
Learning Relational Affordance Models for Robots
in Multi-Object Manipulation Tasks

Bogdan Moldovan Plinio Moreno Martijn van Otterlo José Santos-Victor Luc De Raedt

Abstract— Affordances define the action possibilities on an
object in the environment and in robotics they play a role in
basic cognitive capabilities. Previous works have focused on
affordance models for just one object even though in many
scenarios they are defined by configurations of multiple objects
that interact with each other. We employ recent advances in
statistical relational learning to learn affordance models in
such cases. Our models generalize over objects and can deal
effectively with uncertainty. Two-object interaction models are
learned from robotic interaction with the objects in the world
and employed in situations with arbitrary numbers of objects.
We illustrate these ideas with experimental results of an action
recognition task where a robot manipulates objects on a shelf.

I. INTRODUCTION

Robotics aims to develop mobile, physical agents capable
of reasoning, learning and manipulating their environment.
Early approaches such as the well-known Shakey robot used
the logical STRIPS representation [6], and several other
such symbolic representations have been used [9], [20].
Approaches based on logic are effective at dealing with
higher knowledge needed for planning and reasoning, but the
physical aspect of robots requires dealing with various kinds
of uncertainty, typically not handled by such formalisms.
These aspects include interpreting noisy sensors, processing
image streams from cameras, controlling noisy physical
actuators for manipulation, and in general, solving many
grounding and anchoring problems [2]. The use of proba-
bilistic reasoning and learning techniques is now widespread
in robotics [21], yet mostly without employing structured,
logical representations. For this we need statistical relational
learning (SRL) [4], [3] which combines logical representa-
tions, probabilistic reasoning and machine learning. Recent
works have explored the use of SRL and shown how to
effectively combine probabilistic and logical methods in
robotics domains (e.g. a kitchen scenario [10]).

A promising approach for the development of humanoid
robots’ skills is the learning of object affordances. Affor-
dances are modeled as relations between three variables,
objects (O), actions (A) and effects (E), such that given
two, one can predict the third. Thus, affordances allow to
perform three tasks: i) predict the outcome (and plan) an

Bogdan Moldovan and Luc De Raedt are with the Department of
Computer Science, Katholieke Universiteit Leuven, Belgium

Plinio Moreno and José Santos-Victor are with the Electrical & Computer
Engineering Department, Instituto Superior Técnico, Portugal

Martijn van Otterlo is with the AI Department, Radboud University
Nijmegen, The Netherlands

Bogdan Moldovan is supported by IWT (agentschap voor Innovatie door
Wetenschap en Technologie). This work is supported by the European Com-
munity’s 7th Framework Programme, grant agreement First-MM-248258.

action (infer E, given O and A), ii) recognize a performed
action (A, given E and O), or iii) select objects according to
a task requirement (determine O, based on observed A and
E) [17]. The introduction of affordances to robotics follows
the developmental framework, which proposes to acquire
new skills on top of previous ones by experimentation and
interaction with the environment [15]. This allows the robot
to perform more complex tasks and learn by imitation in a
goal oriented manner [17]. The typical scenario of affordance
learning considers isolated objects in the environment, which
is a reasonable assumption for many robotic tasks. However,
there are several cases where it is necessary to consider
the (spatial) relations between several objects such as: shelf
sorting, placing groceries in a shopping cart and packing
items in a bag. Here we address such settings, which we
refer to as affordance learning in multiple-object settings.

A. Approach

We study the extension of the affordances model to include
more than one object, where the robot’s actions may affect
several objects in the environment. Previous approaches
adopt Bayesian networks (BNs) in order to encode the
relations between an object’s properties, actions and effects
in a probabilistic manner [14], [17], [11]. A straightforward
extension to that model to handle multiple objects is to add
more variables to the BN and perform structure learning and
inference as in previous works. However, two issues must be
considered: (i) a separate BN is learned and instantiated for
every distinct number of objects in the environment and (ii)
the number of samples needed to learn a BN with more than
three objects is very large. We address these issues using SRL
(and probabilistic programming languages) [5], which allows
to build just one model (probabilistic program) that supports
inference for any number of objects, so the structure learning
of several BNs is not needed and performing inference does
not need to switch between BNs. The SRL generalization
also enables inference on scenarios with (spatial) relations
between more than two objects, using only samples of
scenarios with one and two objects.

We use the simulator of the iCub robot [16] to perform
experiments, where the humanoid robot is capable of discov-
ering the affordances associated with manipulation actions
(grasp, push and tap), applied to objects with different prop-
erties (color and shape). The effects include displacement
and orientation changes for each object and contact between
objects. These effects are closely related to the multiple
object scenarios above mentioned, where the position and
contact information between objects guide the robot to select



the appropriate object and action for the subsequent step.
An example of the type of applications for multi-object

affordance models is the shopping shelf scenario, depicted in
Figure 1. The robot’s task is to place the magenta object onto
a shelf at the given target location. This involves first pushing
the other objects to the left to make space (1), followed by
pushing the magenta object in its target location (2).

Fig. 1. Shelf scenario with action sequence for object placement.

B. Contributions and Outline
Affordance models using BNs need to be tailored to the

specific number of objects in a scene, and their size increases
with this number. The contribution of this paper is the use
of SRL methods for extending affordance models to multi-
object scenes by robustly going from two-object interactions
to a variable number of objects by generalization over objects
and modeling of probabilistic aspects. SRL provides ease
of modeling and increased comprehensibility by allowing
the transfer of the model structure to other domain sizes.
The experiments using an iCub robot show in multi-object
scenarios that this approach gives comparable results to a
tailored BN, while maintaining the flexibility of not needing
retraining and the robustness for large number of objects.

The rest of this paper is organized as follows: Section
II presents related work, Section III the technical setting
and basic skills of the robot and Section IV introduces
affordance-based models and illustrates them for a single
object. Section V includes the main contribution of this
paper: it explains the extension toward relational, multi-
object affordance models and describes examples of two-
object interactions. Section VI presents experimental results
in a multiple-object setting and we conclude in Section VII.

II. RELATED WORK

This paper builds upon previous work in affordances, a
concept introduced by J. J. Gibson [7] and used to model
world-robot interaction. More specifically, we extend previ-
ous work on affordances in the context of imitation learning
in [14], [17] where an affordance model for a single object is
learned with a BN in the context of a robot interaction game.
Related work is also the use of the affordance models in the
context of word-to-meaning association in [11]. In order to
extend the affordance model to the relational domain, this
paper builds upon work in SRL, including [3], [4]. The
ProbLog language which is used for modeling in this paper
is described extensively in [5], [8]. Finally, this work falls
in the same area as that of probabilistic robotics [21] and
of providing robots with logic and probabilistic reasoning
capabilities [10], [9], as well as in the context of planning
[12] and object-action complexes [23].

III. BASIC SKILLS OF THE ROBOT

We employ, both in a real setting and in simulation, the
iCub humanoid robot, which has a head with two cameras,
two arms and two legs. We use only one arm, the cameras
and the software modules that provide: (i) motion control
to reach a target position [18], (ii) image segmentation [1]
and (iii) stereo triangulation. We build on these elements the
basic skills of the robot: motor skills to perform the actions
and perceptual skills to measure object features and effects.

We assume the robot is provided with a set of core motor
actions with parameters adjusted after self-experience [17].
We consider three actions: A = {push, tap, grasp}. Each
moves the iCub hand over a preprogrammed orientation
and distance, but can also be parameterized in the future.
The motion of the hand to a target position is provided by
visual skills. The hand is moved to the target position by a
minimum-jerk Cartesian controller which reaches a position
as close as possible to a given rest position while coping with
the kinematic constraints of the robot, such as joint limits,
damage avoidance and hand orientation [18]. The action is
performed after the Cartesian controller has terminated. The
action execution is preprogrammed due to the limitations of
the simulator and the complexity of the iCub’s hand.

The perceptual skills of the robot include color segmen-
tation and 3D object localization. The color segmentation
algorithm relies on a synergistic approach that combines a
confidence-based edge detector and mean shift segmentation
[1]. We apply the image segmentation algorithm on both
cameras in order to find the enclosing region of objects
on each image. Then, the centroid of the segmented region
is extracted on both cameras in order to perform stereo
triangulation that provides the 3D position of the object’s
centroid, which is the target position to execute the action.

The effects are measured as differences in object attributes
before and after the action is performed. We measure: (i)
the magnitude of the object displacement relative to its
initial position, (ii) the orientation angle of the displacement,
and (iii) the contact between objects, computed from the
intersection between the segmented regions in both images.

As the robot itself is not mobile and the arm has a
specific action range, each ai ∈ A can be performed when
the object is located in a specific action space. This is
learned by exploratory manipulation of objects in various
locations, and measuring and k-means clustering [13] (using
Matlab) of the effects (e.g. displacement) in three clusters.
The lowest displacement values correspond to the object not
being reached, and the medium ones to where the action
cannot be performed fully. The cluster with the highest values
(i.e. effects are consistent) determines the action space, which
will be enforced by the introduction of (logical) rules.

The real setting, with the iCub manipulating objects in
over 100 scenarios, was used as a proof-of-concept demon-
strating that our approach can be used as well in a physical
setting with just minor adjustments. However, because of
practical constraints regarding the availability of the iCub,
most of the results we report on were obtained in simulation.



IV. AFFORDANCE-BASED MODELS

Affordance models, based on a concept introduced by J. J.
Gibson [7], are typically used for robotic imitation learning
settings [14], [17]. Affordances capture action opportunities
to structure the environment. They define the relationships
between the robot and the environment through the robot’s
available sensing and motor capabilities [17], e.g. a cup is
handled in a different way than a ball. To achieve this task,
affordances model the correlations between the set of objects
and their properties as being detected by the robot sensors:
O = {o1, o2..., on}, the repertoire of actions available to
the robot, A = {a1, a2..., an}, and the effects of performing
those actions E = {e1, e2..., en} as detected by the sensors
as changes in object features. A generic affordance model is
depicted in Figure 2. We will describe learning of, and using
the, affordance models in a one-object setting using a BN.

Fig. 2. Affordances: relations between objects, actions, effects [14], [17].

A. Learning Affordances for One Object
When the robot learns the action space for each ai ∈ A,

it also gathers data for O and E. The subset of the data
in the action space is used to learn the affordance model
to represent the environment. For this we use a BN [19],
a probabilistic graphical model, to encode the dependencies
in the affordance model, using a two-step approach similar
to [17], [14]. In a first phase we induce the connection
structure of the BN, using the K2 algorithm (using Matlab).
This is computationally faster than the alternative MCMC
approach [17]. K2’s greedy nature may generate an incom-
plete structure which can easily be corrected using domain
knowledge. The resulting BN structure of the affordance
model is depicted in Figure 3. In a second step, similar to
[17], [14], the parameters (i.e. the probabilities) of this BN
are learned. In Section V we will elaborate on this step; at
this point the robot has obtained the BN representing a single
object affordance, which it can now use to reason about its
interactions with the environment.

Fig. 3. BN representing affordances for the one-object setting.

B. Using the Affordance Model

Figure 2 shows the three possible uses of the affordance
model, in which one of the three feature sets (O, A, E)
can be computed by providing the other two. We will focus
on the task of action prediction or recognition, where the
robot observes O and E and has to infer A, the action that
was performed. This is useful in imitation learning: the robot
observes a human manipulating an object (and properties),
observes the effects of the demonstration and tries to infer
the action to imitate the effects in terms of its own action
repertoire (obviously different from that of the human).
Action prediction is also a basic step in planning, as the
robot knows the effects it wants to achieve and tries to find
the sequence of actions needed. The experimental section
will address this task—we will show how our approach
performs action prediction in the context of single-action
planning. In order to perform action recognition, we use
the previously learned BN representing the affordance model
and compute the maximum a posteriori probability (MAP)
estimate: argmaxA P (A|O,E) = argmaxA

P (A,O,E)
P (O,E) , with

the observed values for O and E.

V. RELATIONAL MODELS FOR AFFORDANCES

In this section we describe our main contribution: the
extension of the previously introduced one-object affordance
models employing BNs to more general settings using a
probabilistic relational model. In these, manipulation skills
can involve multiple objects, object interactions occur while
manipulating and different behaviors are required depending
on the spatial relations between objects. These relations
include e.g. relative distance between objects and their
angle of orientation and contact. Our multi-object setting
requires first-order logic to capture—and generalize over —
the (spatial) relations in the domain, probabilistic information
to deal with uncertainty in perception and action and learning
to induce the affordance models from interaction with the
environment. Through the use of variables, i.e. place-holders
for individual objects, in the relational representation, the
models are able to generalize to arbitrary numbers of objects
in the scene. That is, we derive a relational knowledge
representation model only by taking into account the sin-
gle and the two-object affordance model (which includes
relational features between two objects). This model can
then be applied in any multi-object scene, as shown in the
experiments section (e.g. to be evaluated with 6 objects).

A. Probabilistic Programming Languages

A probabilistic programming language (PPL) is a pro-
gramming language specifically designed to efficiently de-
scribe and reason with probabilistic relational models. For
representation of, and inference using, the multi-object affor-
dance model, we utilize the state-of-the-art PPL ProbLog [5],
which is a probabilistic extension of the well-known Prolog
logic programming language. To describe a probabilistic
relational model in ProbLog, one writes a program which
consists of a set of probabilistic facts and a set of logical
rules (which express domain knowledge and constraints).



Let us illustrate this briefly with an example with causal-
probabilistic logic (CP-logic)[22] style syntax in ProbLog,
where predicates and atoms start with a small letter while
variables start with a capital letter. To model the shape of an
object being randomly chosen from a set of two predefined
shapes (i.e. the shape can take exclusively one of the two
values with a probability of 1

2 ) one would write the clause:
1
2 :: shape(cube); 1

2 :: shape(cylinder)← true.
Formally, a CP-logic clause is a statement ∀x(A1 : p1) ∨
...∨(An : pn)← φ, where φ is a universally quantified first-
order formula of some tuple of variables x, and Ai are atoms
containing variables in x, such that for each x, φ causes
at most one of the Ai to become true; Ai becomes true
with probability pi. [22] If x = ∅ the clause is ground, and
assigning values to the variables in x is called grounding.
[22] Now we can generalize our example over objects:
1
2 :: shape(O, cube); 1

2 :: shape(O, cylinder)← obj(O).
variable O is universally quantified over the set of all objects.

We can augment our model with logical rules to represent
background knowledge, for example:
dispMag(O, 2)← obj(O), action(O, push).

which models that the displacement magnitude of any object
takes the value “2” when that object is pushed. Formally, a
logical rule is a deterministic clause, where φ causes some
atom A with probability one, (A : 1)← φ [22].

Now that we have seen the building blocks, we want to
have a general ProbLog model derived from the one (and
later two) object affordances, which are modeled with BNs.
As explained in more detail in [22], any BN can be modeled
by constructing An for every node n of the BN, with parents
q1, ..., qm, domain {v1, ..., vk} and conditional probability
table giving probabilities p1, ..., pk for q1 = w1, ..., qm =
wm, rules of the form: (An(v1) : p1 ∨ ... ∨ An(vk) : pk)←
Aq1(w1)∧...∧Aqm(wm) for all parent values in their domain.

Using the BN model in Figure 3 with previously learned
parameters, part of the relationship between the action and
the object displacement magnitude is modeled as:
0.03 :: dispMag(Obj, 1); 0.22 :: dispMag(Obj, 2);
0.25 :: dispMag(Obj, 3); 0.5 :: dispMag(Obj, 4)

← action(Obj, push).
When an object is pushed, its displacement magnitude takes
one of the 4 possible values with the specified probability.

We can now model the setting as a ProbLog program with
clauses ci that can be probabilistic facts with probability pi
or logical rules (i.e. pi = 1). Formally, a ProbLog program
T = {p1 : c1, ..., pn : cn} defines a probability distribution
over logic programs L ⊆ LT = {c1, ..., cn} as P (L|T ) =∏

ci∈L pi
∏

ci∈LT \L(1 − pi). Once the program describing
the probabilistic relational model is defined, several inference
methods are available for computing the probabilities of a
user’s query. This means asking for the success probability
P (q|T ) of a query q, which is the probability that q has a
proof given the distribution over logic programs [5].

Section IV mentioned that we need to learn the parameters
of the affordance model BN. For a single or small predefined
number of objects this can be done as in [14], [17] but
this will not generalize over any number of objects or deal

with partial observations (i.e. not all of O or E observed,
e.g. faulty sensors). ProbLog supports learning in this more
general setting through learning from interpretations (LFI)
[8]. LFI uses the previously learned structure encoded as a
ProbLog program T (p) for the parameters p = 〈p1, ..., pn〉,
and our gathered training data D = {I1, ..., IM}, Ii the
data from instance i, to compute the maximum likeli-
hood parameter estimation: p̂ = argmaxP P (D|T (p)) =
argmaxP

∏M
m=1 Pw(Im|T (p)), thus obtaining the probabil-

ity parameters of the (relationally encoded) BN.

B. Learning Two Object Models

For multi-object scenes we introduce, in addition to the
O and E features detected for the single object case, two
spatial relational object properties: the relative distance
between two objects and the relative orientation of one with
respect to the other, and one relative effect: whether there
is contact between them. The robot first explores the action
space for two objects as seen in Figure 4 (we ran about 600
scenarios) to learn an affordance model. In the two-object
setting, we define the main object to be the one the robot
acts upon, and the secondary object the other object in the
scene, which may interact with the main one through the
robot’s actions. Both are arguments of the robot’s hand
motion, and the action is defined over any secondary object:
action(OMain, A)← handMotion(OMain, , A).

Fig. 4. Real(l) and simulation(r) screenshot of the two object setting.

From the data a grounded BN (structure and parameters) was
learned in a similar manner as for the single object case in
Section IV. We use this BN in ProbLog while generalizing
over the number of objects by introducing variables for
objects, resulting in the non-grounded BN in Figure 5.

Fig. 5. Non-grounded BN for two-object interaction.

The single object BN (Section IV) can be reused by gener-
alizing if there is no object interaction. In the displacement
magnitude example, this is the case if the two objects are
the furthest away (initial relative distance “4”). The effects
on the main object are the same as in the one-object case:

0.03 :: dispMag(OMain, 1); 0.22 :: dispMag(OMain, 2);
0.25 :: dispMag(OMain, 3); 0.5 :: dispMag(OMain, 4)

← handMotion(OMain, OSec, push),
initRelDist(OMain, OSec, 4).

Logical rules are added for defining background knowledge,



which the robot would take longer to learn by itself oth-
erwise. In the case above, the secondary object would not
move (lowest displacement: “1”) if the objects are far away:
dispMag(OSec, 1)← handMotion(OMain, OSec, push),

initRelDist(OMain, OSec, 4).
Logical rules can also be used to enforce constraints in the
setting, e.g. if two objects are close together a grasp should
not be performed (the secondary object would interfere with
the hand). Rules can also be added for enforcing the action
space or encoding relations not caught by structure learning.

The new model generalizes over specific objects and can
be applied in arbitrary scenes. In contrast to a standard BN,
we do not have to encode all relations between all objects and
generic rules are applied to arbitrary objects, so the number
of parameters to be learned can be exponentially lower.

C. ProbLog Inference for Action Recognition

The ProbLog model can now be used by the robot for
probabilistic inference. Here we are interested in action
prediction (finding A given O and E). This means calculating
a MAP estimate: argmaxA,ObjMain P (AObjMain|O,E). In
practice one just needs to do inference using the ProbLog
program to obtain the required probability. Another advan-
tage is that if a sensor fails and a feature value is missing,
ProbLog is able to marginalize over the missing variables and
find the required probabilities and predict A nonetheless.

The example below illustrates one such case of inference:
Detected O: o1=rect, o2=square, Relative Dist.=1

Desired E: Displacement o1=4, Displacement o2=2

Displ.Orientation o1=NNE, Displ.Orientation o2=NNW, Contact=1

Predicted A: push on o1: 7.7%, tap on o1: 0%, grasp on o1: 2.0%
push on o2: 90.1%, tap on o2: 0.2%, grasp on o2: 0.0%

In this case, the action predicted is a push on o2.

VI. EVALUATION AND RESULTS

We want to show that the SRL model obtained from
two-object interactions can be used in a general multi-
object setting with comparable results to a BN model trained
specifically for that number of objects. This will also show
that interactions between three or more objects need not
be explicitly considered because the relevant dependencies
can be captured by pairwise interactions, and any additional
influence of these interactions is negligible. We do this in the
context of single-action planning where the robot needs to
pick the object to act on and the best action to match some
required effects. We want to find out: (i) Can the robot pick
the right object? (ii) Can it pick the right action? (iii) Can it
pick the right action on the right object? (iv) How does this
compare with the BN approach?

We use a six-object setting to investigate if our SRL
model is able to generalize from two-object interactions. The
objects are placed in front of the robot on the table. Three
objects are always in the field of action of the robot, though
the robot might not be able to perform all the actions on
every object as this might violate some rules (e.g. action
space for that action, interference with the hand from nearby
objects). The other three objects are placed behind these and

might interact with them when performing an action. All the
objects are randomly placed within certain margins and have
a random shape. One such placement is shown in Figure 6(1).
This is similar to the shelf setup, where the objects at the
back are “in the shelf” while the ones in the front need to
be arranged. In this setting, we execute all possible actions
with the iCub to get real-world matching effects. Given these
effects and the object properties, we predict the action and
compare it against the ground truth action we performed.

Fig. 6. Six objects(1), left eye image(2) and its segmented objects(3).

Our SRL model consists of the generalization of the two-
object interactions described by the BN in Figure 5 and the
following rules (one of each type): (i) generalization from
one object: if the main and secondary object are far away,
use the displacement orientation from the one-object case for
the main object, (ii) background knowledge: if the main and
secondary object are far away, displacement of the secondary
object is lowest, (iii) constraint enforcement: grasp is only
allowed if object distance is not lowest. Experiments will
show that just this can give good results. Adding more rules
increases the prediction rate, but inference will take longer.

To investigate single-action planning, consisting of action
and main object prediction, we ran 200 experiments against
which we tested our SRL model. For the BN model we split
the same data into two sets and used one for training and one
for testing. We did this six times and averaged the results,
since the results vary because the number of experiments is
relatively small given the high number of nodes.

We do color segmentation, illustrated in Figure 6 (2, 3)
for the left eye, and then 3D object localization using stereo
vision on the scene to find out the position of each object.

The object properties are: shape, relative distance and
orientation between each pair of objects. After an initial
domain analysis, they were discretized as follows: the relative
distance in 4 clusters separated at 6cm, 10cm and 14cm; the
orientation angle in 8 clusters of 45 ◦. Every possible a ∈ A
is executed and recorded. For calculating the effects, the
scene is segmented again, and we compute the displacement
and its angle orientation, which are similarly clustered, with
the displacement clusters separated at 1cm, 3cm and 5cm.
On a given image, the contact feature relies on the area of
intersection between the convex hull of the two segmented
areas. The intersection is normalized in two ways: (i) with
respect to the minimum object area in order to remove image
size dependencies and (ii) with respect to the distance of the
farthest object in order to remove depth dependencies. The
normalized contact feature is averaged over both cameras.

We use the O and E data values and the SRL model
to predict the action and main object by calculating
argmaxA,ObjMain P (AObjMain|O,E) and compare them to



the real action-object pair. Similarly, we obtain the best
predicted object to act on by summing over all possible
actions in the above formula, and the best predicted action by
summing over all possible main objects. To have a baseline
to compare our SRL approach to, we learn the six-object BN
model. In this model, the action node has 9 possible values (3
actions for each of the 3 reachable objects), and we compute
the MAP estimate to find out the predicted object-action duo.
The comparison of the two approaches is shown in Table I.

TABLE I
ACTION PREDICTION IN SIX-OBJECT SCENARIOS.

Prediction Task Total exp. Success Pct.

ProbLog
Model

ObjMain 200 149 74.5%
A 200 137 68.5%
ObjMain and A 200 116 58%

BN Model ObjMain 100 67 67%
(avg over 6 A 100 69.2 69.2%

train/test sets) ObjMain and A 100 67 67%

Because each object-action combination is modeled by a
different value in the action node of the BN and the relatively
low number of training examples, the BN predicts the object-
action duo and its individual components with almost the
same rate. The approaches have comparable results; the SRL
is slightly better at predicting the object to act on, while
the BN is slightly better for the object-action duo. However,
the SRL model can be used without being changed for any
number of objects, while the BN needs to be learned again
and can get very big (a six-object setting BN already has 65
nodes). In addition, the SRL enables transferring structural
parts of the model (e.g. abstract action-effect rules) to similar
domains with more, less or other types of objects. If we want
improved accuracy tailored to a setting, the SRL model can
also be trained with data from that setting using LFI.

We also looked at some learning statistics for our SRL
model (summarized in Table II): i) the confidence of the
predictions (i.e. the value of P (A|O,E)) and (ii) the number
of correct effects produced by an incorrect predicted action.

TABLE II
LEARNING STATISTICS OF THE SRL AFFORDANCE MODEL.

Prediction Result Statistic Pct.

Success
ObjMain confidence 73.1%
A confidence 90.1%
ObjMain and A confidence 62.6%

Failure Correct effects 67.2%

We see that the confidence of predicting an action is very
high, while (as expected) that of the object-action duo is
lower. When our prediction is wrong, executing the action
still manages to produce about 2

3 of the 27 effects correctly,
sometimes a good compromise in complex scenarios.

VII. CONCLUSION AND FUTURE WORK

We have presented an approach for robotic affordance
model learning in a probabilistic relational setting. Mov-
ing to multi-object scenes requires expressive representation
schemes to generalize over specific spatial configurations of
objects and dealing with uncertainty and partial knowledge

about the environment. We showed that a relational extension
of the affordance models of two object interactions can be
used for modeling a multi-object scene with success.

Future work will study imitation learning, involving rec-
ognizing low-level “atomic actions” of one or two objects
in a multi-object scene using the learned models. We also
want to use affordance models for planning of manipulation
strategies, where a task consists of sequences of actions
and the robot learns a high-level manipulation strategy. The
long term goal is to go towards an autonomous shelf sorting
capability of the humanoid robot, as in Section I.

REFERENCES

[1] C. M. Christoudias, B. Georgescu, P. Meer, and C. M. Georgescu.
Synergism in low level vision. In In International Conference on
Pattern Recognition, pages 150–155, 2002.

[2] S. Coradeschi and A. Saffiotti. An introduction to the anchoring
problem. Robotics and Autonomous Systems, 43(2-3):85–96, 2003.

[3] L. De Raedt. Logical and Relational Learning. Springer, 2008.
[4] L. De Raedt and K. Kersting. Probabilistic inductive logic program-

ming. In Prob. Ind. Log. Progr., pages 1–27, 2008.
[5] L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic

prolog and its application in link discovery. In IJCAI, pages 2462–
2467, 2007.

[6] R. E. Fikes and N. Nilsson. STRIPS: A new approach to the
application theorem proving to problem solving. Artificial Intelligence,
5(2):189–208, 1971.

[7] J. J. Gibson. The Ecologial Approach to visual perception. Boston:
Houghton Mifflin, 1979.

[8] B. Gutmann, I. Thon, and L. De Raedt. Learning the parameters of
probabilistic logic programs from interpretations. In ECML, 2011.

[9] J. Hertzberg and R. Chatila. AI reasoning methods for robotics. In
B. Siciliano and O. Khatib, editors, Handbook of Robotics, pages 207–
223. Springer, 2008.

[10] D. Jain, L. Mösenlechner, and M. Beetz. Equipping robot control
programs with first-order probabilistic reasoning capabilities. In ICRA,
pages 3626–3631, 2009.

[11] V. Krunic, G. Salvi, A. Bernardino, L. Montesano, and J. Santos-
Victor. Affordance based word-to-meaning association. In ICRA, 2009.

[12] T. Lang and M. Toussaint. Approximate inference for planning in
stochastic relational worlds. In ICML, pages 585–592, 2009.

[13] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, 28(2):129–137, 1982.

[14] M. Lopes, F. S. Melo, and L. Montesano. Affordance-based imitation
learning in robots. In IROS, pages 1015–1021, 2007.

[15] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. Developmental
robotics: A survey. Connection Science, 15:151–190, 2003.

[16] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori. The iCub
humanoid robot: an open platform for research in embodied cognition.
In Proceedings of the 8th Workshop on Performance Metrics for
Intelligent Systems, 2008.

[17] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learn-
ing object affordances: From sensory-motor coordination to imitation.
IEEE Transactions on Robotics, 24:15–26, 2008.

[18] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini. An
experimental evaluation of a novel minimum-jerk cartesian controller
for humanoid robots. In IROS, pages 1668–1674, 2010.

[19] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[20] F. Stulp and M. Beetz. Combining declarative, procedural, and predic-
tive knowledge to generate, execute, optimize robot plans. Robotics
and Autonomous Systems, 56:967–979, 2008.

[21] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[22] J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A
language of causal probabilistic events and its relation to logic
programming. Journal of Theory and Practice of Logic Programming,
9(3):245–308, 2009.

[23] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, and B. Porr. Cognitive
agents – a procedural perspective relying on the predictability of
object-action complexes (OACs). Robotics and Autonomous Systems,
57:420–432, 2009.


