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ABSTRACT
The Multiagent POMDP (MPOMDP) framework provides
well-known methods to model and solve fully communica-
tive multiagent problems. However, the size of these models
grows exponentially in the number of agents, and agents are
required to act in synchrony. We show how these problems
can be mitigated through an event-driven, asynchronous for-
mulation of the MPOMDP dynamics. We can prove that the
optimal value function in our framework is piecewise linear
and convex, allowing us to extend a standard point-based
solver to the event-driven setting. We also show how belief
states can be updated at run-time in asynchronous domains.
Our results show that asynchronous models scale better to
larger domains than synchronous analogues, while retaining
solution quality.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Theory
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Planning under uncertainty; cooperative multiagent systems

INTRODUCTION
Most existing approaches to multiagent decision making

under uncertainty are grounded in the theory of Markov
Decision Processes (MDPs), for example Decentralized Par-
tially Observable MDPs (Dec-POMDPs) [2] which are in-
tractable without communication (NEXP-Complete); and
Multiagent MDPs (MMDPs) and POMDPs (MPOMDPs),
which assume free communication between agents [3]. The
latter framework is typical, for example, when dealing with
teams of mobile robots, or in autonomous surveillance sys-
tems. However, the complexity of solving an MPOMDP is
exponential in the number of agents [3]. This follows from
the assumption of synchronous operation: at each decision
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step, the simultaneous observations of all agents need to be
considered when selecting a new joint action.

The present work proposes Event-Driven MPOMDPs, an
alternative description of the dynamics of multiagent deci-
sion making under uncertainty1. In our approach, agents
must react to events, which are detected locally, and asyn-
chronously, by each agent. Through the assumption of free
communication, each local event triggers a joint observation,
which is shared by the team. Since multiple events cannot
occur simultaneously, the total number of joint observations
in this model grows linearly in the number of agents (instead
of exponentially), allowing these methods to scale better to
larger scenarios. Furthermore, the processes through which
events are detected are considered to be susceptible to false
positive and false negative errors.

We can prove that the optimal value function is piece-
wise linear and convex (PWLC), allowing us to extend a
point-based solver to the event-driven setting; and we pro-
pose a method for belief-state tracking at run-time for asyn-
chronous agents. We evaluate our methods through simu-
lated results, comparing the performance of an event-driven
model to that of an equivalent synchronous MPOMDP.

EVENT-DRIVEN MPOMDPS
An MPOMDP is a tuple 〈d,S,A,O, T,O,R〉 where: d

is the number of agents; S is the state space; A = ×diAi
is a set of joint actions a = 〈a1, a2, . . . , ad〉, and Ai the
individual action set of agent i; O = ×diOi is a set of joint
observations o = 〈o1, ..., od〉; T : S × A × S → [0, 1] is
the transition function, such that T (s,a, s′) = Pr (s′|s,a);
O : A × S × O → [0, 1] is the observation function, such
that O(a, s′,o) = Pr (o|a, s′); and R : S × A → R is the
instantaneous reward function.

A joint belief state b, a probability distribution over S, is
maintained at each step in an MPOMDP, updated accord-
ing to a and o [3]. Due to the influence of o, agents must
synchronize their observations before taking a joint decision.
Our approach lifts this assumption of synchrony.

We view system“events”as state transition tuples 〈s,a, s′〉.
In this context, an Event-Driven MPOMDP is a model where
decision episodes are triggered by events. Formally, it is
a tuple 〈d,S,A,O, T,O, C, R〉, where: d, S, A, R are de-
fined as in a standard MPOMDP; O, the set of observa-

1Our definition and use of “events” differs from existing
work [1], and concerns different purposes. There, events
model interdependencies between agent policies in Dec-
MDPs. Here, events are simply state changes: the system
dynamics are driven by events.



tions, is defined as O = ∪diOi, implying that the local ob-
servation of any agent can be taken directly as if it were a
“joint” observation, exploiting free communication; the ob-
servation function is O : S × A × S × O → [0, 1], such that
O(s,a, s′,o) = Pr (o| s,a, s′). This allows for a descrip-
tion of false positive/false negative event detection rates;
C : A×O → PS(A)\∅, where PS(A) is the power set of A,
is a constraint-generating function which returns, for each
pair 〈a, o〉, a constrained action set C(a, o) ⊆ A. This set
represents the joint actions which are available to the agents
at the onset of a decision episode, given that, at the previous
step, the team of agents executed a and observed o.

The presence of C addresses the problem of unobservable
events and false negatives—if all agents fail to detect the
occurrence of an event, they won’t be able to change their
actions, even if the state has in fact changed. We associate
the occurrence of such events with token observations f ,
and such that C(a, f) = a. During planning, this approach
allows the expected value of joint policies to remain accurate.

However, during plan execution, false negative detections
are never experienced by an agent (by definition), and so
agents must take into account the fact that the system can
undergo several unobserved transitions between any two be-
lief update steps. This implies that the standard belief up-
date in an MPOMDP (c.f. [3]) cannot be directly applied, at
run-time, to an event-driven model. For an infinite-horizon
agent in an Event-Driven MPOMDP, given that the team is
executing a and observing o in belief state b̂, let f ∈ O repre-
sent false negative detections of events, and Ha

o : |S|×|S| →
[0, 1] such that Ha

o (s′, s) = T (s,a, s′)O(s,a, s′, o). We can
show that the belief update step is then:

b̂ao =

(
Ha
o (I −Ha

f )−1b̂
)

1T
(
Ha
o (I −Ha

f )−1b̂
) ,

iff for all eigenvalues λ of Ha
f , |λi| < 1. If this isn’t verified,

the system has fully unobservable (Pr(f |·) = 1) loops, over
which the belief state can’t be tracked.

We can show that a value function for an Event-Driven
MPOMDP in the presence of action constraints is PWLC,
that is, for finite n, the optimal value function V ∗n can be
written as:

V ∗n (b) = max
υn∈Υn

υn · b ,

where Υn is a set of |S|-dimensional vectors. This enables
the use of dynamic programming techniques to calculate (or
approximate) an optimal policy. We propose Constraint-
Compliant Perseus (CC-Perseus), an adaptation of the
Perseus randomized point-based algorithm to Event-Driven
MPOMDPs, with the following modifications with respect
to the latter: we implement the backup stage for belief
states [4], so that, at stage n, and for each 〈a, o〉, only vec-
tors in Vn−1 associated to actions in C(a, o) are considered;
we explicitly maintain separate Q−value functions at each
stage (Vn = ∪AQa

n) and ensure that each Qa
n is never empty.

RESULTS
The performance of CC-Perseus on an event-driven prob-

lem (d = 4, |S| = 216, |A| = 8, |O| = 10) was compared
to that of standard Perseus on an equivalent synchronous
model (d = 4, |S| = 216, |A| = 54, |O| = 256). The results,
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Figure 1: (a) Residual difference maxB{Vn(b) −
Vn−1(b)}. (b) Size of the value function, |Υn|. (c)
Real time convergence.

represented in Figure 1, show a computational advantage
of the event-driven model over its alternative by more than
one order of magnitude. This follows from the exponentially
smaller number of observations that need to be considered
at each step.

CONCLUSIONS
We propose a novel, asynchronous modeling approach for

multiagent decision-making under partial observability. We
adapt a common POMDP-solving algorithm to function in
an event-driven paradigm, and show how agents can track
belief states at run-time in the presence of false negative ob-
servations. Empirical comparison shows that event-driven
MPOMDPs allow more compact representations than what
is possible through standard MPOMDPs in the same do-
mains, resulting in considerable computational savings.
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