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Abstract— We address the problem of representations for 

anthropomorphic robot hands and their suitability for use in 

methods for learning or control. We approach hand 

configuration from the perspective of ultimate hand function 

and propose 2 parameterizations based on the ability of the 

hand to engage oppositional forces. These parameters can be 

extracted from grasp examples making them suitable for use in 

practical learning-from-demonstration frameworks. We 

propose a qualitative method to span hand functional space in 

a principled manner. This is used to construct a grasp set for 

evaluation and a qualitative baseline metric derived from 

human experience. Our results from human grasp data show 

that hand representations based on shape are not able to 

disambiguate hand-function. However, those based on hand-

opposition primitives result in the widest separations among 

grasps that have radically different functions and can even 

clearly separate grasps whose functions overlap a great degree. 

We trust that these “functional parameterizations” can bridge 

the contrasting goals of task-oriented robotic grasping, that of 

controlling a dexterous robot hand to manifest hand-shape but 

with the ability to exercise specific hand-function.  

Keywords—hand representation; hand function; grasp 

synthesis; learning from demonstration 

I.  INTRODUCTION 

The goal of any robotic grasping framework is the 
generation of a stable grasp that is both, feasible for a robotic 
hand to execute and suitable for achieving a specific task. 
The outcome is a hand configuration specifying the extrinsic 
degrees of freedom, or the position and orientation of the 
wrist relative to an object, and, the intrinsic degrees of 
freedom which make up the joint angles of the hand. The 
former can be thought of as the problem of “where to grasp”, 
while the latter, a problem of “how to grasp”. 

Recent approaches to robot grasp synthesis adopt a data-
driven or knowledge based approach, which relies on expert 
human knowledge about objects and how to grasp them. The 
main motivation is to avoid the computational complexity, 
and search of a large hand-object configuration space, 
encountered with the more traditional analytical models for 
grasping. For e.g. [1],[2] learn to associate successful grasps 

with the local appearance of object grasping points or their 
relation to global shape. [3],[4] and [5] use shape 
decompositions of objects and principles of how to 
successfully grasp them, in order to generate several 
candidate grasp hypotheses.  Alternatively, shape matching 
can be used to generate grasp hypotheses, either by 
evaluating similarities between hand-shape and object-shape 
[6], or by finding matching objects for which successful 
grasps have been previously demonstrated [7]. A recent 
survey by [8] mentions several other techniques for 
knowledge based grasping. All these techniques are oriented 
towards the where-to-grasp problem. In general, they report 
successful grasps in terms of a grasping point, an approach 
vector and the roll of the wrist around it. The robot hand 
(regardless of its flexibility) is seen as a gripper, where a 
grasp is completed by closing the jaws of the gripper around 
the object.  

Anthropomorphic hands however, have the ability to 
organize in different shapes and forms which allow them to 
exert pressure along several axes simultaneously. Thus 
complex mixtures of power and precision are possible, which 
in turn can produce a rich set of effects on a grasped object. 
This raises the question of "how to grasp" which implies 
determining how to shape the hand into a prehensile posture 
that enables it to exert the task related forces on the object 
concerned and also constrains its efficacy as a sensing device 
able to gather information about the state of the hand-object 
interaction [9].  
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When we look at what hand representations are suitable 
to address these questions in the context of grasp synthesis 
for anthropomorphic hands, there are two principle issues of 
interest that arise. The first and obvious one is the simplicity 
(or dimensionality) of the hand representation, which directly 
affects the complexity of the associated grasp synthesis 
problem. A less obvious issue is the correspondence of hand-
representation with hand-function. This aspect becomes 
important for supervised and semi-supervised learning 
approaches that attempt to capture grasping affordance 
relationships present in expert demonstrations of grasping. 
The case for “correct” representations which capture 
information that is actually relevant, has been well stated in 
[10]. In particular, with right representation, algorithms do 
not need to learn to ignore data and the inference problem 
becomes much easier to solve. For decisions related to task-
oriented grasping, hand function plays a central role, and 
hand representations well correlated with hand function are 
thus better suited to learn from demonstration. 

Joint angles are a preferred way of representing complex 
hand shapes, for the obvious reasons that they are trivial to 
perceive and that reconstruction of complex hand shapes is 
straightforward. However, joint angles are not well 
correlated with hand function. Santello [11], after analyzing 
the joint angles of 57 different grasps commonly utilized for 
daily tasks, found that most of these shapes could be well 
approximated by only 2 principle synergy directions. This 
suggests that the overall shape of the hand doesn’t vary too 
much and similar shapes can be responsible for widely 
different functions. As can be seen in Figure I-1, a coal 
hammer grasp oriented towards delivering and resisting 
strong forces has a very similar shape to a grasp that may be 
employed for fine motions and moderate forces with a 
sculpting tool.  

 In this paper, we address the ability of various hand-
parameterization schemes to discriminate between grasps of 
different function. We evaluate two kinds of computational 
schemes to represent the hand. "shape parameterizations" are 
based either on hand-shape or the mechanical structure of the 
hand. Joint Angles, Hand Synergies [11], Shape features [6], 
all fall under this category. In contrast, "functional 
parameterizations" are hand representations that are more 
oriented towards hand-function.  

In section II, we provide some background on functional 
parameterization and motivate its ability to overcome the 
limitations inherent to shape parameterizations of the hand. 
Section III defines hand function itself and identifies a grasp 
data set to span this functional space in big and in small 
steps. A good hand representation will show adequate 
distance, in a consistent manner over the functional space, 
between points in the representation space that are clearly 
separated in function. We propose a baseline metric for inter-
grasp distance from which a functional ordering providing 
expected separation between grasps can be obtained. Section 
IV describes in detail the various hand parameterization 
schemes to be compared. Section V presents the 
experimental setup to capture grasp data from human 
demonstration. Results on the correlation of the various 
hand-parameterization schemes with hand function are then 
presented in section VI and section VII concludes the paper. 

II. FUNCTIONAL PARAMETERIZATION 

Functional parameterizations are hand representations 
more oriented toward hand-function than hand-shape.  

A. Functional Categorization 

There have been several attempts in the literature to 
classify into a set of functional categories, the myriad shapes 
that the human hand can achieve when grasping objects in 
the context of a task. The classification into precision and 
power grasps proposed by Napier [12], is one of the earliest 
and most widely cited. Since then, this broad view has been 
further developed into finer categories with the aim of 
labeling hand-shapes according to their functional abilities. 
More than 22 such grasp taxonomies are reviewed in [9]. 
Recently, a comprehensive taxonomy was provided by [13] 
with the goal of determining the largest set of different grasp 
types that can be found in the literature.  

The problem with grasp taxonomies is their inability to 
explain all hand-shapes. We see in [14] that, "hand postures 
are not as discrete as most classifications suggest". In 
particular, any given grasp exhibits properties spanning 
several symbolic categories, and existing grasp 
classifications lack the ability to explain the myriad 
variations that the hand undergoes to deliver the appropriate 
mix of precision and power in response to the local object 
profile and the perceived requirements of a given task.  
Hence, while grasp taxonomies present an attractive one-
dimensional space to describe hand-shape they are not 
expressive enough to explain their action (or effect causing) 
power. 

B. Opposition Space 

 Figure II-1. Opposition primitives. Images taken from [15] 

Another way of looking at hand function computationally, is 
through the Opposition Space theory proposed by Iberall and 
Arbib [15], to explain the prehensile capabilities of the hand 
in a task or goal directed manner. In this theory, hand 
function is seen as the principal motive that drives all 
prehensile posturing, and the hand´s ability to engage 
oppositional forces are seen as a functional basis. The 
outwardly visible shape of the hand now becomes a side-
effect of setting up a hand opposition-space in response to 
perceived force, motion and sensory requirements of a given 
task and a given object-environment context.  

A functional parameterization then, attempts to 
parameterize an opposition space, and is guided by the 
following principles: 

1) An opposition occurs between pairs of virtual fingers. 
Virtual fingers were defined by Arbib [16], as parts of the 
hand that can work together with the same intention of 
opposing other hand parts or opposing task forces.  

2) Three kinds of oppositions are possible : palm, pad, 
side. These opposition primitives ( Figure II-1) can be 

Palm Pad Side
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combined in different ways. The precise manner in which 
they are combined determines the quality of the opposition 
space and the mix of force, motion and sensory ability that 
can be delivered. For a detailed explanation of opposition 
primitives and their properties, refer [15].  

To arrive at a particular set of parameters, we must 
identify the oppositions that are present in a demonstrated 
grasp and describe the virtual fingers that form them. A 
satisfactory set of parameters will capture the essential 
qualities of the virtual fingers that contribute to hand 
function, and if complete, the parameter vector should be all 
that is needed in order to reconstruct the virtual fingers. 

A functional parameterization scheme was outlined, but 
not implemented, by Iberall in [17]. At the tip of every 
virtual finger lies a grasping surface patch: the surface of the 
hand that comes in purposeful contact with the object and 
allows it to exercise the functions of applying oppositional 
pressure, imparting motion or gathering sensory information 
about the hand-object interaction state. Iberall in [17], 
proposes that a virtual finger can be satisfactorily 
parameterized by describing the pose and qualities of the 
grasping surface patch, the possible orientations of the 
opposition vector (or the possible force directions), the 
available force magnitudes for each orientation and available 
sensory information. However, the actual parameters used, 
capture a small subset of all this information. Also, it is not 
clear how this information relates to a practical learning from 
demonstration setup. In Section IV.B., we propose two 
parameterization schemes based on the idea that, a virtual 
finger’s functional qualities are most highly correlated with 
the grasping surface patch. The first one, adapts Iberall’s 
original scheme, introducing new parameters and measures 
for extracting them that are more suitable for practice. We 
then propose a new parameterization, significantly reducing 
the number of parameters required, by evaluating grasping 
patches in their opposition pre-shape configurations.    

While shape, mechanically oriented parameterizations 
and grasp taxonomies, focus more on specifying and 
disambiguating outward shape appearance, an opposition 
space parameterization focusses on disambiguating 
functional capability at the cost of blurring (or at least not 
clearly specifying) the shapes that can achieve it. Our aim in 
this study is to find how much better (if at all) are functional 
parameterizations suited to discriminate between hand 
shapes that possess different functional abilities.   

III. HAND FUNCTION SPACE 

The whole problem of task-relevant grasping revolves 
around hand-function, representing it and matching it to task 
requirements given a particular environment scenario. In this 
study, we are interested in hand parameterizations that have a 
strong and consistent correlation across the hand functional 
space. The key questions are: What is the space of hand-
function? How do you describe it? How do you measure it? 

The key functions of the grasping hand can be 
understood along 3 dimensions: the ability to exert 
force/torque, the ability to impart motion/change in 
orientation and the ability to sense the state of the hand-
object interaction [17]. Some of these dimensions can be 
measured analytically from a kinematic model of the hand 
and a description of the contacts involved in a hand-object 
interaction.  The authors in [18],[19] list several kinds of 

quality metrics that can be computed. However, each metric 
typically focuses on a single aspect of hand function and one 
would need to compute an array of metrics to get a more 
realistic picture. Moreover these metrics assume simplified 
contact models and rely on precise contact information, both 
of which do not hold when one considers real-life 
demonstrations.  

Another approach is to look at hand function in a more 
qualitative manner. Precision and power have been long been 
accepted as basic functional qualities by a line of researchers 
motivated to functionally categorize hand shape for varied 
reasons like prosthetics, anthropology, realistic animation 
and also robotic grasping and manipulation. This has resulted 
in a series of increasingly granular grasp taxonomies (see [9], 
[13] for comprehensive surveys) . 

A. Grasp Data Set 

Our main motivation in choosing a grasp data set is to 
provide a basis for evaluating the ability of various hand 
parameterization schemes to disambiguate hand function. 
For this, we adopt a qualitative approach whereby grasp 
function is perceived as a mix of precision and power. 
Accordingly, we would like to identify a representative set of 
grasps that spans the space of hand function, by varying 
precision and power abilities in big and in small steps.  

Opposition space theory provides us with a principled 
way to do this. Essentially, palm opposition is good for 
providing fixing power or the general ability to resist 
arbitrary external wrenches. Pad opposition on the other 
hand provides fine dexterous ability in order to effect minute 
in-hand changes in object pose. Side opposition plays a 
supporting role to other oppositions, in some cases providing 
directing or aiming ability to increase resistance against task 
wrenches in a particular direction, or in others, providing 
stable grasping properties without overwhelming the ability 
for fine manipulation.  

Using the above observations in conjunction with 
existing grasp taxonomies, we arrive at a suitable grasp set as 
follows. Note that the taxonomy of [13] was determined after 
examination of a vast literature on the topic and is therefore a 
comprehensive summary of grasps of all functions; from 
high power, to high precision and various combinations in 
between. To identify a suitable data set from this, we first 
manually classify these grasps into the opposition spaces to 
which they belong. In essence, opposition spaces are 
distinguished from each other by the type of oppositions 
employed and their mapping to real fingers. As a 
consequence, each opposition space offers a different mix of 
precision and power. Our classification differs from the one 
in [13] (the result of a similar procedure), because we 
consider all combinations of the 3 principle opposition types. 
We then build the data set by sampling grasps from these 
categories, varying the amount of power and precision 
delivered, and in certain cases, adding grasps when particular 
spaces are not well represented. Table 1 lists the final set of 
17 grasps that were chosen, along with the criteria used to 
choose them.  

B. Baseline Metric 

Our strategy for evaluating how closely each hand 
parameterization scheme reflects hand function is based on 
examining whether distances between grasps, measured in 
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each space, bear any correlation to their separation in 
functional ability. For this we rely on human expert 
experience.  

We propose a simple baseline metric for inter-grasp 
distance that converts the subjective qualitative assessment 
of a human expert on functional abilities of grasps, to a 
computational measure of the distance between them. The 
baseline is constructed by ranking all the grasps in the data 
set in descending order of their ability to exert power. The 
ranking is a qualitative assessment by the human expert. This 
is repeated once again for descending order of precision 
ability. Now, the distance between any two grasps is 
computed as an average of their separation in power and in 
precision according to their place in the respective 'expert' 
sorted lists. It is possible to extend this scheme by defining 
other qualitative functional abilities (such as ability to sense 
that state of hand-object interaction) and taking a weighted 
average of separation between grasps according to each 
function. 

                                             

                                                     

   (       )                                         

    (      )  
   (            )     (                )

 
 

The scheme proposed above assumes that each 
qualitative function considered varies linearly across the 
grasp set. This is because separation is taken to be the ordinal 
distance in an ordered set. While the linear assumption is not 
necessarily true, it is still a valid assumption when using the 
baseline metric as a guide to find a functional ordering in the 
grasp set. One way of doing this to derive an ordered set of 
grasps of decreasing functional ability, is illustrated by 
Algorithm 1. Figure III-1, shows the result of applying this 
algorithm to the grasp data set, starting from grasp no. 10 
(the highest precision grasp). The data set is therefore 
ordered in decreasing ability for precision. 

Algorithm 1: Grasp ordering from a distance metric 

Input: Unordered set, Starting grasp (   ), Inter-grasp distance metric 
 (     )  

1. Add    to the ordered set and delete it from the unordered set 
2. while !empty(unordered set) 

a. Starting grasp neighbourhood (   
) is limited to the first 3 grasps 

in the ordered set. 
b. Using  (     ), find the grasp having closest average distance 

to    
 from the unordered set. 

c. Add grasp from 2.b to the ordered set and delete it from the 
unordered set. 

Output: Ordered grasp set 

Table 1. Grasp Set. Images are taken from [13] (10, 15, 16 were constructed in the GraspIt! Simulator) 

      
Strong ability to resist external wrenches from arbitrary directions. 

 
A general ability to resist external wrenches but this is decreasing and is 
coupled with increasing precision ability.  

      
A general ability to resist external wrenches 
combined with increased aiming or directing 

ability required to keep a tool stable against 

particular task wrenches. 

The focus here is on manipulability or dexterity. The same focus on manipulability or dexterity, 
but now with increasing ability to apply stronger 

object torques that may be required during object 

use while keeping the object stably grasped. 
However, pad opposition is sufficient to provide 

both functions. 

    
 

Exactly the same objective as the previous 
category, but in this case the power requirements 
are more, necessitating the use of side opposition 
(in both cases by engaging thumb against the 
middle finger) to keep the object stably grasped 
while it is being manipulated. 

In this case the object is big enough or the task 

forces involved warrant the use of palm 
opposition to keep the object stable while the 

manipulative function is being carried out. 

Different object or tasks mandate differing 
amounts of precision and power necessary. 

The last category makes demands on power, 

dexterous ability as well as the ability to direct or 
aim a tool in the process of performing a task.  

Note that all three oppositions are employed in 

some mix to provide this function. 

                 

       
          

10 9 12 11 14 13 16 6 15 17 8 5 7 4 1 3 2 

Precision Grasps   Mix of precision and power   Power Grasps 

Figure III-1: Ordering of the grasp data set in decreasing order of precision obtained using Algorithm 1 

7 8 9 10 11 12 

1 2 3 4 5 6 

17 13 14 15 16 
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IV. HAND PARAMETERIZATION APPROACHES 

This section describes in more detail the various shape 
and functional parameter spaces we compare, and how their 
parameter values can be obtained from a demonstrated grasp. 

A. Shape-based Parameters 

1) Joint Angles: Joint angle parameters are made up of 
the actuated degrees of freedom of the robot hand specified 
in radians. For the particular hand model we use to 
demonstrate grasps (described in Section V), this is an 18 
dimensional vector.  

2) Hand Synergies: A synergy parameterization of a 
demonstrated grasp is a 6 dimensional vector obtained by 
projecting the joint angle vector onto a lower dimensional 
subspace formed by hand synergies. Following the 
procedure described by Santello in [11], principal 
component analysis is applied to a set of 57 commonly used 
grasps, and a sub-subspace accounting for 90% of the 
variance in the joint angle data is identified. 6 principal 
components are required for this. Non-linear techniques for 
sub-space reduction could further improve these results. 

For the case of joint angles and synergies, a hand 

configuration is a point in   . Hence, the distance between 
two points is taken as the         of their vector 
difference 

3) Shape Features: According to Li et al [6], the shape 
characteristics of each demonstrated grasp can be captured 
by a compound feature consisting of a set of 3 dimensional 
features obtained from a point cloud. The point clouds come 
from a descretization of the grasping surface patches present 
in a demonstrated grasp. Following the method outlined by 
the authors, distance between two demonstrated hand-
shapes, A and B, is a weighted average of the features in the 
feature set for grasp A, to their nearest neighbours in the 
feature set for grasp B. The weight of a grasp feature, 
determines its importance to the overall shape of the grasp 
in which it occurs, and is proportional to its occurrence in 
that grasp with respect to its occurrence in all other grasps in 
the data set. An outcome of this definition is that the 
weights of grasp A features and grasp B features will be 
different (as they are different shapes) and hence the 
distance measure will not be symmetric, i.e.     (   )  
    (   ). To overcome this, we take the distance between 
two grasps as the average of the distances computed for 
both directions. 

B. Functional Parameters 

All the opposition space parameterization schemes are 
defined in a hand-centric space. As depicted in Figure IV-1, 
this is a 3D co-ordinate frame centered in the palm at the 
wrist. A hand-shape is thus enclosed in a box where the palm 
surface lies on the X-Y plane and the height along the Z-axis 
is determined by the reach of the fingers above the palm. All 
demonstrated grasps are first transformed to this reference 
frame before parameters describing the virtual fingers are 
extracted. Furthermore, all angle parameters are multiplied 
by a factor of          to bring them on par with distance 
parameters. Each point in the opposition space 

parameterizations is a vector in    and distance is measured 
as the         of the difference between two points. 

4) VirtualFinger1 – based on the demonstrated grasp 

 
Figure IV-1: Shows data for grasp no. 17 in the 3D hand centric frame. A 
virtual finger is characterized a grasping patch, and an opposition, by a pair 

of virtual fingers. Grasping patch point clouds (points in color) and 

opposition vectors (lines in magenta) of the demonstrated grasp are 

overlaid on the grasping surfaces of the hand (points in black). Best viewed 

in color. 

This parameterization describes the virtual finger pairs 
comprising the oppositions present in a demonstrated grasp. 
Using the model presented earlier (section II.B.), a virtual 
finger is characterized by a grasping patch. As seen in Figure 
IV-1, for each demonstrated grasp, the set of 3D point clouds 
and opposition vectors associated with opposing grasping 
patches, is available to us. From these can be extracted 8 
scalar parameters per virtual finger as listed below. One 
group of parameters describes the focus of oppositional 
pressure, and another group describes the grasping surface 
patch itself. 

         Coordinates (x,y,z) of the focus of opposition  

      

Each grasping patch is approximated by a plane defined by 
the directions of maximum and minimum variance of the 
corresponding grasping patch point cloud.           
constitute bounds of the point cloud projected onto this 
plane. 

         
          refer to the azimuth and elevation of the grasping 
patch plane normal, and    refers to the roll of the plane 
with respect to the opposition vector 

Note that, this set of 8 parameters describes 1 virtual 
finger. To complete the hand-parameterization, it is 
necessary to describe 2 virtual fingers for each opposition: 
palm, pad and side. This makes for a total of 48 parameters. 
If an opposition is not present in the demonstrated grasp, its 
virtual fingers are described by the zero vector. 

5) VirtualFinger2 – based on opposition pre-shape 
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Figure IV-2: VirtualFinger2 parameterization scheme. The figure shows the data for grasp no. 17. However in contrast to Figure IV-1, grasping patches and 

opposition vectors are now examined in the pre-shape configuration associated with each opposition type. VirtualFinger2 parameters are listed below each 

pre-shape. They have the same meanings as in VirtualFinger1, however, several parameters can be fixed to their pre-shape configuration values and have 
been grayed out. Best viewed in color. 

Our main proposal is a novel parameterization approach 
which looks at the prototype grasp (or grasps) from which 
the final demonstrated grasp could have originated. Consider 
that there exists an opposition pre-shape for each opposition 
type. This is a known fixed configuration of the hand, which 
captures the intention of a particular opposition type and 
which serves as a starting point for hand closure, in order to 
arrive at a final grasp manifesting that opposition. Working 
from this assumption, the oppositions detected in a 
demonstrated grasp, are the outcome of their respective 
opposition pre-shapes being mixed together by the closure of 
their respective grasping patches along their respective 
opposition vectors (the process referred to as enclose-
schemas in [15]). The closure of the hand to form the final 
shape always operates under the basic functional intention 
determined by the set of pre-shapes from which it originated, 
and hence it is sufficient to examine these, instead of the 
final grasp. As closure progresses, it becomes subject to 
other influences more concerned with satisfying hand 
kinematic constraints and ensuring compliance of the hand 
with the object surface in order to form a stable grasp.  

Figure IV-2 describes the VirtualFinger2 set of 12 
parameters. These parameters are exactly the same as 
described earlier for VirtualFinger1, as they arise from the 
same virtual finger model. However, due to the constraint of 
grasping patches being bound to opposition pre-shape 
configurations, full flexibility in 3D hand space is not 
required and several parameters can be fixed to their pre-
shape values. For instance, in the example of Figure IV-2, 
we describe pad opposition using only the finger pad 
grasping patch, and within this, only the x-coordinate of 
opposition focus and grasping patch length along direction of 
maximum variance. 

V. EXPERIMENTAL SETUP 

An experimental framework was constructed wherein 
human demonstration grasp data could be collected for 
evaluation. The human experimenter demonstrates grasps 
using a Cyberglove sensor to control the 18-dof Shadow 
Robot hand model in the GraspIt! Simulator [20]. The 
experimenter first demonstrates a sequence of known hand-
shapes for the purpose of calibration. This allows the sensors 
of the Cyberglove to be mapped to the joint angles of the 
robot hand model using linear regression. Once the ability to 

control the model is validated, the experimenter 
demonstrates each of the grasps listed in Table 1, using the 
same objects. For each grasp that is demonstrated, we collect 
information required to extract hand parameter values. This 
consists of:  

1) Joint Angles. Obtained directly from the Cyberglove 
sensors after suitable transformation.   

2) Grasping Patches and Location of Opposition Foci 
within them. Obtained through a process of manual 
annotation. The experimenter is presented with a flat (2D) 
view of the grasping surfaces of the hand. He/she then 
proceeds to delimit grasping patch polygons and the 
opposition vectors on it. This information is then 
transformed to the 3D hand centric frame using joint angles 
and known forward kinematics. This provides us with a 
point cloud for each grasping patch and a vector in 3D space 
for each opposition. 

Note that, the process of delimiting grasping patches is 
far from precise. It is based on visual estimation in the mind 
of the human annotator and hence, is subject to variation and 
noise. The same information could also be obtained by 
employing an array of tactile sensors on the grasping 
surfaces of the demonstrating hand (simulated or real). Such 
a capability would be necessary in a practical learning from 
demonstration setup. However, for the purposes of this 
study, manual annotation is sufficient. 

 
Figure V-1: Framework for grasp data collection. Best viewed in color. 

                

                

VF1

VF2

                

                

                

                

Palm pre-shape Pad pre-shape Side pre-shape

grasp demonstrated in 
GraspIt! annotation GUI

manually delimited 
grasping patch 
polygons

manually specified 
opposition foci 

locations

annotations 
transformed to 
3D hand-centric 
frame
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(a) (b) 

  
(c) (d) 

  

 JointAngles JointSynergies ShapeFeatures VirtualFinger1 VirtualFinger2 

Pearson Coefficient 0.5642 0.5885 0.0803 0.8629 0.8376 

p-Value 0.0183 0.0129 0.7592 0 0 

(e) 

Figure V-2: Examines how well inter-grasp distances obtained from the various parameterization schemes compare with functional orderings of the grasp set 

based on human expert experience (and the inter-grasp separation thereby induced). (a), (b), (c) and (d) plot distance to highest precision for the grasp set 
ordered by the baseline metric in decreasing precision ability (see Figure III-1). Table (e) shows the correlation of each plot to the same distances obtained 

from the baseline metric. p-values indicate the probability that a particular correlation occurs by chance. 

VI. RESULTS 

In this section we examine the ability of each 
parameterization scheme to disambiguate hand function, by 
comparing inter-grasp distances against separations 
mandated by the baseline ordering. As shown in Section 
III.B, the human experience baseline metric can be used to 
obtain orderings of the grasp data set based on hand function. 
In particular, we make use of the ordering in Figure III-1-a: 
decreasing precision ability. This ordering induces a 
separation among grasps in the data set that must also be 
respected by hand-parameterizations that are correlated with 
hand function.  

Figure V-2 reports distances obtained from the various 
parameterization schemes. In each case, the x-axis is the 

human baseline ordering of decreasing precision ability. The 
y-axis plots the average distance of each grasp to a small 
neighbourhood,            , of the highest precision 
grasp. As we have taken care to choose our data set to 
adequately span the space of precision and power, we expect 
to see an increasing trend (not necessarily linear), where 
distance from   increases for grasps further away from    in 
the baseline ordering.  

Referring to Figure V-2-{a,b}, the distances reported by 
the shape based parameterizations display no clear separation 
between precision and power. With JointAngles and 
JointSynergies, a slight increasing trend can indeed be 
noticed, however, for the majority of the data set, distance to 
  varies in a narrow band (0.6-1.6). The data for 
ShapeFeatures is erratic and doesn´t show any discernible 
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trend at all. We also notice that the shape based 
parameterizations schemes show anomalies, where grasps 
clearly strong in power are reported closer to the high-
precision neighbourhood than other more precision oriented 
grasps. Anomalies are more pronounced in the case of 
ShapeFeatures (consider for example grasps        in 
Figure V-2-b).  

In contrast to this, Opposition Space parameterizations 
are clearly able to distinguish power from precision. 
Interestingly, we see emerge from the distance data, 3 
categories of grasps that agree closely with the inter-grasp 
separations mandated by the human experience baseline. For 
instance, grasp      is close to   in the ordering and also in 
distance. Similarly grasps       which are power oriented 
and, are positioned at the far end of the baseline ordering, are 
also widely separated from   in distance measured in 
parameter space. Finally, grasps         close to the middle 
of the ordering, end up positioned between the strong 
precision and strong power categories in distance to  . 

This correlation with human intuition can be expressed 
numerically by computing the Pearson correlation coefficient 
for each parameterization scheme against the human 
experience baseline (Figure V-2-e). This is done by dividing, 
in each case, the covariance of two distance sets, one from 
parameter space and the other from the baseline metric, by 
the standard deviations of each set. The high correlation 
coefficients associated with the opposition space 
parameterizations suggest that these schemes are better than 
others in mimicking the thought process of the human 
expert, to discriminate grasps close and far in precision and 
power.  

Two further observations are also in order. First, the 
range of distance data for the opposition space parameters 
(0-350 and 0-250), is much larger than that of the shape 
based ones (0-3 and 0-20). This indicates that opposition 
space parameters are more sensitive to variance in function. 
Second, distance data from the scheme based on pre-shape, 
VirtualFinger2, is very similar to scheme based on 
demonstrated configuration, VirtualFinger1. This indicates 
that full flexibility of the grasping surface patch (and the 
significant increase in number of parameters) doesn´t add 
much more in disambiguating hand-function.  

VII. CONCLUSIONS 

In this paper we have compared shape based 
representations of the hand to those based on the ability of 
the hand to engage oppositional forces. We proposed 2 
parameterizations of opposition space based on virtual 
fingers that model grasping patches and the opposition foci 
within them. A novel approach that examines grasping 
patches in their pre-shape configurations yielded a 
significant reduction in the number of parameters required. 
We proposed a qualitative method to span hand functional 
space in a principled manner. This was subsequently utilized 
to select a set of grasps and define baseline metric over 
which the correlation of hand representation with hand 
function could be evaluated. 

We find that parameterizations based on opposition 
primitives exhibit a strong correlation with hand function and 
are able to mimic functional orderings and categorizations of 
grasps as suggested by human experience. In addition, these 
computational schemes to represent the hand, are consistent 

over hand function space and sensitive to small as well as big 
changes in power and precision. These properties are not 
observed in the several shape parameterizations schemes also 
evaluated. Moreover, we find that imposing opposition pre-
shape constraints on the virtual fingers, does not affect their 
correlation with hand-function.  

In future work we look to use these “functional 
parameters” along with probabilistic techniques to learn 
associations between hand-object interaction and the 
resulting changes that can be effected on a grasped object. 
Such information can help answer questions on “how-to-
grasp” and also provide essential data, in terms of a dynamic 
model, for planning in-hand manipulations. 
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