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Synchronization of dynamical systems allows two systems to have iden-
tical state trajectories. This method consists of an appropriate unidirec-
tional  coupling  from  one  system  (drive)  to  the  other  (response).  A
method  to  adapt  a  response  system  such  that  synchronization  is
achieved was proposed by Chen and Lü in 2002. However, this method
has two limitations: first, it does not scale well if the number of parame-
ters is greater than the state dimension, and second, the parameters are
not  guaranteed  to  converge.  An  adaptation  law  addressing  these  two
limitations is presented. The feasibility and advantages of the proposed
method are illustrated by numerical simulations. 

1. Introduction

One  of  the  challenges  in  designing  autonomous  robots,  particularly
when we expect these robots to show intelligent behavior while inter-
acting  with  the  physical  world,  is  the  capability  of  perceiving  and
making  predictions  about  the  world.  In  this  sense,  system  identifica-
tion  methods  manifest  themselves  as  a  powerful  tool  to  achieve  this.
System identification is a fundamental method in science, allowing the
construction of  models  from observed data [1,  2].  These methods al-
low  the  use  of  these  models  not  only  to  understand  physical  pro-
cesses,  but  also to make predictions about their  future behavior.  The
background for this paper is the problem of segmenting perception in
physical robots into meaningful events in real time [3, 4], following a
dynamical systems approach [5]. This approach consists of simultane-
ously learning a model of the robot interaction with the environment
and  deriving  predictions  about  its  short-term  evolution.  The  robot
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and the world are seen as a coupled dynamical system, where the for-
mer  adapts  and  synchronizes  with  the  latter.  Event  boundaries  are
detected once synchronization is lost [3]. We can model this problem
using two dynamical systems, one representing the world (initially un-
known  to  the  robot),  and  the  other  representing  the  model  of  the
world made by the robot: the problem consists in (1) adapting the lat-
ter to the former, by identifying it in real time, and (2) synchronizing
the  latter  to  the  former,  such  that  sudden  deviations  of  synchroniza-
tion can be employed to identify events [6, 7]. 

Consider  two  identical  continuous-time  dynamical  systems,  desig-
nated drive (D) and response (R). Under the framework described, the
drive corresponds to the world, while the response corresponds to the
model made by the robot. It is well known that the state evolution of
each  dynamical  system,  when  taken  separately,  may  differ  radically
for  slightly  different  initial  conditions,  namely  in  the  case  of  chaotic
dynamical systems [8, 9]. However, in the presence of a unidirectional
coupling  from  the  drive  to  the  response  system,  synchronization  of
their  state  trajectories  is  known  to  occur  [10–12].  In  this  paper  we
limit the discussion to the simplest coupling scheme, in which the re-
sponse system receives the full state vector from the drive. In this situ-
ation  it  is  easy  to  design  a  controller  that  synchronizes  both  systems
using feedback linearization. 

Such  synchronization  assumes  that  both  drive  and  response  have
the  same  dynamical  model.  This  paper  addresses  the  problem  of
achieving  synchronization  of  a  response  system  when  the  dynamical
model  of  the  drive  is  unknown.  In  particular,  we  target  the  problem
of simultaneous adaptation and synchronization of a response system,
given an unknown drive. Two assumptions are made: (1) the response
dynamical  model  depends  linearly  on  a  parameter  vector,  and
(2)!there  is  a  value  for  this  vector  that  makes  both  systems  identical.
In  2002,  Chen  and  Lü  proposed  a  method  to  simultaneously  adapt
this  parameter  vector  and  to  make  both  systems  synchronized  [13].
Lyapunov’s  second  method  was  used  to  prove  the  feasibility  of  this
method.  However,  due to the  construction of  the  Lyapunov function
employed, convergence of the response parameters is  not guaranteed,
as  described at  the end of  Section 2.  This  has two consequences that
prevent  the  general  usage  of  this  method.  First,  it  does  not  scale  in
complexity:  if  the  dimension  of  the  parameter  vector  is  greater  than
the dimension of the state vector, convergence is not guaranteed. And
second,  even  with  a  small  number  of  parameters,  Chen’s  proof  does
not guarantee effective convergence of the parameters. 

In this paper we address both of these problems, presenting a con-
vergence  proof  for  the  simultaneous  synchronization  and  adaptation
of the response to an arbitrary drive system. Moreover, numerical sim-
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ulations comparing the proposed approach with Chen’s method illus-
trate the benefits of the approach. 

Chaotic synchronization was first introduced by Pecora and Carrol
in 1990 [14]. Since then, many publications have deepened our knowl-
edge about this concept [11, 12, 15, 16]. A method for synchronizing
the  Rössler  and  Chen  chaotic  systems  using  active  control  was  pro-
posed by Agiza and Yassen [16]. However, the approach is specific to
these particular systems. Chen and Lü proposed a method to perform
simultaneous  identification  and  synchronization  of  chaotic  systems
[13], but the results show some limitations, which are detailed in Sec-
tion 2. 

The  paper  is  structured  as  follows:  Section  2  formally  states  the
problem, followed by the proposed solution in Section 3;  experimen-
tal results are presented in Section 4, and Section 5 concludes the pa-
per. 

2. Problem Statement

Consider  two  dynamical  systems,  called  drive  and  response,  with  a
unidirectional coupling between them. Throughout this paper we will
assume that both drive and response systems are identical, apart from
a  parameter  vector,  which  is  unknown.  The  goal  of  the  adaptation
law is  to  determine  this  parameter  vector.  Consider  the  drive  system
modeled by

(1)x° ! f HxL + FHxL q,
where xHtL œ !n  is the state vector and q œ !m  is a parameter vector.
The  nonlinear  functions  that  support  the  model  are  f : !n Ø !n  and

F : !n Ø !Hn ämL. The coupling between the drive and the response sys-
tems  consists  in  a  bias  term,  called  synchronization  input,  from  the
drive to the response. The response system is identical to the drive, ex-
cept  for  the  parameter  vector  a œ !m  and  the  synchronization
input!U,

(2)y° ! f HyL + FHyL a + UHy, x, aL,
where  y HtL œ !n  is  the  response  state  vector  and
U : !nä!nä!m Ø !n  is  the  synchronization  control  function.  This
function U  realizes the controller that,  given the state input from the
drive, synchronizes the response system.

Define the state error e ! y - x  and the parameter error D ! a - q;
the simultaneous adaptation and synchronization problem consists  in
the design of a controller U  and of a parameter adaptation law for a
such that both limtØ¶ eHtL ! 0 and limtØ¶ DHtL ! 0. 
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Chen proposes in [13] a solution to this problem in the form of an
adaptation law for a. 

Assumption  1.  There  is  a  controller  U  and  a  scalar  function  VHeL
that,  for  a ! q,  satisfies  both  (i)  c1 !e¥2 § VHeL § c2 !e¥2  and

(ii)  V
° HeL § -W HeL,  for c1, c2  positive constants,  WHeL  a positive defi-

nite function, and UHx, x, qL ! 0. 

For example, the controller 

(3)UHy, x, qL ! -e + f HxL - f HyL + @FHxL - FHyLD q,
and the function VHeL ! eT e ê 2 satisfies this assumption.

Theorem 1. Under Assumption 1, the adaptation law 

(4)a° ! -FTHxL@grad VHeLDT , where grad VHeL !
!V

!e
HeL,

stabilizes the system at the equilibrium point e ! 0, a ! q.

Proof. See [13]. ·
In the proof of this theorem, Chen employs the Lyapunov function 

(5)V1He, aL !
1

2
eT e +

1

2
DT D.

There  is  a  hidden  assumption  in  the  proof:  it  only  holds  if
UHy, x, aL - UHy, x, qL ! @FHxL - FHyLDD  (which is  true if  the controller
in equation (3) is used).

Still,  two  problems  remain  that  compromise  the  applicability  of
this  result.  The  first  one  is  that  equation  (4)  does  not  guarantee  a

strict definite positiveness of -V
°
1; in particular, 

(6)V
°
1H0, aL ! 0 + DT a° ! 0

for  any  value  of  a,  since  a° ! 0  for  e  identically  zero  (equation  (4)).
Note  that  asymptotical  stability  in  Lyapunov’s  second  method  re-

quires  positive  definiteness  of  -V
°
1  [17].  In  practice,  as  the  synchro-

nization error e  approaches zero,  the magnitude of  the parameter er-
ror D is not guaranteed to decrease. The second problem concerns the

null space of FTHxL: according to equation (4), the parameter vector a

remains unchanged as long as grad VHeL lies in the null space of FTHxL.
If  VHeL ! eT e ê 2  and  the  state  error  e  lies  in  this  null  space,

e œ NullIFTHxLM, then a° ! -FTHxL, e ! 0, that is, the parameter vector
a remains unchanged, even if a " q.
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3. Proposed Solution

Let  us  first  obtain a  controller  function U  that  achieves  synchroniza-
tion,  assuming that  the  true  value  of  the  parameter  vector  is  known,
a ! q. In this situation, the error state e has the following dynamics:

(7)e° ! f HyL - f HxL + @FHyL - FHxLD q + UHy, x, qL.
Considering now the positive definite Lyapunov function

(8)VHeL !
1

2
eT e,

its time derivative is V
°

! eT e° . Taking the controller

(9)UHy, x, qL ! -K e - f HyL + f HxL - @F HyL - F HxLD q,
where K  is  an HnänL  positive definite  matrix,  we have that  e° ! -K e.
Matrix  K  is  thus  related  with  the  synchronization  rate.  Since

-V
°

! eT K e  is  a  positive  definite  function,  for  a  positive  definite  K,
the system in equation (7) is  globally uniformly asymptotically stable
[17] at the equilibrium point e ! 0. Note that this controller satisfies
Chen’s assumption referred to in Section 2.

Consider now the positive definite Lyapunov function 

(10)VHe, DL !
1

2
eT e +

1

2
DT D.

This function is  zero if  and only if  both the response is  synchronized
with  the  drive,  and  its  parameters  equal  the  parameters  of  the  drive.
The  dynamics  of  the  error  e,  while  using  the  controller  in  equa-
tion!(9), are then

(11)e° ! -K e + FHxLD.

By left-multiplying this equation by FTHxLL, where L is an HnänL posi-
tive  definite  matrix  (which  is  related  with  the  adaptation  rate  as
discussed later), and transposing the result, the relation is found to be

(12)DT FTHxLLT FHxL ! e° T LT FHxL + eT KT LT FHxL.
We are now in the condition to prove the main result of this paper.

Theorem 2.  Assuming  that  there  is  a  constant  matrix  L  such  that

GHxL ! FTHxLLT FHxL is positive definite for all x, the adaptation law 

(13)a° ! -FTHxL @HL K + IL e + L e° D,
together  with  the  controller  in  equation  (9),  globally  uniformly  sta-
bilizes  both  the  error  system  in  equation  (11)  at  e ! 0  and  the
parameter error at D ! 0.
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Proof.  Considering the Lyapunov function in  equation (10),  we have

V
°

! eT e° + DT D
°
. Taking the adaptation law in equation (13) together

with equation (12), while noting that D
°

! a° , the result is 

(14)V
°

! -eT K e - DT GHxLD.

Since GHxL  is assumed to be positive definite, -V
°
 is also positive def-

inite,  from  which  we  can  conclude  that  He, DL ! H0, 0L  is  a  globally
uniformly  asymptotically  stable  [17]  equilibrium  point  of  equa-
tion!(11). ·

This  theorem  implies  both  synchronization  (y ! x)  and  correct
identification of the parameters (a ! q). Note that the practical use of
the  proposed  adaptation  law in  equation  (13)  requires  knowledge  of
the error time derivative e° , which in principle can be obtained (or esti-
mated) from the error evolution. 

The choice of the constant matrices K and L has an impact on the
convergence rate. If a ! q, the error system is e° ! -K e, meaning that
the error decreases asymptotically to zero according to first-order lin-
ear dynamics with a time constant determined by K. If e ! 0, the pa-

rameter  error  has  the  dynamics  D
°

! -FTHxLL FHxLD,  and  thus  the
magnitude  of  L  impacts  the  convergence  rate  of  the  parameters.
Simple  choices  for  K  and  L  are  diagonal  matrices  with  constant  val-
ues,  K ! k I  and  L ! l I,  for  two  positive  scalars  k  and  l.  Thus,  the
state  and  parameter  error  dynamics  become  e° ! -k e  and

D
°

! - l FTHxL FHxLD. 
Since  FHxL  is  an  HnämL  matrix,  its  rank  is  lower  or  equal  to

minHn, mL,  and  thus  the  rank  of  GHxL  is  also  lower  and  equal  to
minHn, mL. However, in order for GHxL to be positive definite, its rank
has  to  be  equal  to  m  (the  dimension of  the  parameter  vector  q),  and
thus  n ¥ m  is  a  necessary  condition  for  GHxL  to  be  full  rank.  This
means that  there  is  an upper  bound to the  amount  of  parameters  m,
in order for convergence to be guaranteed. This largely limits the flexi-
bility  of  the  response  system  to  adapt  to  arbitrary  drive  systems,  in
particular with a large amount of parameters. 

To tackle this problem we propose augmenting the FHxL matrix with
extra rows, as many as needed, in order for GHxL to become full rank.
First, let us designate by x*HtL a new state vector consisting in the con-
catenation of time-delayed versions of the original state vector!xHtL, 

(15)x* ! @ x0 x1 … xr DT ,

where xi HtL ! x Ht - i dL,  for i ! 1 … r  and d > 0. Using this state vec-
tor, the drive system becomes

(16)x° * ! f *Hx*L + F*Hx*L q,
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where

(17)f *Hx*L !
f Hx0L

ª

f HxrL
and F*Hx*L !

F Hx0L
ª

F HxrL
.

This augmented system is equivalent to the one in equation (1), as the
additional  state  dimension  corresponds  to  time-delayed  versions  of
the  original  system.  The  response  system,  with  state  vector

y* œ !Hr+ 1L n, takes the form

(18)y° * ! f *Hy*L + F*Hy*L a + U*Hy*, x*, aL.
These  two  coupled  systems  in  equation  (16)  and  equation  (18)  with
state  vectors  x*  and y*  can be viewed as  a  new pair  of  drive  and re-
sponse  systems  by  themselves,  with  error  vector  e* ! y* - x*.  Thus,
the results  obtained can be directly  applied here:  the  synchronization
controller becomes

(19)
U*Hy*, x*, aL !
-K* e* - f *Hy*L + f *Hx*L - @F*Hy*L - F*Hx*LD a,

where  the  matrix  K*  can  be  a  HHr + 1L nä Hr + 1L nL  block  diagonal
formed by K matrices,

(20)K* !
K 0 0

0 K 0

0 0 !

.

The adaptation law then becomes

(21)a° ! -F*THx*L @HL* K* + IL e* + L* e° *D,
where  L*  is  a  HHr + 1L nä Hr + 1L nL  matrix,  which  can  also  take  the
form of a block diagonal in the same fashion as K* in equation (20),

(22)L* !
L 0 0

0 L 0

0 0 !

.

If  both  K*  and  L*  have  the  block  diagonal  structure  as  in  equa-
tion!(20)  and equation (22),  the  adaptation  law in  equation (21)  can
be simplified into

(23)a° ! -‚
i!0

r

FTHxiL @HL K + IL ei + e° iD,
where ei ! yi - xi and e° i ! y° i - x° i.
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With  this  augmented  system,  we  can  prove  convergence  when
n < m with Corollary 1. 

Corollary 1. If matrix G*HxL ! HF*L HxLT HL*LT F*HxL is full rank for all x,
then  the  response  system in  equation  (18),  together  with  the  adapta-
tion law in equation (21), globally uniformly stabilizes both the error
system in equation (11) at e ! 0 and the parameter error at D ! 0. 

Proof.  The  equivalent  drive  and  response  systems  in  equation  (16)
and  equation  (18)  satisfy  the  conditions  of  Theorem  2,  as  long  as
G* HxL is full rank. ·

The  rank  of  G*HxL  cannot  be  guaranteed  a  priori,  but  a  necessary
condition corollary can still be stated.

Corollary 2.  If  F  has  rank  n < m,  then  r ¥ `Hm ê nL - 1p  is  a  necessary
condition for G* to be full rank. 

Proof.  The  rank  of  G* ! HF*LT HL*LT F*  is  at  most  min@Hr + 1L n, mD.
Since G*  is an mäm matrix, in order to be full rank, Hr + 1L n ¥ m has
to  hold.  Therefore,  r ¥ Hm ê nL - 1,  but  since  r  is  an  integer,  its  lower
bound is `Hm ê nL - 1p. ·

In general, as r is arbitrary, it can be expected that there is a value
of r large enough that makes G* full rank. 

Comparing  the  obtained  adaptation  law  in  equation  (23)  with
equation (13),  it  can be observed that  the gradient  of  the parameters
depends on several time-delayed samples of the error e (as well as on
their derivatives e° ).  A possible insight into this result  comes from the
observation that, if m > n, the degrees of freedom of e are not enough
to produce a meaningful gradient for a  if  the law in equation (13) is
employed.  However,  with  equation  (23),  which  depends  on  e*  withHr + 1L n degrees of freedom, the gradient of a can have the full dimen-
sionality of m. 

4. Experimental Results

This  section  presents  numerical  results  illustrating  the  theoretical  re-
sults  derived  in  Section  3.  Two  classical  chaotic  systems  were  used:
the Lorenz oscillator [18], commonly used in the chaotic synchroniza-
tion literature  for  numerical  simulations  [11–13],  and the Rössler  at-
tractor, designed to behave similarly to the Lorenz system while being
easier  to  understand  [19].  Simultaneous  identification  and  synchro-
nization  is  simulated,  while  comparing  the  performance  of  Chen’s
method [13] with the one proposed here. For Chen’s method we used
the controller in equation (3) with the adaptation law in equation (4),
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and for our method we used the controller  in equation (19) with the
adaptation law in equation (23).

The Lorenz oscillator is a three-dimensional dynamical system that
behaves chaotically for a certain set of parameters [18]. In the form of
equation (1), it can be written as 

(24)

x°

y°

z°
!

0

-y - x z

x y

+

y - x 0 0

0 x 0

0 0 -z

q1

q2

q3

where x, y, and z are state variables and q1, q2, and q3  are system pa-
rameters. The Lorenz oscillator was synchronized with a response sys-
tem,  which  is  specified  by  four  parameters.  In  the  form  of  equa-
tion!(2), it can be written as

(25)

u°

v°

w°
!

0

-v - u w

u v

+

v - u 0 0 0

0 u 0 0

0 0 -w 1

a1

a2

a3

a4

+

u1

u2

u3

where u,  v,  and w  are  state  variables  and a1,  a2,  a3,  and a4  are  the
parameters. Note that the rank of the FHxL  matrix in equation (25) is
at  most  three,  while  the  response  system uses  four  parameters;  a4  is
an  unnecessary  parameter  that  is  not  present  in  the  drive  in  equa-
tion!(24), being artificially introduced to compare the two approaches
when  m > n.  As  shown  in  Section  2,  under  these  conditions  Chen’s
method  is  not  guaranteed  to  converge,  while  Corollary  2  requires
r ¥ 1 for G* to be full rank, and thus a necessary condition for conver-
gence (as Corollary 1).

For  this  simulation,  the  classical  parameter  values  for  the  Lorenz

system were used: @q1, q2, q3DT ! @10, 28, 8 ê 3DT .  The initial states of
the  drive  system  and  the  controlled  system  were  arbitrarily  set  to

@8, 9, 10DT  and  @3, 4, 5DT ,  respectively.  The  parameters  of  the  re-
sponse  system  had  zero  initial  condition.  The  L  and  K  parameters
were set to 10 I and 0.1 I. 

Figure 1 shows the numerical results of parameter identification for
parameter a4. (All simulations were performed using Python together
with SciPy [20] and PyDDE [21] libraries.) Note the trend for the pa-
rameter  convergence  to  be  faster  for  higher  values  of  r.  Figure  2
shows the results of parameter identification for the parameter a4  for
Chen’s  method  over  a  longer  time  horizon.  While  Chen’s  method  is
not  able  to  identify  this  parameter  even  after  1000  seconds,  our
method  allows  for  a  significantly  faster  convergence  (under  200  sec-
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onds).  Figure  3  shows  the  results  of  parameter  identification  for  a3.
Table 1 shows the time it takes for the parameter identification error
to  fall  below  a  percentage  of  the  real  parameter  value.  Note  again
that the convergence is faster for higher values of r. It is interesting to
note  that,  for  instance,  during  the  last  20  seconds  of  the  simulation,
the coefficient of variation (defined as the ratio s ê †m§, where s is the
standard  deviation  and  m  the  sample  mean)  of  the  root  mean  square

error  is  of  4.42ä10-3  for  Chen’s  method,  while  for  our  method it  is

of  1.21ä10-4  (r ! 3)  and  1.36ä10-6  (r ! 5).  Chen’s  method  is  not
able  to  correctly  identify  this  parameter,  with  its  value  oscillating
around the true value of q3. Our method, however, allows for a lower
variance in the parameter identification.  Figure 4 shows the synchro-
nization error as measured by the Lyapunov function in equation (8).
Both Chen’s method and ours are able to drive the synchronization er-
ror to zero. Our method, however, shows near-instantaneous conver-
gence.  Also,  the  magnitude  of  the  error  is  reduced  by  comparison  to
Chen’s method. 

Figure 1.  Lorenz  system:  graph  of  parameter  identification  results  for  a4.
Solid line: Chen’s method in equation (4);  dotted and dash-dotted lines:  pro-
posed method in equation (23) for r ! 3 and r ! 5.

212 B. Nery and R. Ventura

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.



Figure 2.  Lorenz  system:  graph  of  parameter  identification  results  for  a4
using Chen’s method in equation (4).

Figure 3.  Lorenz system: plot  of  parameter  identification results  for  a3.  Top
plot:  Chen’s  method  in  equation  (4);  middle  and  bottom  plots:  proposed
method in equation (23) for r ! 3 and r ! 5.
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Figure 4.  Lorenz system: graph of the Lyapunov function for synchronization
error.  Top  plot:  Chen’s  method  in  equation  (4);  bottom  plot:  proposed
method in equation (23) for r ! 3. 

Identification Error

Method 1% 0.1% 0.01% 0.001%

Classical Chen 203.0 1609.8 3026.9 4640.3

Extended Chen r!1 0.4 261.5 612.1 942.7

r!2 10.3 104.8 226.7 308.5

r!3 2.5 58.4 106.5 163.8

r!4 2.5 31.1 70.9 94.8

r!5 2.5 21.6 43.5 67.3

Table 1.  Time to reach identification error ranges for parameter a3 (in simula-
tion seconds).

Similar  results  were  obtained  using  the  Rössler  attractor.  In  the
form of equation (1), it can be written as 

(26)

x°

y°

z°
!

-y - z

x

x z

+

0 0 0

y 0 0

0 1 -z

q1

q2

q3
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where x, y, and z are state variables and q1, q2, and q3  are system pa-
rameters.  The  Rössler  system  was  synchronized  with  a  response  sys-
tem specified  by  four  parameters.  In  the  form of  equation (2),  it  can
be written as

(27)

u°

v°

w°
!

-v - w

u

u w

+

0 0 0 0

v 0 0 1

0 1 -w 0

a1

a2

a3

a4

+

u1

u2

u3

where u,  v,  and w  are  state  variables  and a1,  a2,  a3,  and a4  are  the
parameters. Again, the rank of the FHxL matrix is three, while the num-
ber of parameters is four.

For  this  simulation,  the  commonly  used  parameter  values  for  the

Rössler  system  were  used:  @q1, q2, q3DT ! @0.1, 0.1, 14DT .  The  initial
states  of  the  drive  system  and  the  controlled  system  were  arbitrarily

set to @8, 9, 10DT  and @3, 4, 5DT , respectively. The parameters of the re-
sponse  system  had  zero  initial  condition.  The  L  and  K  parameters
were set to 10 I and 0.1 I. 

The  improved  convergence  performance  of  the  proposed  method
over Chen’s is clearly visible in Figure 5, while parameter convergence
is faster for higher values of r. Figure 6 shows the results of parameter
identification for  a1,  which,  together  with  a4,  specifies  the  evolution
of the state variable v.  During the last 20 seconds of the experiment,
the  coefficient  of  variation  of  the  root  mean  square  error  is  of

2.96ä10-2  for  Chen’s  method,  while  for  our  method  it  is  of

6.11ä10-5  (r ! 3)  and  3.32ä10-7  (r ! 5).  Chen’s  method  cannot
identify this parameter correctly, with its value oscillating around the
true value of q1. On the other hand, our method allows for stable pa-
rameter  identification.  Again,  convergence  is  faster  for  greater  values
of  r.  Finally,  Figure  7  shows  the  synchronization  error,  as  measured
by the Lyapunov function in equation (8). Both methods drive the syn-
chronization  error  to  zero,  while  our  method  shows  a  significantly
faster  convergence.  Also,  the  magnitude  of  the  error  is  reduced  by
comparison to Chen’s method. 
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Figure 5.  Rössler  system:  graph  of  parameter  identification  results  for  a4.
Solid  line:  classical  Chen;  dotted  line:  extended  Chen  (r ! 3);  dash-dotted
line: extended Chen (r ! 5).

Figure 6.  Rössler system: plot of parameter identification results for a1.  Top
plot:  classical  Chen;  middle  plot:  extended  Chen  (r ! 3);  bottom  plot:  ex-
tended Chen (r ! 5).

216 B. Nery and R. Ventura

Complex Systems, 22 © 2013 Complex Systems Publications, Inc.



Figure 7.  Rössler  system:  graph  of  the  Lyapunov  function  for  synchroniza-
tion error. Top plot: classical Chen; bottom plot: extended Chen (r ! 3).

5. Conclusions and Future Work

Building  upon  previous  work  in  simultaneous  parameters  identifica-
tion  and  synchronization  of  dynamical  systems,  this  paper  proposes
an improved method that addresses limitations of the previously pub-
lished  Chen’s  method  [13].  The  proposed  method  is  capable  of  han-
dling  arbitrarily  large  parameter  space  dimensions.  Convergence
proof  of  the  method  is  provided,  using  Lyapunov’s  second  method.
Numerical  results  illustrate  the  proposed  method,  comparing  it  to
Chen’s  and  showing  better  performance  in  terms  of  both  faster  and
less noisy parameter identification.

As  future  work,  we  consider  the  use  of  the  unified  chaotic  system
[22, 23], which is double-scroll, as a template for the response system.
This  could  open  the  door  for  response  systems  capable  of  adapting
and  synchronizing  to  multi-scroll  systems.  We  also  contemplate  the
extension  of  the  proposed  method  to  complex  dynamical  networks
[24, 25]. 
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