



216 A. Bernardino et al. / Robotics and Autonomous Systems 39 (2002) 205–221

make the final fine adjustment to the template. Since
this set spans 8 degrees of freedom, it should be
used only with small deformations, otherwise it is
likely to produce erroneous results.

Following the same ideas, for the rigid model we use
two sets of vectors (one for each iteration). The first
one uses the same 48 translation vectors. The second
use 24 rotations, also with non-uniform distribution
around the origin.

5. Results

Several experiments are shown to evaluate the per-
formance of the proposed methodologies. In particu-
lar we are interested in testing the motion estimation
algorithm, evaluating the benefits of using foveated
images and evaluating the system in real situations,
with objects deviating from the assumed deformation
models.

In the first experiment (performance evaluation) we
simulate camera motions that produce, in the reti-
nal plane, increasing image translations, rotations and
scalings. This experiment shows the range limitations
of the algorithm, i.e. the maximal image deformations
allowed between two consecutive images.

In the second set of experiments we compare be-
tween using Cartesian and log-polar images. Again we
simulate image motion for objects of different sizes in
order to have ground truth data.

In the third experiment we use the real setup and
evaluate qualitatively the performance of the full sys-
tem and its ability to cope with non-modeled aspects.

5.1. Performance evaluation

In these experiments we evaluate the algorithm con-
vergence range with translations, rotations and scal-
ings. The algorithm is applied to increasingly bigger
deformations and at each iteration the estimated and
real transformations are compared. The deformation
measure is given by theL2-norm of the vector that
contains the corner displacements (in pixel) of a polyg-
onal window defining the template. The results are
presented in Fig. 6.

With the images and transformations used, the al-
gorithm is able to estimate with precision (error less

than half pixel per window corner) about 10 pixels
translation, 11 degrees rotation, 18% zoom-in or 24%
zoom-out. This corresponds to the biggest motion that
the algorithm can cope with, between two consecu-
tive images. It is interesting to note that the sample
translation vectors do most of the work when the de-
formation consists solely of translation but are almost
useless when the deformation does not include trans-
lations. However, for the problems we are interested
with, translation is a dominant deformation and is es-
sential to include translation vectors in the sample set.

Fig. 8. Comparison between log-polar (top) and Cartesian (bottom)
versions of the open-loop experiment. The true and estimated
target positions are represented for targets of several dimensions.
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Fig. 9. Estimated(+) versus true (∗) positions of the target. Comparison between log-polar and Cartesian versions of the algorithm with
36% and 9% size objects.

5.2. Advantage of foveated retina

The camera system used in this work has a sim-
ple pan/tilt configuration as shown in Fig. 7. The
active-tracking goal is to control the pan and tilt an-
gles(θp, θt) according to the position of the template
obtained by the motion estimation algorithm. The pur-
pose is to make the optical axis intersect the center of
the target template. When that happens, the image er-
ror (x, y) is zero. Otherwise, it is related to the angular
position of the target relative to the camera optical axis.
Although the real kinematic relations between image
error and angular error are non-linear, we will control

the pan and tilt angular velocities of the camera with
a linear proportional controller on the image error:

θ̇p = −kpx, θ̇t = −kty.

To evaluate the performance of the algorithms with
ground truth data we developed a simulator for the
system. We assume a simple first order dynamic
model for the velocity of the camera joints with a
time constant of 200 ms and the sampling frequency
is 10 Hz (100 ms), which define a relatively slow dy-
namics. Therefore, the control is not “one step” but
instead has a lag that depends on target velocity and
the camera model parameters.
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Fig. 10. Reference image for the active tracking experiment. The
white circle delimits the region used in the computations. Notice
that the selected area contains part of the background.

We use two planar surfaces to simulate the environ-
ment: one is the background located 10 m away from
the camera and the other is the target at 0.5 m. We
tested different scales for the target, from 36 to 2.25%
of the full image area (see Fig. 7).

5.2.1. Open-loop test
In this simulated experiment the camera does not

move. We compare the use of log-polar and Carte-
sian images with objects of different sizes. The actual

Fig. 11. Estimation of horizontal translation along the active tracking experiment. The frames shown in the bottom correspond to the
notable points signaled in the plot.

dimension of the objectis not knowna priori, there-
fore the system selects an initial template that occu-
pies the full image except a small border region in
the periphery on the view field. The target translates
linearly in 3D space. At each time instance the algo-
rithm estimates target position, which is used as initial
guess to the next time step. In Fig. 8 we present plots
of the estimated template position for the log-polar
and Cartesian versions of the algorithm. From these
plots we can observe that the performance of both
versions is good for large objects but degrades when
target size diminishes. Notwithstanding, the log-polar
version copes with smaller objects than the Cartesian
version.

5.2.2. Closed-loop test
This is also a simulated experiment and illustrate

the integration of motion estimation and active camera
control. Simulated camera pan and tilt angles are con-
trolled to keep the observation direction on the center
of the target. The target moves with constant velocity
during the first 15 time steps and then stops. In this
case the displacements can be larger than in the pre-
vious experiment because the target is actively kept
inside the field of view. Results are shown in Fig. 9.
Notice in the plots that a 9% size object is not tracked
by the Cartesian algorithm. Even for 36% size, Carte-
sian tracking is not very stable and sometimes looses
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Fig. 12. Estimation of vertical translation along the active tracking experiment. The frames shown in the bottom correspond to the notable
points signaled in the plot.

track of target motion. The log-polar algorithm per-
forms very well in both cases, presenting a tracking
error less than two pixels in the image plane.

5.3. Active tracking of real objects

In this experiment we use a real pan/tilt setup and
illustrate qualitatively the performance of the system

Fig. 13. Estimation of rotation along the active tracking experiment. The frames shown in the bottom correspond to the notable points
signaled in the plot.

tracking a face (see Fig. 10). The face moves in front
of the system in a natural fashion, performing transla-
tions and rotations, both in depth and fronto-parallel
to the system. The 2D motion model considered in
this case consists in translation and rotation (3 degrees
of freedom). We show plots with the estimation of the
motion parameters along the sequence. For each plot
we signal some special frames, also shown, for which
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the motion amplitude is large. Fig. 11 corresponds
to the estimation of horizontal translation. Notable
points are signaled at frames 275, 524, 560, 592,
where target velocity attain high values in the horizon-
tal direction. Figs. 12 and 13 show results for vertical
translation and rotation. A qualitative analysis shows
good robustness to non-modeled deformations such as
pose changes, scale changes and background motion.

6. Conclusion

This paper presented a foveated system capable of
tracking of objects in real time. The method is based
on parametric motion estimation of a given initial tem-
plate, using geometric deformation models with re-
dundant parameterizations.

Our results show that motion estimation presents
good precision. Although, for active tracking pur-
poses, precision may not be a strong requirement, the
method has the advantage of not accumulating errors
along time, in opposition to usual optic flow algo-
rithms. Also, precise registration can be used to obtain
precise pose or ego-motion measurements, useful in
auto-localization applications. The use of log-polar
images reduces the computation time and memory
storage needs. Additionally, the log-polar geometry
implements an implicit focus of attention in the image
center. Although not evident from the results shown in
this paper, the log-polar geometry reduces the effect
of image artifacts not in the center of the image.

The main conclusions to retain from this work are
the following:

• A very fast parametric motion estimation algorithm
is achieved by using appropriate motion decompo-
sition rules and time coordinates.

• A redundant parameterization of image deformation
increases the convergence range and allows easy
customization of the algorithm.

• A foveated image geometry attenuates background
motion effects.

• The estimation of more constrained motion models
in the initial iterations of the algorithm provide ad-
ditional robustness.

• Active tracking can be achieved with simple motion
models and present good tolerance to non-modeled
deformations.

Experimental results, obtained in simulated and real
setups, support these conclusions. Further work will
focus on the integration of other visual cues for tar-
get detection and validation (color, edge orientation,
etc.).
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