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Abstract 
The problem of compacting a given number of two- 
dimensional shapes minimizing the area of t,he enclos- 
ing rectangle, i.e., minimizing the waste prodiiced, 
arises quite often in some industrial processes like the 
automotive industry, clothing manufacturing, steel 
construction, electronic engineering and leat.licr cut- 
ting. 

A simulated annealing approach for the compacta- 
tion of two-dimensional irregular shapes is presented. 
The energy function is defined by considering three 
components: 1) A measure of the enclosing rectan- 
gle area; 2) A measure of the distances between each 
piece and the center of the board, weighed by pa- 
rameters reflecting the desired width/height ratio of 
the enclosing rectangle; 3) A measure of the quality 
(goodness) of local solutions. 

The results show that the annealing algorithm per- 
forms rather well dealing with irregular patterns al- 
location, even though leading to higher computation 
times than those needed to run some heuristic meth- 
ods. However, there is some evidence in the results 
obtained so far that  near-optimal solutions may be 
reached in polinomial time. 

1 Int r o d u c t io 11 
The problem of compacting a given number of two- 
dimensional regular or irregular shapes minimizing 
the waste produced, is certainly of relevant interest to 
some industries, where the cost of the wasted material 
can reach surprisingly high values. 

To find the optimal allocation of two-dimensional 
irregular shapes by complete enumeration is clearly 
an exponencial time algorithm: given a set of N pieces 
to  allocate over a grid of L x W points, the cardinality 
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of the set of configurations, including the ones where 
overlapping occurs, is 

IC1 = ( L  x W x R),', ( 1) 
where R denotes the number 31 possible orientations 
for each piece. 

If the set of feasible configiirations 3 is consitl- 
ered, by excluding llie coiifigirratioiis witti ovcrlappcil 
pieces, the total number of solutions is heavily depen- 
dent on the shapes of the pieces to be allocated. A n  
upper bound for 131 is given by 

where Aj is the number of grid points covered by the 
j r h  piece. 

Since A, > 0 for j = 1. . .N - 1, JFI < ICI, as ex- 
pected. 

Unfortunately, there is no known method for the 
generation of 3, avoiding the search over the whole 
set C. 

During the second half of this century, some ap- 
proaches have been tried to find good solutions for the 
allocation problem, partly due to worldwide industry 
development, and also because computers emerged 
as excellent tools for the solution of these problems. 
The methods which have been used belong basically 
to one of three categories: 

0 Operator based: 
A n  operator uses a CAD system to elaboratc a 
solution. 

0 Algorithmic: 

In this case, solutions are found actomatically by 
algorithms running on a computer. This problem 
has been adressed following two main guide lines: 
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- Linear, integer and dynamic programming: 
It is specially used in applications where 
all the pieces have a common and regular 
shape-type, such as rectangles [3]. These 
algorithms have exponential time complex- 
ity and are heavily affected by the NP-Hard 
nature of the problem. 

- Heuristic: 
In this approach, heuristics are used along 
with state space search methods to shorten 
the search for a solution [4]. These heuris- 
tics are however problem specific and usu- 
ally based on some feat.ures of the pieces to 
be allocated. 

0 Hybrid: 

This last category is just a combination of the 
previous two, often allowing the draftsman to 
make minor rearrangements in the configuration 
proposed by the algorithm, or to set an initial 
configuration upon which the algorithm will it- 
erate. 

The method described herein belongs to t,he second 
category. 

2 The Annealing Algorithm 
The annealing algorithm, also called probabilistic hill 
climbing or sfafisfical cooling, was first introduced by 
Kirkpatrick e f  a/.[?'] as a Monte Carlo method for 
combinatorial optimization. It is an adaptation of 
the Metropolis algorithm [9] used in the simulation of 
physical systems in statistical mechanics to compute 
average properties of the system in equilibrium at  a 
given temperature. 

hletropolis e t  al. used a simple algorithm to simu- 
late the interactions between a fin,ite number of atoms 
in equilibrium at  a given temperature. In each step of 
the algorithm, a new state  of the system was obtained 
by randomly selecting an atom and by randomly dis- 
placing it. The change in the energy of the system, 
A E ,  was then computed. If A E  5 0, the new state 
was accepted, otherwise it would be accepted with 
probability exp(-AE/I<T), where I< is Boltzmann's 
constant, T is the temperature in Kelvin degrees and 
A E  is measured in Joules. 

It was shown that by repeating these steps a suffi- 
ciently high number of times, the system will evolve 
towards a distribution of states in which the proba- 
bility of a given state si (with energy e i )  to be the 
current state is 

exp(-ei/Ii'T) 
Cy= ex p ( - e j / K T )  (3) 

This equilibrium distribution is known as f h e  Bolfz-  
man n dis f ri b ui io n. 

From (3)  it is ciear that for very high values of 
T ,  each state h a s  almost equal chances of being the 
current one, while for very low values of T, only the 
states with low energies have considerable chances of 
prevailing . 

As was stated before, these probabilities are de- 
rived for an equilibrium condition, that is, for a suf- 
ficiently high number of steps. A low temperature 
does not necessarily mean that the system will evolve 
towards a ground state, i.e., a state with minimum 
energy. 

Annealing is so the technique deve!oped to bring 
a substance into a ground state. It consists of heat- 
ing the substance until a very high temperature is 
reached, and then to cool it slowly enough to main- 
tain a qii'LSi-e3~tilil)riitin coiidition. i f  lhis is no1 C I I -  

sured, the substance may crystallize defectively or not 
crystallize a t  all. 

The major contribution of Kirkpatrick was to find 
that the Metropolis algorithm could be transposed to 
the problem of combinatorial optimization. For that 
purpose he replaced the energy of the system by a 
cost function, and reformulated bletropolis' moves as 
moves in the system's state space. 

The annealing a!gorithm may be seen as a series 
of homogeneous Markov chains, each with a temper- 
ature lower than the previous one. Special attention 
must be paid to the annealing schedule. The tem- 
perature of the first chain must be high enough to 
allow virtually every configuration, regardless of its 
energy. This implies, of course, the connectivity of 
the state space, i.e., for every pair of states si and 
s, belonging to the state space, there must be a fi- 
nite sequence of moves with non-zero probability that 
connects them [I]: 

where S represents the state space and P ( s ; , s j )  de- 
notes the probability that a move will take the system 
from state si  to state s j .  
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If temperature is decreased slowly enough from 
chain to chain, and the length of each chain is suf- 
ficiently large to maintain an equilibrium condition, 
the system will evolve with probability 1 towards one 
of the ground states. 

There is a direct relation between the size of the 
decrements in temperature and the length of the 
Markov chains: smaller decrements allow shorter 
chains while larger decrements demand longer chains. 

It is possible to compute an estimate of the dis- 
tance to an equilibrium condition, thus calculating 
automatically when to decrement the temperature. 

Aarts and van Laarhoven [l] propose a method to 
estimate the distance from an equilibrium condition. 

Simulated annealing has been used in several fields 
where combinatorial optimization problems exist. 
Examples of these are the Travelling Salesman Prob- 
lem [5,7], placement and routing in VLSI [7,8], neural 
nets [2] and image restoration [6]. 

3 The Proposed Approach 

In the approach proposed in this paper each piece is 
characterized by a set of vertices, a center and an 
orientation. The center corresponds to the center of 
the smallest enveloping circumference. 

At a given time instant, the state is given by the 
center positions and orientations of the whole set of 
N pieces. An energy E is defined as a weighed sum 
of three components, reflecting the quality (goodness) 
of a given configuration. 

3 

E = C r ~ i . E i  (5) 
i= 1 

These components are: 

1. El defined as the square root of the area of the 
smallest enclosing rectangle. The square root is 
used in order to ensure that all components are 
expressed in the adequate units. 

El = J(R - L) x (U - 'D), 

with 

N V, 

i = l  j=1 
L: = min(mint i j ) ,  

where V, denotes the number of vertices of the 
j r h  piece. 

2. E2 defined as the s u m  of the distances from each 
piece's farthest vertice to the board (work space) 
center. 

with 

N V, di = max((a/b).maxlzij - ~Bl,&&lyi j  - Y B ~ )  

where zij and y,, represent the position of the 
j r h  vertice of the i'* piece in plane XY, while 
I B  and y~ represent the position of the center 
of the board in the same plane, and CI and b are 
weights. 
This component leads to configurations in which 
the pieces tend to gather within a rectangle, with 
length/width relation equal to  a / b .  

I =  1 j = 1  J = 1  

(12) 

3. E3 defined as a measure of the quality (goodness) 
of local solutions. For each piece, the proximity 
between its center and its neighbours centers is 
computed, contribut.ing nonpositively to the to- 
tal energy: 

N 

E3 = E (cij - R, - Rj). (13) 
i = l  jcv(i) 

v ( i )  denotes the set of indexes corresponding to 
pieces which are neighbours of t  he i l h  piece. Two 
pieces are said to be neighbours if their envelop- 
ing circumferences overlap. Ri represents the ra- 
dius of the enveloping Circumference of the i r h  

piece. 

cij is the euclidian distance between the centers 
of the i t h  and j i h  pieces. 
E3 is therefore nonpositive, rewarding good local 
arrangements. 

A move consists of a translation, a rotation or, in 
case where the pattern has no symmetry axis, of an 
inversion of a pattern. This move may or may not 
lead to a legal configuration. Legal configurations are 
the ones in which no overlapping between pieces oc- 
curs. Illegal configurations are always rejected. This 
fact has  an important effect on the total number of 
configurations given by (l),  since only legal config- 
urations are allowed, but also affects the topology 

(7) 

(8) 

(') 

(lo) 
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of the state space, since any path linking two legal 
states si and sj including at least one illegal state 
is now excluded. This can be seen in  (4 ) ,  where it 
may no longer be true that P ( S ~ ~ , S ~ , + ~ )  # 0 VI E 
(1, ... K i j  - l}, since skt+l  may now be an illegal state. 

If, on the other hand, a move leads to a legal con- 
figuration, the resulting change in the energy is mea- 
sured. In case there is a decrement in E ,  the new 
configuration is accepted, otherwise the probability 
of its acceptance will be given by 

P ( A E , T )  = exp(-AE/T) 

T being the current temperature. 
The  NP-Hard nature of this problem shows its ef- 

fects even for low values of N, thus making impossible 
an exhaustive or even vast search of the state space in  
a reasonable amount of time. A direct consequence 
of this is that  one cannot expect the algorithm to 
run under quasi-equilibrium conditions, a t  lcast for 
a large set of pieces and/or an allocation grid with 
many points. This implies that the initial configura- 
tion may have significant importance in the final so- 
lution and that the probability that the system will 
evolve towards a ground state is now significant,ly less 
than 1. 

4 The Annealing Schedule 

As was stated before, the behaviour of the anneal- 
ing algorithm depends heavily on the proximity of 
the system from equilibrium. It is therefore crucial 
that  the temperature evolution takes this factor into 
account. 

Four parameters are responsible for the tempera- 
ture evolution: 

0 The initial value of the temperature; 

This value is obtained as a function of the max- 
imum difference in cost between any two neigh- 
bour configurations. 

To = k x maxAC;j, k >> 1, ' 83 

with i = 1...171, j E v(i) .  

5 

0 The decrement function of the temperature; 
Exponential cooling was chosen: 

T' = f x Tn-1, (15) 
with f usually taking values over [0.80;1.0[. 

0 The length of each Markov chain; 
As was stated before, this length is related to the 
decrement function of the temperature. 

0 The stopping criterion. 
An adequate stopping criterion consists on ter- 
minating the algorithm when a given number of 
Markov chains results in  no further enhancement 
of the best solution yet found. 

Some impleinentation de- 
tails 

As was mentioned in the previous section, special at- 
tention should be given to the definition of the initial 
configuration. Several strategies for the generation 
of the initial distribution are under consideration. In 
the work described in this paper, a n  automatic gen- 
eration strategy was adopted. Other options will be 
considered in the future. 

The fact that after every move it is necessary to 
verify the existence of overlapping between the moved 
piece and the others, leads to an increase in the prc- 
cessing time, specially when there are many sides to 
each piece. I n  order to reduce the computation time 
of this routine, each piece was involved in  a n  envelop- 
ing circumference, just wide enough to include its ver- 
tices. When the overlapping test is performed, the 
routine will check t!ie overlapping between the corre- 
spondent enveloping circumferences, which is a fast 
operation. Only if this test is positive, the routine 
will verify the overlapping between all the sides of 
both pieces. This two-phase procedure permits the 
saving of an important amount of time. 

When the pieces are first designed,the enveloping 
circumferences are determined ailt.omat.ically, and the 
existence of symmetry axis is checked. This is nec- 
essary to determine the need for inversions. Only 
shapes without symmetry axis need to be inverted in 
order to ensure all possible configurations. 

During the experiments described ill the next sec- 
tion, every piece's rotation was restricted to multiples 
of 90 degrees, therefore limiting the total number of 
legal configurations. As expected from (2), this fact 
is of great significance to the state space dimension. 

The algorithm was programmed in C language run- 
ning on a DEC 3100 Risc Station. 
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Figure 1: Layout example for 16 L-shaped pat,terns 
by iterative improvement. 

Figure 2: Layout example for 16 L-shaped patterns 
with quick schedule. 

6 Experimental Results 

Exhaustive results are not yet available. However, 
the results obtained so far are significant enough to 
allow claiming the feasibility of the approach. 

Some typical results obtained with the annealing 
algorithm previously described are now presented. 

Figures 1, 2 and 3 show the final allocations for 
a set of 16 L-shaped patterns, obtained respectively 
with a greedy schedule, equivalent to a search by iter- 
ative improvement, a quick schedule and a slow sched- 
ule. Square configurations were pretended by setting 
a = b in (12). These figures show, as expect.ed, bet- 
ter results for longer schedules. Annealing too quickly 
often produces "jammed" configurations. 

Table 1 shows the results for 6 combinations o f f  
(see equation (15)) and L ,  the length of each Markov 
chain. These experiments were done with initial tem- 
perature TO = 20.0. The reported time refers to the 

Figure 3: Layout example for 16 1,-shaped patterns 
wi th  'lower schedule. 

average computing time for one single run. 
Figure 4 show a layout for a more realistic set, t.yp- 

ical in clothing manufacturing. The set is similar to 
one presented in (41. 

Figure 4 was obtained from a series of 10 runs of 
the annealing algorithm, described as esprrimmt 6 
in table 1. 

7 Conclusions and Future 
Steps 

Although the results are still few, some preliminary 
conclusions may already be drawn. 

The annealing algorithm proves to  be *an adequate 
tool to solve the allocation problem, as formulated. 

Figure 4: Layout with schedule indicated in Table 1, 
Experiment 6. 
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References 

1 
2 

Compu t.ing 

. ,  
0.90 1000 2834 I 3148 2029 
0.95 1000 2609 I 2899 2797 

I 

3 0.99 1000 2530 2700 9574 
4 0.90 10000 2586 2706 14417 
5 0.95 10000 2522 2680 21437 
6 0.99 10000 2481 2560 88986 

Though the computation time may, i n  same appli- 
cations, be considered high, this method appears to 
achieve near-optimal solutions in polinomial time. 

Extended capabilities are under study. For in- 
stance, the inclusion of defective areas inside the 
board may be a realistic restriction. Also, in some ap- 
plications, symmetric solutions may be welcome, as it 
is the case in clothing manufacturing, where patterns 
in a shirt are often symmetric. 

A more important feature may be the ability to 
allocate the pieces inside an irregular board. This 
allows reusing surfaces wasted in previous cuts, thus 
diminishing the final waste. 

This last point is also important because, once im- 
plemented, it allows constructions where pieces with 
holes are first filled with smaller pieces, by consider- 
ing these holes also as irregular boards and using the 
annealing algorithm to allocate these smaller pieces 
inside it. Only then the allocation inside the whole 
board will take place. For that purpose, a new sys- 
tem, allowing the packing of a set of irregular shapes 
inside irregular, non-convex areas is now being devel- 
oped. 
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