
Efficient Distributed Communications
for Multi-Robot Systems

João C. G. Reis1, Pedro U. Lima1, and João Garcia2

1 {jreis,pal}@isr.ist.utl.pt
Instituto de Sistemas e Robótica, Instituto Superior Técnico

2 jog@gsd.inesc-id.pt
INESC-ID Lisboa, Instituto Superior Técnico

Abstract. Wireless communications are one of the technical problems
that must be addressed by cooperative robot teams. The wireless medium
often becomes heavily loaded and the robots may take too long to suc-
cessfully transmit information, resulting in outdated shared data or fail-
ures in cooperative behaviors that require synchronization among team-
mates. This paper introduces a novel solution to enable the immediate
transmission of synchronization data in a way designed to reduce and
better tolerate packet loss. It does so by categorizing the communica-
tions in multi-robot systems in two classes, robot state diffusion and
synchronization messages. For the former, an existing adaptive trans-
mission method (RA-TDMA) is used, and for the latter a novel solution
was developed. Experiments show an important delay reduction when
sending synchronization messages over a loaded network.

1 Introduction

One of the challenges in developing multi-robot systems lies with the commu-
nications among them. Wireless networks used without special structure or re-
strictions provide adequate communication facilities. However, in the face of
restrictions or high load, it is necessary to use the network carefully to better
exploit its capabilities without overloading it.

An example scenario of multi-robot communication is a robot soccer game,
where this work was applied. The Robot World Cup (RoboCup)[5] was proposed
in 1997 as an attempt to foster AI and intelligent robotics research. The RoboCup
Middle Size League (MSL) is a senior competition where two teams of five robots
play a soccer game. The rules used are a subset of the official FIFA Laws with
added constraints on the robots and environment[8]. During games, robots com-
municate using only IEEE 802.11a or IEEE 802.11b network modes. Unicast
and multicast communication modes are allowed and broadcast is forbidden.
The maximum transmission bit rate allowed per team is 20% of IEEE 802.11b
(2.2 Mbps). However, the rules are mostly not enforced in practice and several
problems occur frequently, degrading communications quality.

Efficient communications are a key factor for the success of teams during
competitions but most teams simply schedule their robots to transmit informa-
tion periodically, without any synchronization among robots. Thus, in the worst



case situation, all robots might try to transmit at the same time. Under such a
situation, some packets would be transmitted before others, causing communi-
cation delays. Furthermore, collisions are very likely to occur, further delaying
communication.

Some works show how identifying communication patterns is an important
step in developing reusable software[12]. It is possible to distinguish two cat-
egories regarding communications in cooperative multi-robot systems. On the
one hand Robot State Diffusion has to do with the robot’s perception of the
surrounding world using its own sensors (own position, the ball position the po-
sitions of obstacles). The robots continuously exchange this data to improve each
robot’s knowledge about the world. On the other hand, Synchronization Mes-
sages are related to the robots need to communicate to agree and keep relational
behaviors[3, 6] synchronized.

In this paper, a solution for multi-robot wireless communication is presented.
This solution takes advantage of the communication patterns observed in co-
operative multi-robot systems to better exploit the medium capabilities, thus
enhancing a previous solution for periodic data transmission[10] with a mecha-
nism to enable agents to quickly and reliably communicate with each other or
in groups. This work is currently integrated into the Robot Operating System
(ROS) middleware[9] and published as open source software3.

Some good solutions for communications in multi-robot systems can be found
in the literature. However, little attention is given to the types of communication
required, as described above. The Cooperative Autonomous Mobile Robots with
Advanced Distributed Architecture (CAMBADA) team[2] of the University of
Aveiro, Portugal, uses a middleware infrastructure specifically developed for their
team. One of the components implements a Reconfigurable and Adaptive Time
Division Multiple Access (RA-TDMA) communication protocol[11] with self-
configuration capabilities to dynamically adapt to the number of active team
members[10]. It works in a fully distributed way and has proved to be effective
in game situations. There is an implementation available as free software4. This
protocol, in which the solution presented in this paper is based, is adequate for
robot state diffusion, but lacks explicit support for synchronization messages,
for which our work provides a novel solution.

A communication system centered around a message dispatcher [13] is used
by the RoboCup MSL 1. RFC Stuttgart team[4] from the University of Stuttgart,
Germany. In this solution, all agents establish a TCP connection to a central
message dispatcher, a special entity in the system that filters messages according
to time and other defined constraints. Messages with high priority are always
sent; other messages are deleted if they become older than a specified thresh-
old. In this solution, robot state is transmitted together with synchronization
messages and the medium access can be affected by transmissions of outdated
information. The priority mechanism transmits synchronization messages first,
but messages must be transmitted to the dispatcher before this mechanism is

3 SocRob Multicast, http://www.ros.org/wiki/socrob_multicast
4 rtdb - Real-Time DataBase Middleware, http://code.google.com/p/rtdb/



used, adding an extra level of indirection. The message dispatcher also transmits
all messages directly to all destinations, instead of using the multicast channel.
This consumes bandwidth that could be used to transmit robot state information
more frequently, thus keeping it more updated.

ROS [9] is a robotic middleware solution that has become widely used be-
cause of its quality of design and implementation. A ROS system is organized as
a collection of nodes that communicate using messages. Nodes transmit and re-
ceive messages through two procedures: a publish-subscribe mechanism, named
topics, where multiple nodes can publish messages and multiple nodes can sub-
scribe to receive messages, and a direct node to node communication mechanism
named services. However, there is no organized multicast solution that takes ad-
vantage of the characteristics of multi-robot systems to enhance communication.
Furthermore, bandwidth limitation is not possible.

Transmission of real-time traffic in wireless networks is an interesting problem
for many domains, e.g., factory automation. In [7], the authors propose a solution
that can be implemented in IEEE 802.11a/b/g networks. However, it requires
that some parameters of the network card are adjusted to give real-time stations
priority over other stations. E-MAC [1] is a similar solution that avoids starvation
of non real-time traffic. These solutions are not applicable to RoboCup MSL
because of the need for modifying network card parameters, which although it
is not explicitly forbidden in the rules, it would give an unfair advantage against
teams not using it. Additionally if two teams would use this kind of solutions,
conflicts would occur, unless the two teams cooperate somehow to arbitrate
medium access. This is currently not allowed by the rules.

The rest of this document is organized as follows. Section 2 presents a detailed
description of the RA-TDMA protocol. Section 3 describes in detail the proposed
solution. Section 4 shows how the solution is integrated in the system. Section 5
presents the evaluation conducted on the solution. The conclusions are presented
in section 6.

2 Reconfigurable and Adaptive TDMA

The RA-TDMA protocol[11] tries to disperse transmissions of all team members
in time to avoid collisions within the team as much as possible, since the re-
maining network load cannot be controlled. Time is divided in slots of duration
Ttup (team update period) in which all team members transmit once. Ttup is
a configuration parameter set prior to execution and determines the global re-
sponsiveness of the system. Each of these slots is equally subdivided in slots for
each active team member of duration Txwin. Agents transmit at the beginning of
their respective slots, thus spacing the transmissions as much as possible. Each
agent uses only a fraction of its slot, the remaining time is used to accommodate
delays in transmission and give the other team a chance to transmit.

This protocol does not need clock synchronization. After its own transmission
slot, each agent keeps registering the exact time of arrival of its teammates’
packets. The reception delay (δ) is calculated with respect to the expected time



Fig. 1. Time diagram of two example rounds by a team of three agents

of arrival, which corresponds to the beginning of the transmitting agent own
slot. The current round period is enlarged by the greatest of these delays. Only
delays up to ∆ are considered, with ∆ being a global configuration parameter.
Therefore, the effective round period will vary in the interval [Ttup, Ttup +∆].
An example situation is depicted in the first round of Fig. 1. At agent 0, the
packet from agent 1 was expected after Txwin but is received with a slight delay
of δ. However, the packet from agent 2 is received with a delay greater than ∆,
thus is ignored. The next packet transmitted by agent 0 is delayed by δ, because
it was the only delay shorter than ∆.

When a robot does not receive any packet with a delay below ∆ in a round,
the next transmission will be delayed by a further βj , different for every robot
j. In this situation, the effective round period will be Ttup + ∆ + βj . This is
used to prevent situations in which the robots all keep transmitting but are
unsynchronized. Having different round times in this situation will force the
robots to resynchronize, since after a few rounds the robots will again receive
a packet with a delay below ∆. An example is presented in the second round
of Fig. 1, where the packet from agent 1 is lost and the packet from agent 2 is
received with a delay greater than ∆.

Dynamic Reconfiguration: While in operation, the robots divide the TDMA
round period by the number of active robots[10]. Since the robots can come
in and out of play and malfunction during games, the number of active robots
must be determined dynamically. Consequently, the transmissions are always
separated as much as possible leaving no unused slots. Agents have two identi-
fications: static IDs (SIDs) are given to each agent prior to execution within a
pre-defined and known interval, and are used for agent identification. Dynamic
IDs (DIDs) are used to identify only active teammates locally at each agent and
are never transmitted. DIDs are assigned to each active agent, sorted by their
SIDs. Each agent maintains a membership vector for all possible agents, indexed
by their SIDs. Each agent may be in one of four states: not running, insert,
running and remove. This vector is shared with the team by adding it to every
transmission.



When an agent starts communicating, it sets its own state to insert. Agents
that receive these initial packets set their state for the new agent as insert.
When an agent X that has agent Y in insert state and detects that all agents
in state running have agent Y in insert or running states, it updates the state
of agent Y to running. The DID of agent Y is calculated and it is considered
part of the TDMA round. Removing an agents follows a dual process. If nothing
was received from that agent in the last rounds (the number of rounds is a
configuration parameter), its state is changed to remove. When all agents have a
given agent in remove or not running states, its state is changed to not running.
The DIDs are reassigned and the round slots adjusted accordingly.

3 Solution Architecture

The RA-TDMA solution provides a suitable approach to dispersing robot state.
However, it does not provide any special mechanism for transmission of synchro-
nization messages. This is a problem for two reasons:

– Synchronization messages have to wait to be transmitted. This is a minimal
delay for one single message but will accumulate in situations of especially
bad network conditions where many packets fail to arrive correctly. This can
be even worse if several rounds of communication are needed to synchronize
the robots.

– There is no reception feedback. If the client software needs to be sure of
correct reception, some mechanism must be implemented on top of the com-
munication protocol. Again, this may take almost a full round time if no
packets are lost, or much more with bad network conditions.

The solution proposed here can be seen as a protocol with two different modes
of operation, each concerning one of the two robot communication patterns.

3.1 Robot state diffusion

Robot state is transmitted using rounds of Adaptive-TDMA with a long period,
divided by the number of active agents. To differentiate it from the transmission
of synchronization messages, this mechanism is called long rounds. The long
rounds closely are implemented using RA-TDMA, as described in section 2.

3.2 Synchronization Messages

When an agent needs to transmit synchronization information that is urgent or
requires an answer as soon as possible, it initiates a new question round. Each
question round is composed by the question, which is the initial data transmitted
by the starting agent, and answers, that can be complex information or a simple
acknowledgment. The mechanism to transmit synchronization messages is called
short rounds, and might handle several question rounds simultaneously. In order



to easily distinguish short and long round packets, a different multicast socket
is used. This socket uses the same multicast IP address that is used in the long
rounds, but with a different port. This way, long and short round packets can
be distinguished without increasing the packet size.

Basic Scenario Each question round is identified by the SID of the agent that
started it along with a question identifier, a number that uniquely identifies each
question from a given agent. Every packet contains five elements:

– The SID of the starting agent (SSID);
– The question identifier (QID);
– The question itself;
– A list of SIDs of agents that are required to answer;
– A list of answers along with the SIDs of the agents that produced each

answer.

The initial packet transmitted by the starting agent contains the question
and the list of SIDs of agents that are required to answer it. When this packet is
received by another agent, it first verifies if its SID is in the required list. If this
is the case, the agent will transmit a packet with its answer and its SID removed
from the required list. Therefore, in a given packet regarding a specific question,
each agent might be in one of three states:

– Required : The agent is required to answer this question and its SID is in the
required list.

– Answer : An answer is present in the answers list of this packet.
– Complete: The answer was correctly received by the stating agent or no

answer is required.

The question is only transmitted on packets that have any agent in the re-
quired state. Agents in the answer or complete states do not need the question,
so if all agents are in either of these states the question field is left blank. When
the starting agent has all the answers it requires, it will transmit a terminator
packet with all agents in the complete state. This packet contains the two identi-
fiers, but all other fields are left blank. With this last packet the question round
is successfully completed. A simple example can be found in the first round of
Fig. 2, where all packets are successfully received. The table shows the contents
of the packets.

The proposed solution is flexible enough to accommodate various possibil-
ities, an agent might want to transmit something to only one or to multiple
agents. In any case, it is only necessary to add the proper SIDs to the required
list. The proposed solution makes sure that all those agents receive the question
and all their answers are returned to the starting agent, unless they are not
reachable. Furthermore, what is important in a question round might be the
initial data transmitted (question), the data that is transmitted by the agents
in the required list, or both.



Packet SSID QID Required Answers
a 0 0 1
b 0 0 1
c 0 0
d 0 1 1, 2
e 0 1 2 1
f 0 1 1, 2
g 0 1
h 2 0 0
i 2 0 0
j 2 0

Fig. 2. Time diagram of three example short rounds by a team of three agents

All agents begin inactive. They become active as soon as a question round is
started locally or a packet with a question round arrives. However, an agent will
not become active if its SID is not in the required list of the received question.
Note that several question rounds might be active at once. An agent might have
started some, be required to answer some, and still there might be some others
with which the agent is completely uninvolved. While an agent is active, it will
transmit all it knows about all question rounds, even if they do not involve it.
Only question rounds that involve it will keep the agent active.

Tolerance to Packet Loss The protocol was designed to reduce and tolerate
packet loss using as much redundancy as possible. When a packet is received
with a question round started by some other agent, the agent will react to it
if its SID is in the required list. It does not matter if the packet is the initial
packet transmitted by the starting agent, or a packet already containing answers
transmitted by some other agent. This way, if some agent does not receive the
initial packet, it will likely get all the needed information from the next packet
regarding that question round. Each agent also keeps saving all the answers from
other agents. These answers will all be transmitted along with its own answer.
This way, if some packet with an answer fails to reach the starting agent, the
next packet will likely contain a copy of that answer. If an agent does not receive
the final packet signaling completion, it will transmit its answer again. When
the starting agent receives this, it will resend the terminator packet. The second
round of Fig. 2 shows a situation where two packets are lost yet the round
completes without any added delay.

Transmission Timing Transmission of the initial packet determines the start
of a question round. Agents transmit at the beginning of their own slots, which
have a fixed duration of Ts. When an agent successfully receives a packet from



some other agent, it recalculates its next transmission time based on how many
agents are active in the short rounds. Packet reception can only cause this time
to be anticipated, to avoid situations where the transmission time is over delayed
because of the reception of delayed packets.

When the received packet belongs to the agent that should have transmitted
right before, the agent will ignore the slot duration and transmit much sooner.
Transmission could happen immediately, but this would put an undesirable load
on the medium since all agents might transmit in sequence without any interval.
To avoid this, a short waiting time Tw is used between transmissions of successive
agents, to create a window in which the medium is available to the other team.
The slot duration and the short waiting time are configuration parameters. In
the last round of Fig. 2 two packets were lost. Since only two agents are active,
agents schedule retransmission with a period of 2×Ts. When a packet is received
from the other agent, the next packet is transmitted after Tw.

Active Agents Estimation For one agent to know if it is its turn to transmit,
it must keep a record of which agents are active in the short rounds. It is not
possible to know this for sure since packets might be lost or delayed, but it
is possible to have an estimate that will be accurate in situations where all
packets are promptly delivered. When this estimate fails, two or more agents
might try to transmit simultaneously. This will increase the probability of packet
loss. However, the waiting time between packets gives a better chance for these
transmissions to succeed. The estimation is made based on the information that
is kept about all active question rounds. Starter agents are always considered
active, since the question round will only end after the terminator packet. All
agents whose SID is in the required list of some active question round are also
considered active.

3.3 Shared Concerns

Long and short rounds operate almost independently. Still, there is some infor-
mation that must be shared between the two. Long rounds keep track of which
agents are active at a given moment. This information is used by the short rounds
to avoid waiting for transmissions from an agent that is not active. During op-
eration, short rounds keep verifying if agents in the required list are in any state
different from not running. This is done by the starting agent to ensure that the
answers are delivered as soon as all the agents in the required list have answered
or changed to the state not running. It is also done by all agents to keep the
estimation of active agents as accurate as possible.

Short rounds are expected to be occasional and resolved quickly. Therefore,
when the time comes to transmit in a long round, the agent will first check if
there is a short round active. In this case, it will simply not transmit. Because
short rounds may extend in time, this is only done once. After that, the agent will
transmit anyway. This is necessary to resolve the case where an agent becomes
inactive during a short round, and to guarantee that robot state keeps being
diffused even in the presence of a heavy load of short rounds.



Bandwidth Management It is easy to estimate how much bandwidth is
needed by the long rounds based on the team update period Ttup and the size of
the information that is transmitted. However, for the short rounds bandwidth
usage is much harder to estimate because it depends on events in the game that
will trigger question rounds and on packet loss because it uses retransmission.
Packet sizes and the Ttup must be kept reasonable. Some attention must also be
spent on ensuring that there are no situations that trigger an excess of question
rounds. Still, a mechanism to ensure that the allowed bandwidth is not exceeded
is necessary.

The bandwidth manager keeps track of a moment in time that represents
the end of the last authorized transmission at the maximum allowed bandwidth.
When an authorization request is received, if this moment is in the future, the
request is immediately denied. If this moment is in the past, the request is
accepted and the moment is then updated with the greatest of two moments:
the current time or the sum of the previous moment and the duration of the
requested transmission at maximum allowed bandwidth.

4 Integration with ROS

This solution is implemented as a library called SocRob Multicast. This library
depends only on the Boost C++ Libraries5 for socket programming, threads and
time control and on ROS[9] for logging and serialization of messages. To make
the bridge between this library and the rest of the system, a ROS node must
be created with a structure loosely following the one represented in Fig. 3. This
node is responsible to create and process long round messages and knows what
information must be shared, and also converts ROS services into short rounds.
The correspondence between robots and SIDs is done by this node and can not
be automated since it completely depends on the domain. In RoboCup MSL, the
SIDs are the robot number minus one, because robots are numbered starting in
1 and SIDs start in 0. Although it is designed to comply with RoboCup MSL
rules, this library is domain independent, enabling a ROS system to use one
master per agent. If the connection between agents is severed, the agents will
remain functional.

5 Evaluation

The evaluation of the proposed solution is centered on how fast information can
travel from one robot to another, under different network conditions. Since the
protocol presented is divided in two modes, it makes sense to evaluate these
modes separately. The tests were conducted using one laptop per agent, with a
team of five agents, in order to simulate real game conditions. The Ttup used
was 100 milliseconds, Ts was 5 milliseconds and Tw was 1 millisecond. The lap-
tops were connected to a IEEE 802.11a network. Each test was run for about
5 Boost C++ Libraries, http://www.boost.org/



Multicast
Channel

ROS Topic

position

team_info

ROS Topic

obstacles

ROS Topic

ROS Service

stop

create
short round

process
packet

create
packet

SocRob
Multicast

Short
Rounds

Long
Rounds

Number
of AgentsSID

ROS Node

Fig. 3. Integration with ROS

one minute. The agent with SID 0 played the special role of initiating all ques-
tion rounds and saving test results. The laptop clocks were synchronized using
chrony6. During the tests, the greatest time difference reported by chrony was
almost 2 milliseconds. Therefore, all results that depend on clock synchroniza-
tion can be affected by this clock skew. All tests were run with and without load
on the network. It is not possible to guarantee that the wireless medium is com-
pletely clear, thus when analyzing results with no network load it is necessary
to consider that some interference is still possible.

5.1 Evaluation of Robot State Diffusion

CAMBADA team already proved that using Adaptive-TDMA is a better solution
than a simple periodic transmission[11]. To prove that the same happens with our
implementation of the RA-TDMA protocol, we created a periodic transmission
solution that tries to transmit 10 times per second at a well defined moment.
Thus, depending on the accuracy of time synchronization between computers,
the agents will all try to transmit very close in time, simulating the worst case
for periodic transmissions. Without network load, this degraded solution loses
5.629% of the packets, while our implementation of RA-TDMA loses almost no
packet: only 0.038% of the total. In a loaded network, the degraded solution
loses 7.981% of the packets, while RA-TDMA looses only 5.465%.

5.2 Evaluation of Synchronization Messages

Synchronization messages should be evaluated by the time it takes for all the
receivers to get the question (question delay), and how long it takes for the initial
agent to receive all the answers (answer delay). The accuracy of the question
delay values depends on clock synchronization, since timestamps are taken in
different computers.

6 Chrony Home, http://chrony.tuxfamily.org/



Table 1. Synchronization messages delay. Time values are in milliseconds.

Network load: Without With
Transmit using: Long Rounds Short Rounds Long Rounds Short Rounds

Question Delay
Minimum 100.487 1.098 101.934 1.374
Average 116.488 2.407 136.935 22.227
Maximum 431.995 51.470 948.631 358.010

Answer Delay
Minimum 145.564 6.976 177.353 13.368
Average 214.030 12.044 247.494 69.924
Maximum 509.755 102.012 1256.729 396.034

Four scenarios were considered: sending synchronization messages together
with robot state using long rounds and using short rounds, both with and without
network load. For each scenario, two experiments were made. In one experiment,
agent with SID 0 sends a message to all other agents simultaneously. The results
for this experiment can be found in Table 1. In another experiment, messages
are sent to a single agent in turn. These results are not shown as they show
similar, yet slightly smaller values. To simulate the worst case scenario when
transmitting in the long rounds, the synchronization messages were started only
in the moment after a robot state message was transmitted. Therefore, they
had to wait a full round to be transmitted, hence the difference to the best
case scenario is about 100 milliseconds in every value. The times achieved using
short rounds are much smaller both with and without network load. The short
rounds are particularly effective in avoiding extreme values, as the maximum
value observed during the experiments was much smaller.

The experimental results are as expected, the short rounds bring a great
advantage. The average delays are greatly reduced in all scenarios. Furthermore,
the short rounds are effective in keeping the maximum values much lower.

6 Conclusions

The solution presented in this paper greatly improves the transmission of syn-
chronization messages in the described scenarios. Transmission of robot state can
be efficiently done using Adaptive-TDMA. However, waiting for the Adaptive-
TDMA transmission slot can cause a great delay. This delay can have a great
impact in robot performance, especially in situations where many packets are lost
or more that one round of communication is needed to reach a decision. Middle-
ware for robotics has seen a great evolution in recent years, with stabilization of
good solutions like ROS that are now used in many robotic applications with ev-
ident advantages. However, the better known solutions lack support of advanced
communication protocols like the one presented here. The proposed solution is
a step further in the communication capabilities of multi-robot systems. It can
even be used in many scenarios, including the RoboCup MSL, or if a team of
robots needs to be deployed in a situation where a public wireless network must
be used.



Acknowledgments. The authors would like to thank José Carlos Castillo
Montoya for his comments and careful review of this paper.

References

1. Aad, I., Hofmann, P., Loyola, L., Riaz, F., Widmer, J.: E-MAC: Self-Organizing
802.11-Compatible MAC with Elastic Real-time Scheduling. In: IEEE Internatonal
Conference on Mobile Adhoc and Sensor Systems, 2007. pp. 1–10. IEEE (2007)

2. Dias, R., Neves, A.J.R., Azevedo, J.L., Cunha, B., Cunha, J., Dias, P., Domingos,
A., Ferreira, L., Fonseca, P., Lau, N., Pedrosa, E., Pereira, A., Serra, R., Silva, J.,
Soares, P., Trifan, A.: CAMBADA’2013: Team Description Paper (2013)

3. Drogoul, A., Collinot, A.: Applying an Agent-Oriented Methodology to the Design
of Artificial Organizations: A Case Study in Robotic Soccer. Autonomous Agents
and Multi-Agent Systems Journal 1(1), 113–129 (1998)

4. Käppeler, U.P., Zweigle, O., Rajaie, H., Häussermann, K., Tamke, A., Koch, A.,
Eckstein, B., Aichele, F., DiMarco, D., Berthelot, A., Walter, T., Levi, P.: 1. RFC
Stuttgart Team Description 2010

5. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot
world cup initiative. In: Proceedings of the first International Conference on Au-
tonomous Agents. pp. 340–347. ACM (1997)

6. Lima, P., Custódio, L.: Artificial Intelligence and Systems Theory Applied to
Cooperative Robots. International Journal of Advanced Robotic Systems, No. 3
(September 2004)

7. Moraes, R., Vasques, F., Portugal, P.: A TDMA-based mechanism to enforce real-
time behavior in WiFi networks. In: Factory Communication Systems, 2008. WFCS
2008. IEEE International Workshop on. pp. 109–112. IEEE (2008)

8. MSL Technical Committee: Middle Size Robot League Rules and Regulations for
2013 (January 2013), version - 16.1 20121208

9. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS: an open-source Robot Operating System. In: ICRA
workshop on open source software. vol. 3 (2009)

10. Santos, F., Almeida, L., Lopes, L.: Self-configuration of an Adaptive TDMA wire-
less communication protocol for teams of mobile robots. In: Emerging Technologies
and Factory Automation, 2008. ETFA 2008. IEEE International Conference on. pp.
1197–1204. IEEE (2008)

11. Santos, F., Almeida, L., Pedreiras, P., Lopes, L., Facchinetti, T.: An Adaptive
TDMA Protocol for Soft Real-Time Wireless Communication among Mobile Au-
tonomous Agents. In: Proc. of the Int. Workshop on Architecture for Cooperative
Embedded Real-Time Systems, WACERTS. vol. 2004, pp. 657–665 (2004)

12. Schlegel, C.: Communication patterns as key towards component-based robotics.
International Journal of Advanced Robotic Systems 3(1), 49–54 (2006)

13. Zweigle, O., Kappeler, U., Haussermann, K., Levi, P.: Event based distributed
real-time communication architecture for multi-agent systems. In: Computer Sci-
ences and Convergence Information Technology (ICCIT), 2010 5th International
Conference on. pp. 503–510. IEEE (2010)


