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Abstract. Data sets are a fundamental tool for comparing detection
algorithms, fostering advances in the state of the art. The INRIA person
data set is very popular in the Pedestrian Detection community, both
for training detectors and reporting results. Yet, the labelling of its test
set has some limitations: some of the pedestrians are not labelled, there
is no specific label for the ambiguous cases and the information on the
visibility ratio of each person is missing. We present a new labelling that
overcomes such limitations and show that it can be used to evaluate the
performance of detection algorithms in a more truthful way.
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1 Introduction

Detecting humans in images is a challenging task that attracts the attention
of the scientific community and industry alike. The problem assumes different
contours depending on whether the sensor used to capture the images is fixed or
mobile, whether the detection is performed on a single image or on a sequence
of images, and whether the sensor is a single camera or a richer sensor providing
depth information. One further distinction can be made between the methods
that do and do not restrain the articulation of the persons.

This work focuses on the detection of pedestrians, i.e., people assuming poses
that are common while standing or walking, in images acquired by a mobile
camera. Detecting pedestrians is important as it enables the estimation of the
presence and the position of humans in the vicinity of a vision sensor. The task is
complex mostly because of the high variability that characterizes the pedestrians
projections on the camera image plane. The appearance of a pedestrian on the
image is influenced by the person’s pose, his or her clothing, occlusions, and
the atmospheric conditions that contribute to the illumination of the scene.
Background clutter also plays a role in making the detection difficult.
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Fig. 1. Details from the INRIA test set highlighting some limitations. (a–d) Unlabelled
persons. (e–h) Ambiguous cases. (e) Reflections of persons on a shop window, not
labelled. (f) Some persons drawn on a wall, only one of them is labelled. (g) Some
mannequins, all labelled. (h) A poster with the photo of a man, not labelled.

The publication of data sets is an important step towards a fair comparison
of the performances of Pedestrian Detection (PD) systems, but it is not enough.
Standard evaluation code is also needed as different evaluation procedures can
lead to discrepancies in the reported performances. Data sets are created not
only with the intent of comparing the performance of algorithms, but also with
the goals of exposing the limitations of contemporary algorithms and stimulating
advances in the state of the art. As such, data sets have a limited life span: as
the understanding of the problem by the scientific community grows, hurdles are
conquered and data sets become obsolete.

The missed detection rate for the INRIA data set [1] at 0.1 False Positives Per
Image (FPPI) has dropped from around 50% to around 20% since its publication
(see [2]). There is still room for improvement, which explains why that data set
is still popular as a benchmark [3–6], but its annotation is starting to show its
limitations. A fair assessment of the performance of detectors on the INRIA data
set is hindered by three factors: first, many persons appearing in the test images
are not labelled, second, an estimate of the visible part of each person is lacking
and, third, there is no class label for the regions of the images that are ambiguous
or difficult to be classified even by a person, and thus should be ignored during
the evaluation (see Fig. 1). In this work we propose a new labelling for the INRIA
test set, elaborated following the method proposed in [2]. We argue that such
labelling leads to a better evaluation of PD algorithms. The proposed annotation
is available on the authors’ website1.

The remainder of the paper is organized as follows. In Section 2 we introduce
the reader to the PD problem. In Section 3 we detail how annotations for data

1 Proposed annotation
http://users.isr.ist.utl.pt/~mtaiana/data.html
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sets are usually compiled, while in Section 4 we describe the principles that
guided the proposed labelling. In Section 5 we describe our implementation of a
PD algorithm. We relate results in Section 6 and draw conclusions in Section 7.

2 Background Knowledge

Advances in PD stem mostly from research in the areas of visual feature ex-
traction and Machine Learning, the most common classifiers being based either
on AdaBoost [7] or Support Vector Machines [8]. Dense features, computed on
a regular grid over the image, have been very successful. Seminal work in PD
was presented in [9, 10]. One dualism in the literature contrasts part-based de-
tectors, which explicitly model the articulation of the human body (see [11,
12]), to monolithic detectors (see [1, 3, 6]), which associate one descriptor to one
detection window.

Comparing the performance of PD systems is a fairly complex matter. Many
data sets have been published over the years. A first notable example is the
MIT pedestrians data set [9], introduced in 1997. It includes frontal and rear
views of pedestrian and only positive windows, i.e., fixed-size rectangular images
designed to contain a person. The INRIA person data set [1] was introduced by
Dalal and Triggs in 2005, it is divided in training set and test set and it provides
both positive and negative examples. The ETH pedestrians data set [13] was
introduced in 2007. It was recorded with a mobile platform moving along a
sidewalk, equipped with a stereo camera. It presents a scenario typical for a
mobile robot. The TUD-MotionPairs/TUD-Brussels data set [14] (TUD) and the
Caltech pedestrian data set [2] were introduced in 2009 and contain sequences of
images taken in automotive scenarios. The size of the data sets has grown over
time, from 924 positive examples (MIT data set) to 350 000 labels over 250 000
images (Caltech data set). Each data set can be characterized in a number
of ways, one important parameter being the range of sizes of the annotated
pedestrians. Most PD algorithms output detections in a selected range of sizes,
in order to perform a fair evaluation it is important that such ranges coincide.

The code used to evaluate the performance of a detector on a data set can con-
siderably influence the results. Many parameters, such as the number of classes
of labels used for annotating the data and the amount of padding on the candi-
date images can influence the reported results. A solution for this problem is to
use the same evaluation code on each algorithm. Dollár provides such a code2

together with a collection of data sets and the detections obtained running sev-
eral state-of-the-art detectors on such data sets. We adopt that evaluation code
and describe its principles in Section 4.

2 Caltech Pedestrian Detection evaluation code
www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/DollarEvaluationCode
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3 Labelling Strategies

The purpose of the labelling of a data set for PD is twofold. First, the annotation
of the training set enables the extraction of the positive and negative examples for
training the detector. Second, the annotations of the validation and test sets are
used during evaluation to determine which detections are correct, corresponding
to a pedestrian. In this work we focus on the labelling of the second kind.

Most PD algorithms output a detection in the form of a rectangle on the
input image. Each detection is associated to a confidence value. It is therefore
natural to define the ground truth (GT) labelling in terms of a collection of
rectangles as well. Such rectangles are known as detection and GT “bounding
boxes”, in short, “BB’s”.

Evaluating the performance of a PD algorithm on one image consists in
matching detection and GT BB’s and counting the occurrences of the result of
the matching process. Two BB’s (one detection and one GT label) are said to
match if the area of intersection of the two rectangles is larger than half of the
area of the union (Pascal VOC criterion, see [15]). The possible outcomes of
the matching process are: True Positive (TP) when one GT BB matches one
detection BB (and so one pedestrian is correctly detected), False Positive (FP)
when a detection does not match any GT BB, and Missed Detection (MD) when
a GT BB does not match any detection. Each GT BB can match at most one
detection BB. In case there be more detections potentially matching one GT BB,
the conflict can be solved by greedily assigning the detection with the highest
confidence to the match, leaving the others unmatched.

The original labelling of the INRIA data set follows closely the general de-
scription. Each person is labelled with a rectangular BB. Only one label is possi-
ble: “UprightPerson”, which includes both pedestrians and people riding a bicy-
cle (this stems from the automotive applications of PD). Sitting people are not
included in the positive class. The labellers focused on big pedestrians: persons
with a height on the image smaller than 60 pixels are not labelled. People appear-
ing under a significant degree of occlusion were also excluded from the labelling
(see Fig. 2). These choices were reasonable at the time of the publication of the
data set, but current state-of-the-art algorithms can detect at least some of the
partially occluded and smaller pedestrians. During evaluation, each detection on
one of the unlabelled persons counts as a FP, instead of as a TP. So optimizing
a detector using this labelling can lead to the undesirable effect of detecting less
occluded people. The performance of some detectors are thus under-reported
(see Fig. 2 for an example of how the performance of the FPDW algorithm [16]
is affected). People who have parts of their bodies outside the image boundaries
are also not labelled, leading to a similar phenomenon. It is important to notice
that the spurious FP’s originated by the unlabelled persons tend to assume high
confidence values, so they have a big impact on some areas of the performance
curves of the detectors (see Section 6). There are, moreover, image patches for
which it is difficult to decide whether they should be labelled as a person or not.
Such cases include the appearance on the image of a mannequin, of photographs
of people, of reflections of people. It is not clear whether an algorithm that gen-
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Fig. 2. The influence of labelling in the presence of mutual occlusion on the evaluation.
(a) A part of image 20 of the INRIA test set showing the original labelling: only
5 persons out of 11 are marked. Some partially occluded persons are merged in the
annotation with a visible one. (b) The classification of the detections produced by
FPDW [16] in TP’s (green), FP’s (red) and FP’s which significantly overlap with an
unlabelled person (yellow) and thus should be considered TP’s. In the whole test set,
26 out of 292 FP’s ascribed to FPDW significantly overlap with an unlabelled person.

erates a detection on one of such image areas should be rewarded or penalized:
this decision is very application-dependent. Only some of such occurrences are
marked as “person” in the original labelling (see Fig. 1(e–h)), introducing noise
in the evaluation process.

4 Proposed Method

We propose a new annotation for the data set in which we label all the pedestri-
ans with heights greater than 25 pixels, we associate to each person the estimate
of the extent of his/her visible part and mark ambiguous cases as such. The
labelling was performed manually by one of the authors. As in the original an-
notation, we consider both cyclists and pedestrians as belonging to the “Person”
class. We use rectangular BB’s and the annotation scheme introduced in [2], la-
belling individual person as “Person”, large groups of persons for which it is very
difficult to label each individual as “People”, and ambiguous cases as “Person?”.
The proposed annotation is available on the authors’ website. In the Caltech
evaluation code “People” and “Person?” BB’s are merged in the “Ignore” class
and treated as one, but we choose to use the two labels considering that in the
future the two sets can be treated differently. The “Ignore” class was introduced
to acknowledge the fact that there is a gray area at the boundary between the
“Person” and the “Non-person” categories and with the insight that both detec-
tions and missed detections on an image area marked as “Ignore” should not be
penalized. Detections that match an “Ignore” BB’s are not counted as TP’s nor
FP’s and “Ignore” BB’s which are not matched by any detection are not counted
as MD’s. The matching between a detection BB and a “Person” BB works ex-
actly as explained in the previous section, while matching a detection BB with
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an “Ignore” BB only requires that the overlap between the two is greater than
half of the area of the detection. Moreover, multiple detections can match the
same “Ignore” rectangle.

In the evaluation code the GT BB’s are centered horizontally and transformed
to assume an aspect ratio of 0.41 (width/height) prior to matching (see [2] for
details). Thus we design the BB’s of the proposed labelling to be centered around
the vertical axis of each person. The evaluation code enables researchers to per-
form different experiments on a single data set, using just one annotation. The
minimum height and the minimum visibility ratio of the GT rectangles are spec-
ified as a parameter for the evaluation, so that all the BB’s that do not match
the criterion are set to “Ignore”. One can for instance test the performance of
a detector considering only pedestrians taller than 50 pixels and visible for at
least 65%. This evaluation mode is dubbed “Reasonable” in [2]. We introduce
the “Reasonable90” mode, which requires BB’s to be at least 90 pixels high and
keeps the minimum visible portion at 65%. We argument this choice in Section 6.

5 Our Implementation of a Pedestrian Detector

We implemented a version of the FPDW algorithm. The detector is based on
a structure common to most of the pedestrian detectors in the state of the
art: it combines a Machine Learning-based window classifier, the sliding window
approach, image pyramids and Non-Maximum Suppression.

The fundamental block of the detector is the window classifier, which takes
as input one image window of a specific size and evaluates whether it contains
a person of the corresponding height. In our case the classifier is based on Ad-
aBoost in the variant of Soft Cascades [17, 18]. We use 1 000 level-2 trees as weak
classifiers. The output of the classifier is a real value expressing the confidence
on the presence of a person in the window at hand. The sliding window approach
consists in applying the window classifier on a grid of locations on one image,
thus obtaining a set of confidence values. This technique allows for the detection
of fixed-size pedestrians over one image, and, in order to succeed in multi-scale
detection, it must be combined with image pyramids. Running the detection
window on each layer of the pyramid allows for the detection of pedestrians of
different sizes, but can give rise to multiple detections for a single pedestrian.
Non-Maximum Suppression techniques are used with the intent of merging the
positive confidence values originated by the same pedestrian, thus obtaining a
detection system that returns only one detection for each pedestrian appearing
in the image. As features, we use 30 000 Integral Channel Features (see [19]),
we compute the Integral Channels using publicly available code by the author3.
We train the detector on the INRIA pedestrians training set with 4 epochs of
bootstrap.

3 Piotr’s Image and Video Matlab Toolbox (PMT)
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
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6 Results

6.1 Analysis of the New Labelling

The proposed annotation contains a total of 879 labels, 806 of which for “Person”
and 73 for “Person?” or “People”. In comparison, the original annotation has 589
labels equivalent to “Person”. It is common practice to compare algorithms on
the original INRIA test set using the “Reasonable” evaluation mode: only people
taller than 50 pixels are considered as “Person”, the rest of the BB’s are set to
“Ignore”. The condition requiring more than 65% visibility has no effect when
used with the original annotation, as the GT labels do not carry information
about occluded areas. It is meaningful to notice that the detections provided
in the Caltech benchmark for the vast majority of the algorithms have a lower
limit for the height of the detections at around 90 pixels (see Tab. 1, column 2).
There are, though, some labels shorter than 90 pixels in the GT annotations.
Such GT labels can never be matched by the output of most of the detectors.
It is, thus, unfair to use the “Reasonable” mode on this data set, with these
detections. Having access to a collection of detections spanning a limited range
of heights, we decide to tune the range of the GT BB’s accordingly, defining the
“Reasonable90” mode.

The proposed annotation contains more labels than the original one, espe-
cially at low heights, but also at medium heights (see the comparison between
the two annotations in Fig. 3a). The fraction of “Ignore” BB’s for the new an-
notation is considerable, Figure 3b illustrates the amount of labels that are set
to “Person” and “Ignore” for the “Reasonable90” mode, as a function of height.

6.2 Experiments

We perform two experiments in which we use the detections of many state-of-
the-art algorithms together with the detections generated by our implementation
of FPDW. We use the INRIA person test set and the evaluation code by Piotr
Dollár. The detections, the original annotation and the evaluation code are avail-
able on the Caltech Pedestrian Benchmark website4, the proposed annotation
is available on the authors’ website. In the first experiment we compare the re-
ported performance of PD algorithms using the original labelling and selecting
two different evaluation modes: “Reasonable” and “Reasonable90”. We argue
that “Reasonable90” is a more appropriate test mode for that data set. In the
second experiment we compare the reported performance of the algorithms on
the original and the proposed annotation, using the “Reasonable90” mode.

The results obtained using the original labelling and either the “Reasonable”
or the “Reasonable90” mode are very similar in quality, we display the missed
detection rate/FPPI curves for two representative algorithms, for the two modes
(see Fig. 4). The performance of one algorithm is synthesized in the legends of

4 Caltech Pedestrian Benchmark website
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/



VIII

(a) (b)

Fig. 3. Characterization of the original and the proposed labellings. (a) Histograms of
the height of “Person” labels for the original (blue) and the proposed labelling (red).
The proposed annotation outnumbers the original one, particularly at low heights.
(b) Histogram for the proposed labelling and the “Reasonable90” mode, showing the
amount of “Person” and “Ignore” BB’s in red and yellow, respectively. The number
of “Ignore” BB’s is considerable and does influence the assessment of the detection
performance.

the plots with the log-average miss rate, the average miss rate computed between
10−2 and 100 FPPI (see [2]). Using the “Reasonable90” evaluation mode reports
slightly lower missed detection rates, especially at relatively high (100) FPPI
levels (see the results for all the tested algorithms in Tab.1, columns 3–5). This
result is expected, as passing from “Reasonable” to “Reasonable90” we removed
from the test set some labels which were impossible for the algorithms to match.

In the second experiment we compare the performance reported using the
original and the proposed annotations for the INRIA test set. We use the same
set of algorithms and the “Reasonable 90” mode. We display the missed detec-
tion/FPPI plot for two representative algorithms and the two annotations, in
Figure 4. Two effects can be seen: the miss rate is minimally higher at high
FPPI values for the proposed labelling, we ascribe this to the introduction in
the test set of more occluded pedestrians, who make the problem more difficult.
The other effect, the most significant one, is the average drop of 8.9% for the
missed rates at low FPPI values (10−2) (see the results for all the tested algo-
rithms in Tab. 1, columns 6–8). We ascribe this to the removal of the spurious
FP’s generated on top of unlabelled pedestrians. Such FP’s tend (correctly) to
be associated with high values of confidence, ruining the reported performance
especially when the number of FP’s is low. A working point on the curve at
(10−2) FPPI for this data set means that there we are dealing with just three
FP’s. Adding even only one spurios FP’s in such conditions will damage the
performance in a noticeable way. The algorithms that perform best overall are
the ones that benefit the most from using the proposed labelling (see Tab. 1,
columns 8 and 9).



IX
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Fig. 4. The reported performance of the LatSvm-V2 algorithm [11] (a) and of our im-
plementation of FPDW [16] (b) in three conditions: original labeling and “Reasonable”
mode, original labelling and “Reasonable90” mode, proposed labelling and “Reason-
able90” mode. Performance is synthesized with the log-average miss rate.

MD at 100FPPI MD at 10−2FPPI

Algorithm Minimum
height

Original
Reas.

Original
Reas.90

Difference Original
Reas.90

Proposed
Reas.90

Difference Log av. miss rate
for Prop., Reas.90

FtrMine [20] 100.0 0.340 0.324 -0.016 0.918 0.900 -0.019 57%
LatSvm-V1 [21] 79.0 0.175 0.159 -0.015 0.806 0.835 +0.029 43%
HOG [1] 100.0 0.231 0.215 -0.015 0.744 0.702 -0.042 42%
HikSvm [22] 100.0 0.221 0.207 -0.014 0.766 0.681 -0.085 39%
PLS [23] 100.0 0.226 0.212 -0.014 0.674 0.596 -0.078 38%
HogLbp [24] 96.0 0.190 0.173 -0.017 0.665 0.629 -0.036 35%
MultiFtr+CSS [25] 93.7 0.109 0.093 -0.016 0.469 0.425 -0.044 29%
FeatSynth [26] 100.0 0.109 0.089 -0.019 0.754 0.738 -0.015 21%
FPDW [16] 100.0 0.093 0.075 -0.018 0.576 0.386 -0.189 18%
ChnFtrs [19] 100.0 0.087 0.072 -0.015 0.581 0.383 -0.198 18%
LatSvm-V2 [11] 91.3 0.081 0.058 -0.024 0.448 0.319 -0.129 17%
Our FPDW 95.6 0.093 0.081 -0.013 0.577 0.307 -0.270 16%
CrossTalk [3] 99.2 0.098 0.079 -0.020 0.511 0.333 -0.178 15%

Mean -0.017 -0.089

Table 1. The performances of a set of state-of-the-art PD algorithms reported with
different labellings and different evaluation modes.

7 Conclusions

In this work we discussed the importance of data sets and benchmarking proce-
dures for the evaluation of detection algorithms. We highlighted the limitations
of the labelling of the INRIA person data set and proposed a new labelling and
a new evaluation mode. We showed that the proposed labelling and evaluation
mode allow for a more accurate evaluation of the state-of-the-art algorithms.
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