
On the Use of Probabilistic Relational Affordance Models for
Sequential Manipulation Tasks in Robotics

Bogdan Moldovan Plinio Moreno Martijn van Otterlo

Abstract— In this paper we employ probabilistic relational
affordance models in a robotic manipulation task. Such affor-
dance models capture the interdependencies between properties
of multiple objects, executed actions, and effects of those actions
on objects. Recently it was shown how to learn such models
from observed video demonstrations of actions manipulating
several objects. This paper extends that work and employs
those models for sequential tasks. Our approach consists of two
parts. First, we employ affordance models sequentially in order
to recognize the individual actions making up a demonstrated
sequential skill or high level concept. Second, we utilize the
models of concepts to plan a suitable course of action to
replicate the observed consequences of a demonstration. For
this we adopt the framework of relational Markov decision
processes. Empirical results show the viability of the affordance
models for sequential manipulation skills for object placement.

I. INTRODUCTION

Robotics develops mobile, physical agents that reason,
learn and manipulate their environment. The seminal logical
STRIPS representation [8] shares its logical foundations with
contemporary approaches, e.g., [11], [23]. Logic is effective
at dealing with higher knowledge needed for planning and
reasoning, but the physical aspect of robots requires dealing
with uncertainty from noisy sensors and uncertainty about the
world [3]. The use of probabilistic techniques is widespread
in robotics [24], yet mostly without employing rich logical
representations. We need statistical relational learning (SRL)
[5] or more generally a probabilistic programming language
(PPL) [6] which combines logical representations, probabilis-
tic reasoning and machine learning. Recent examples [12]
show the power of such techniques in robotic settings.

Recent work [19] showed that probabilistic logic-based
techniques are well-suited for the induction of object af-
fordances in multi-object settings. Before [17], [20], [15],
affordance models for single objects could be learned using
the probabilistic formalism of Bayesian networks (BN) to
provide a way to couple object properties, actions and effects.
However, propositional BN models cannot handle interac-
tions between multiple objects in a generic way. In contrast,
the relational techniques of [19] can explicitly represent

Bogdan Moldovan is with the Department of Computer Science,
Katholieke Universiteit Leuven, Belgium

Plinio Moreno is with the Electrical & Computer Engineering Depart-
ment, Instituto Superior Técnico, Portugal

Martijn van Otterlo is with the AI Department, Radboud University
Nijmegen, The Netherlands

Bogdan Moldovan is supported by IWT (agentschap voor Innovatie door
Wetenschap en Technologie). This work is supported by the European Com-
munity’s 7th Framework Programme, grant agreement First-MM-248258,
and POETICON++, STREP Project ICT-288382.

abstract definitions of spatial relations between objects and
generically model rich interactions between multiple objects,
e.g. for shelf sorting or packing items in a bag.

Relational affordance models can be used for imitation
learning [20], where a robot computes the most likely
demonstrated action based on observed effects. However, a
typical skill consists of multiple steps, e.g. inserting a new
object on a shelf may first require actions to make room for it.
Imitation of such sequences of actions requires an extension
of the method for exploiting the affordance models. That
is, first one needs to compute the sequence of actions most
likely demonstrated to the robot, and then devise a sequential
plan that can imitate the (effects of the) demonstration.

A. Affordance-based Models
Affordances are a concept introduced by J. J. Gibson [9]

that can be used to model the robot-world interaction by
capturing action opportunities to structure the environment.
They define the relationships between the robot and the
environment through the robot’s available sensing and motor
capabilities [17], [20]. They model the correlations between
the set of object properties detected by the sensors: O =
{o1, . . . , on}, the repertoire of actions available to the robot,
A = {a1, . . . , an}, and the effects of performing those
actions on the objects: E = {e1, . . . , en} as detected by
the sensors as changes in object features. The model is
typically learned by experimenting with motor actions on
the available objects [17], [20], [15]. Using the relationships
between O, A, and E, one unknown variable can be inferred
given the others. We will use the affordance model as in [19]
for action prediction, i.e. computing the maximum a poste-
riori probability (MAP) estimate: argmaxA P (A|O,E) =

argmaxA
P (A,O,E)
P (O,E) , for the observed values of O and E.

Fig. 1 shows a generic affordance model.

Fig. 1. Affordances as relations between (A)ctions, (O)bjects and (E)ffects,
used for solving different tasks: prediction; action or object selection [17].

B. Problem Statement and Approach
Our previous work on relational affordance models [19]

tackled the task of single action prediction. This paper tackles



multi-step skills, referred to as high level concepts. For
example, a robot opens a cupboard by executing a sequence
of basic actions: grasping, then pulling, then releasing the
handle. This amounts to an incremental (or, developmental)
way of acquiring new skills on top of old ones; in this case
building high-level concepts on top of single-step affordance
models. We use our previous work [19] as a building block
for recognizing demonstrated actions, and extend our model
to multi-step planning for replicating desired effects.

Our problem setting is: given i) demonstrated high-level
concepts (sequences of basic actions), implicitly observed
through observed object (interaction) properties and observed
changes ii) a previously learned probabilistic relational af-
fordance model for a pre-defined set of actions, and iii) an
initial object configuration, and a final configuration obtained
through demonstration and given as a set of effects, find iv)
the most likely sequence of basic actions composing each
concept and v) a sequence of concepts (possibly different
than in iii) to replicate the final effects of the demonstration.

Our problem domain is a table-top scenario (see Fig. 2),
with some initial objects, a desired final configuration,
and demonstrations of high-level concepts. For example, in
Fig. 2, to accomplish the task of placing the magenta object
between the green and yellow objects the robot first needs to
make space (concept composed of pushing the yellow object
to the left and green to the right), then to place the magenta
object in the space created (composed of two basic actions).
Here probabilistic models are needed to deal with uncertainty
of the vision and manipulation parts, relational models to
deal with the (spatial) interactions between all objects and
the robot, and sequential models to deal with the multiple
actions needed to achieve arbitrary object placement goals.

Fig. 2. Scenario with action sequence for object placement.

C. Contributions and Outline

The main contribution of this paper is extending the
relational affordance model of [19] for an object placement
scenario. This includes the extension of the relational domain
for the robot to learn and model high-level concepts. SRL
is a key element for the generalization over different object
types and configurations, and action effects. For planning,
we employ Markov decision processes (MDP) [29], and we
describe an extension of affordance models towards rela-
tional MDPs [27] which facilitates replicating a demonstrated
behavior in terms of desired effects. All aspects would be
effectively impossible in the usual setting of affordances
learned using BNs as in [17], [20], [15]. The experiments
show encouraging results for the object placement task.

Section II presents related work and Section III the robot
setting. Section IV reviews our previous work on relational

affordance models. Section V describes our main contri-
bution: the extension of relational affordance models for
high-level concepts, and the extension towards a relational
MDP model for our object ordering task. Section VI presents
experimental results and we conclude in Section VII.

II. RELATED WORK

Affordances, introduced by J. J. Gibson [9], are used
to model world-robot interaction, especially in the context
of imitation learning [17], [20], [15]. Relational affordance
models for a multiple object setting were introduced [19]
based on probabilistic relational models [5], [6]. Related
work on planning object manipulation in a relational domain
is [16], [25], based on noisy indeterministic deictic rules.
Tackling a similar task, planning push actions for object
placement on a cluttered table surface, is performed in
simulation [4] and with a PR-2 robot [7]. However, the object
interactions are determined by a dynamics simulator based
on the object physical properties, not taking uncertainty into
account. Other related work in decision-theoretic planning
tackles similar problem domains [27], but usually works
with predefined and full action models, whereas we work
with learned affordance models. Related work into detecting
[14] and manipulating [1], [10], [13] objects in cluttered
environments is usually concerned with detecting the objects
and planning the hand and arm trajectory [10], [13] for a
grasp of the objects without collision with other objects.

III. BASIC SKILLS OF THE ROBOT

We use a simulated iCub robot [18] with two cameras in its
head (all results transfer to the real platform similar to [19]).
Of the two arms we only use one. Software modules provide:
(i) motion control to reach a target position [22], (ii) image
segmentation [2] and (iii) stereo triangulation. Basic skills
of the robot include motor skills for actions and perceptual
skills to measure object features and effects.

The robot has three basic core motor actions: tap (right-
to-left hand movement), push (away movement) and grasp

(pick-up, move to right and away, then release), with param-
eters adjusted after self-experience [19], [20]. Actions move
the hand over a preprogrammed orientation and distance by a
minimum-jerk Cartesian controller which reaches a position
as close as possible to target considering the kinematic
constraints of the robot (i.e., joint limits, damage avoidance,
hand orientation [22]). Action execution is preprogrammed
due to simulator limitations and iCub hand complexity.
The robot’s perceptual skills include color segmentation and
3D object localization as in [19]. Effects are measured as
differences in object attributes before and after the action.

The robot receives a relational affordance model of two-
object interactions, learned by exploration [19], and provided
as a PPL program. The model has an object property shape,
and two relational properties: the relative distance and
orientation between pairs of objects, and the effects
displacement and orientation changes for each object
and contact between objects (computed from the intersec-
tion between the segmented regions in both camera images).



IV. RELATIONAL AFFORDANCE MODELS

We first briefly describe relational affordance models [19].

A. Probabilistic Programming Languages

For modelling object interactions in a multi-object setting,
we need first-order logic to capture and generalize over the
(spatial) relations in the domain, probabilistic information
to deal with perception and action uncertainty, and learning
to induce the affordance models from interaction with the
environment. A probabilistic programming language (PPL)
is a programming language designed to efficiently describe
and reason with probabilistic relational models. We use the
state-of-the-art PPL ProbLog [6], a probabilistic extension of
the well-known Prolog logic programming language, with a
causal-probabilistic logic (CP-logic)[28] style syntax.

A probabilistic relational model in ProbLog is described
by a program consisting of a set of clauses defining prob-
abilistic facts and logical rules. A CP-logic clause is a
statement ∀x(p1 : A1) ∨ ... ∨ (pn : An) ← φ, where∑n
i=1 pi = 1, φ is a universally quantified first-order formula

of some tuple of variables x, and Ai are atoms containing
variables in x, such that for each x, φ causes at most one
of the Ai to become true; Ai becomes true with probability
pi. [28] If x = ∅ the clause is ground, and assigning values
to the variables in x is called grounding. A logical rule is a
deterministic clause, φ causes some atom A with probability
one, (1 : A)← φ [28]. In ProbLog-code style, to model that
any object can be a cylinder or a cube, one can write:
1
2 :: shape(Obj, cube); 1

2 :: shape(Obj, cyl)← obj(Obj).
Obj is universally quantified over the set of all objects.

A ProbLog program T = {p1 : c1, ..., pn : cn}, with
clauses ci that can be probabilistic facts with probability
pi or logical rules (i.e., pi = 1), then defines a probability
distribution over logic programs L ⊆ LT = {c1, ..., cn} as
P (L|T ) =

∏
ci∈L pi

∏
ci∈LT \L(1−pi). Once the program is

defined, several inference methods can be used for computing
the probabilities of a query. This means asking for the suc-
cess probability P (q|T ) of a query q, i.e., the probability that
q has a proof given the distribution over logic programs[6].

The robot first explores a single object environment. It
learns an affordance model as a BN, which as shown in [19]
can be transformed in a ProbLog program with predicates
modeling single object O, A and E (e.g., dispMag(Obj, 1)).

B. Multiple Object Relational Affordances

For multi-object scenes we introduce, in addition to the
predicates modeling single object affordances, the following
(two-object) spatial relations: relative distance, relative ori-
entation and contact between objects. To learn a relational
affordance model, the robot explores interactions in a two
object environment (composed of a main object the robot
acts upon, and a secondary one with which the main one
interacts) and builds a non-grounded Bayesian Network (BN)
introducing variables for objects, as illustrated in Fig. 3.
This BN, with learned parameters, can now be modelled
using ProbLog. An example relation between displacement

Fig. 3. Non-grounded BN for two-object interaction [19].

magnitude of the main object, hand motion and relative
(Euclidean) distance between main and secondary object is:

0.03 :: dispMag(ObjM, 1); 0.22 :: dispMag(ObjM, 2);
0.25 :: dispMag(ObjM, 3); 0.5 :: dispMag(ObjM, 4)

← handMotion(ObjM, ObjS, push),
initRelDist(ObjM, ObjS, 4).

Additional logical rules are added for defining background
knowledge, which the robot would take longer to learn by
itself, and for enforcing constraints (e.g., if there’s contact
between two objects don’t attempt a grasp). As shown in
[19], this relational affordance model can then be used
successfully to model settings with an arbitrary number of
objects. Interactions between three or more objects need not
be explicitly considered because the relevant dependencies
can be captured by pairwise interactions, and any additional
influence of these interactions is negligible [19]. By repre-
senting only the inherent structure, the relational model only
requires a small number of parameters as opposed to BNs.
The complexity of applying any of these two approaches
grows with the number of objects and actions.

V. HIGH LEVEL CONCEPTS AND PLANNING

In this section we describe our main contribution: the
extension of the relational affordance model with the use of
high level conceptual actions in order to handle a sequential
object placement task. We assume a table-top setting with
several initial objects, and the rest to be placed. The robot
can observe the initial (properties of) objects on the table:
O0. The robot will be provided through demonstration with
a set of high level concepts. Each concept C is composed of
a sequence of the basic actions (push, tap, grasp) represented
in the affordance model: C = {A1, A2, ...}. These concepts
can either manipulate some objects on the table, or choose
a new object, insert it on the table at a default location,
and then continue with object manipulation. The robot will
be provided with a goal, a final configuration of objects
to achieve, which is the set of final object properties OF
and final effects EF . Achieving the goal entails two tasks:
learning and modelling of high level concepts, and building a
plan using these concepts. Both extensions expand our initial
relational representation and through the use of variables are
able to generalise over an arbitrary number of objects in the
scene, which would need tailored modelling otherwise.

A. Learning high level concepts

We want to provide the robot with high level skills based
on its low-level motor capabilities. We demonstrate a set of
five labelled high level concepts the robot has to use for
achieving the goal, namely: nextTo, moveAround, inaRow,
makeSpace, moveAway, illustrated in Fig. 4. Three of the



concepts (nextTo, moveAround, inaRow) first introduce a new
object on the table and then manipulate it, while two of them
(makeSpace, moveAway) manipulate the objects already on
the table in order to create space to insert a new object.

Fig. 4. The high-level concepts: a) two different instances of nextTo, b)
moveAround, c) inaRow, d) moveAway, e) makeSpace.

In order for the robot to use the concepts for planning
in a multi-object environment, it needs first to perform
three tasks: (i) recognise the basic actions that compose the
demonstrated concepts, (ii) model for the objects taking part
in the concepts the state transition rules in terms of initial O
and final O and E, and (iii) model the interactions between
objects involved in a concept and those not taking part in it
with the aid of the previous relational affordance model.

1) Recognising basic actions: For the robot to execute a
concept, it needs to map it to a sequence of basic actions
from its own action repertoire (which can be different than
that of the demonstration). We demonstrate each labelled
concept N times and assume the robot is able to discretise
each concept into its TS different action timesteps (e.g.,
by observing the timestep boundary when there are several
consecutive identical video frames). For each timestep t ∈
[1, TS] over the N demonstrations of the same concept, the
robot can detect the object properties: Ot1, . . . , OtN , and
effects: Et1, . . . , EtN . To imitate the effects of the timestep
with its own basic actions, the robot needs to calculate the
MAP estimate: argmaxAt

P (At|Ot1, Et1, . . . , OtN , EtN ).
Given that object types and specific object locations in
demonstrations are independent and each action is equally
likely, this is equivalent to: argmaxAt

P (At|Ot1, Et1)∗. . .∗
P (At|OtN , EtN ), where each of the terms of the product can
be computed using the relational affordance model of [19].
For example, in the 5 demonstrations of the moveAround
concept (Fig. 4(b)), in the first timestep O1 moves to the left,
so the predicted most likely action is a tap. After performing
the MAP estimate for the TS timesteps, the robot can now
perform the concept as a sequence of actions {A1, . . . , ATS}
in its own action space.

2) Concept state transition rules: To use concepts
for planning, the robot needs to be able to infer the
outcome of executing a concept C in a particular object
configuration or state. This is equivalent to defining outcome
probabilities for each C in every state, namely defining a
transition model T (Sc, C, Sc+1) for reaching state Sc+1

from Sc. In the context of our object arrangement by

use of relational affordances, a state Sc corresponds with
the observed object properties together with the set of
effects obtained after executing the previous concept (e.g.,
contact between objects). To reduce the size of the state
transition model we use the fact that a concept should
only be executed when certain conditions hold in a state.
For a concept demonstrated N times, we consider the
preconditions to be the set of O which have the same
values between the N demonstrations, which correspond
to a set of states. For example, the inaRow concept
(Fig. 4(c)) has as preconditions relDist(Obj1, Obj2, 2)
and relOri(Obj1, Obj2, 3). The N demonstrations of
C also produce the effects E1, ..., EN , thus defining a
probability distribution over final concept states, which
we can refer to as a distribution over postconditions.
This modeling can be related to a probabilistic version
of STRIPS representation [8]. Executing a concept when
the prerequisites are not met results in an undefined state
(to be penalized when performing planning). Alternative
modeling of this noise outcome can be done with noisy
indeterministic deictic rules [16], [21]. We can now build
a probabilistic relational model of concept state transitions
once we augment our previous predicates with a concept
sequence number. For example, if the nextTo concept was
demonstrated only on square (sq) main objects with any
type of secondary objects which are a distance 2 away,
and the effect was that with 80% probability their distance
becomes 1 (20% stays the same):
0.8 :: relDist(Obj1, Obj2, 1, C2);
0.2 :: relDist(Obj1, Obj2, 2, C2)← C1 = C2− 1,

C1 >= 0, nextTo(Obj1, Obj2, C2),
shape(Obj1, sq, C1), relDist(Obj1, Obj2, 2, C1).

3) Considering general object interactions: In addition to
concept transitions, we need to model the concept’s object
interactions. For example, executing a nextTo concept might
cause the object being inserted to touch a third object on
the table. With the use of SRL to generalise over objects,
all these possible object interactions need not be explicitly
defined but they can be modelled by the previous relational
affordance model [19]. For this we further augment the
affordance model in [19] with extra variables for timesteps,
so object properties and actions at timestep t define a
probability distribution over effects at timestep t + 1. Once
the concept basic actions are recognised as in (1) we can
define the actions to use for each timestep, making sure they
apply to one object from the concept and one surrounding
object, through the use of variables. For example for the
inaRow concept which has a tap at step 1:
notinC(OtherObj, Obj1, Obj2)← obj(OtherObj),

OtherObj 6= Obj1, OtherObj 6= Obj2.
tap(Obj1, OtherObj, C, 1)← inaRow(Obj1, Obj2, C),

notinC(OtherObj, Obj1, Obj2).

B. Planning using concepts

We now have a full relational model of object interactions
due to the execution of the demonstrated concepts and we



can tackle the object arrangement task. Given the set O0 and
the goal OF , EF , the robot needs to come up and execute a
sequence of concepts {C1, C2, ...} to achieve the goal. This
can be reduced to a planning problem.

Planning and sequential decision problems are generally
described using Markov decision processes (MDP). We want
to use the generalisations over objects by the relational
affordance and concept state transition models, so we use
a relational MDP (RMDP) [27]. An RMDP is defined as a
tuple 〈P,A,D, T,R〉 where in this case D is the domain of
objects, A is the set of action predicates which is the set con-
sisting of the demonstrated concepts (e.g., nextTo(O1,O2,C)),
and P is the set of predicates derived from our probabilistic
transition rules (e.g., relDist(O1,O2,2,T)). The state space S
is defined as a subset of the set of first order interpretations
of P over D. Our initial state T0 is the set of initial object
properties O0. The current state S is represented by the
grounded predicates corresponding to the observed object
properties at that timestep and the detected effects achieved
from executing the previous concept. Then the transition
model is defined in a similar way as for an MDP: T (s, a, s′),
and similarly the reward function R(s). In our case the
transition model represents the probabilistic transition rules
derived from the demonstrated concepts together with the
general object interactions model.

There are several ways to model and find a policy for an
RMDP. We use DTProbLog [26], which augments ProbLog
with a set of (non-ground) decision facts D of the form ? :: d,
and a set U of utility attributes of the form ui → ri with ui
a literal and ri the reward for achieving ui. A strategy σ is
a function D → [0, 1], mapping a decision fact to the proba-
bility that the agent assigns to it [26]. As explained in more
detail in [26], the total utility of a strategy σ for a DTProbLog
program DT is: Util(σ,DT ) =

∑
ai∈U Util(ai|σ(DT )) =∑

ai∈U ri ∗ P (ui|σ(DT )). Computing the optimal strat-
egy resumes to calculating argmaxσ Util(σ,DT ) and al-
gorithms for finding the optimal strategy are provided by
DTProbLog [26]. Note that the contraints introduced through
logical rules in the program as in [19] will hold and this
will restrict the amount of viable actions (e.g., don’t grasp
two object in contact). We extend our previous relational
model by changing the concept predicates into decision facts:
? :: nextTo(O1, O2, C) (while making sure by the use of
logical rules that at each timestep only one concept can be
picked), and defining a reward function given the effects
according to our RMDP (e.g., relDist(o1, o2, 2, 1) → 10).
Then DTProbLog can infer the optimal concept to execute.

VI. EVALUATION AND RESULTS

We want to show that probabilistic relational affordance
models of object interactions extended to use a set of prior
demonstrated high level concepts, composed of a sequence of
basic actions, can be used successfully in a planning setting.
We want to show that the robot can reach a predefined goal,
given as a set of desired effect features, through executing a
sequence of learned concepts. We use a table-top setting with
objects where a sequence of objects needs to be inserted.

The robot is given a final configuration of objects, in the
form of grounded relational effects (e.g., relative distance
and orientation between pairs of objects). To achieve the
goal, the robot will need to infer and execute a sequence
of the concepts, illustrated in Fig. 4.

In our setting, using one hand and 5 demonstrated concepts
with their respective preconditions, only a limited set of
effects can be achieved. To test the sequential decision
making, we need first to generate a set of achievable effects.
We consider an initial state with 2 objects already placed and
investigate sequences of 3 concepts (i.e., sequences of 5 to
7 basic actions). These constraints induce only 10 different
high-level concept sequences of length 3, where the position
of the initial objects on the table has to correspond with the
prerequisites of the first action in the sequence. We execute
each of these 10 possible sequences twice, with objects of
random shape (unless the shape requirement conflicts with
another object position) and generate the 20 effect datasets
for our experiments. The robot will need to reach these final
configurations, possibly through the use of different concept
sequences than the ones that were used to obtain them.

We equip the robot with the model in [19] to enable
it to do action prediction given the set of desired effects
and object properties. These properties are perceived using
color segmentation and 3D object localization, and are:
shape, discretised relative distance (4 clusters separated at
6cm, 10cm, 14cm) and orientation (8 clusters of 45 ◦)
between each pair of objects. Effects include discretised
object displacement (4 clusters separated at 1cm, 3cm, 5cm),
discretised displacement orientation and contact between 2
objects, which relies on the area of intersection between the
convex hull of the 2 segmented areas.

In addition, we demonstrate to the robot the concepts in
Fig. 4. Each concept is demonstrated 5 times, and we use the
affordance model to predict the basic actions that constitute
the concept. The 5 concepts contain together 10 basic actions,
out of which 9 were predicted correctly using the method in
Section V(A) (a push action was predicted instead of a grasp
in the moveAway concept; grasp was second most likely).
For planning we will use these predicted actions since they
represent the means to achieve the effects.

We use the DTProbLog program described in Section V.
At the concept level, we will only use the relative distance
and orientation between pairs of objects from the affordance
model. The model can be extended to the other affordance
object properties and effects, and there is a trade-off between
increased model accuracy and inference time. Our RMDP
will have a finite horizon of 1 (concept), with preset rewards
(which in the future can also be learnt from a set of trials).
We heavily penalise ending up in a bad state. We give a high
reward for achieving a final effect within the horizon, and a
medium reward for achieving an effect that corresponds with
an adjacent cluster to the desired one. There are no rewards
for placing objects in the remaining clusters of orientations
or distances, since it will take extra actions to achieve the
desired outcome (in some cases it might be impossible given
our limited concept set).



We ran the 20 experiments, each with one of the initial 2
object settings and final sets of effects. Each step the robot
infers the best concept to use, executes it, and uses the new
state information to re-plan for the next step. We stopped
after the concept that introduced the fourth object on the
table. Produced plans had length 2 to 4 (original sequence
of actions that generated those possible final states all had
length 3). Fig. 5 shows a sequence of executed concepts.

Fig. 5. Sequence of executed concepts: i) initial setting, ii) after a nextTo,
iii) after a makeSpace, iv) final state after a moveAround

We compared the desired and obtained configuration af-
ter executing the sequence of concepts. Since the relative
distances that were input into the model were discretised
in clusters of 4cm, and the average error from the image
segmentation was a bit over 1cm, we considered an object
placed successfully if its final location, as detected by the
vision system, was within 5cm of the target location (e.g.,
on average a variation of about ±3.5cm in both detected
x and y-axis positions). Table I shows that in 11 out of 20
cases all objects were placed successfully, and in other cases,
either 1 or 2 out of the 4 objects were misplaced.

TABLE I
EXPERIMENT RESULTS: NUMBER OF MISPLACED OBJECTS (OUT OF A

MAXIMUM OF 4) DURING THE 20 TEST RUNS

Objects Misplaced Number of runs (Runs) Percentage
0 11 55%
1 4 20%
2 5 25%
3 0 0%
4 0 0%

The original affordance model was 58% accurate [19], for
a single-action prediction, so in comparison we achieved only
a slightly worse accuracy (55%) for whole sequences of 4 to
6 actions. Although replanning at every step can handle some
uncertainty in object interaction in our setting, the limited
amount of actions in our action set limits the effects that
can be achieved (e.g., an object cannot be brought closer
to the robot). A more varied action set would improve the
results. As noted, planning accuracy increases by modelling
the relations between the other affordance features. Out of
the 11 successful placements the robot came up with exactly
the same plan with which we generated the desired outcome
only 3 times. In all the other cases the system came up with
a different plan that produced the same effects.

VII. CONCLUSION AND FUTURE WORK

We have presented an application of relational affordances
models extended to use a set of demonstrated high level con-
cepts composed of a sequence of basic actions in a planning
setting. We showed that the extended relational model can
be used successfully for the task of object arrangement.

Future work will first include using human demonstrations,
different high level concepts and transferring the model to
an iCub and a real-world multiple object setting. We plan to
go towards more complex environments and planning tasks.

REFERENCES

[1] D. Berenson and S. S. Srinivasa. Grasp synthesis in cluttered
environments for dexterous hands. In Humanoids, 2008.

[2] C. M. Christoudias, B. Georgescu, P. Meer, and C. M. Georgescu.
Synergism in low level vision. In ICPR, 2002.

[3] S. Coradeschi and A. Saffiotti. An introduction to the anchoring
problem. Robotics and Autonomous Systems, 43(2-3):85–96, 2003.

[4] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman. Push planning for
object placement on cluttered table surfaces. In IROS, 2011.

[5] L. De Raedt. Logical and Relational Learning. Springer, 2008.
[6] L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic

prolog and its application in link discovery. In IJCAI, 2007.
[7] V. Emeli, C.C. Kemp, and M. Stilman. Push planning for object

placement in clutter using the PR-2. In IROS PR2 Workshop, 2011.
[8] R. E. Fikes and N. Nilsson. STRIPS: A new approach to the

application theorem proving to problem solving. Artificial Intelligence,
5(2):189–208, 1971.

[9] J. J. Gibson. The Ecologial Approach to visual perception. Boston:
Houghton Mifflin, 1979.

[10] M. Gienger, M. Toussaint, and C. Goerick. Task maps in humanoid
robot manipulation. In IROS, 2008.

[11] J. Hertzberg and R. Chatila. AI reasoning methods for robotics. In
Handbook of Robotics, pages 207–223. Springer, 2008.

[12] D. Jain, L. Mösenlechner, and M. Beetz. Equipping robot control
programs with first-order probabilistic reasoning capabilities. In ICRA,
pages 3626–3631, 2009.

[13] N. Jetchev and M. Toussaint. Trajectory prediction in cluttered voxel
environments. In ICRA, 2010.

[14] D. Kragic, M. Björkman, H. I. Christensen, and J. O. Eklundh. Vision
for robotic object manipulation in domestic settings. Robotics and
Autonomous Systems, 52(1):85–100, 2005.

[15] V. Krunic, G. Salvi, A. Bernardino, L. Montesano, and J. Santos-
Victor. Affordance based word-to-meaning association. In ICRA, 2009.

[16] T. Lang and M. Toussaint. Planning with noisy probabilistic relational
rules. J. Artif. Intell. Res. (JAIR), 39:1–49, 2010.

[17] M. Lopes, F. S. Melo, and L. Montesano. Affordance-based imitation
learning in robots. In IROS, pages 1015–1021, 2007.

[18] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori. The iCub
humanoid robot: an open platform for research in embodied cognition.
In PerMIS, 2008.

[19] B. Moldovan, P. Moreno, M. van Otterlo, J. Santos-Victor, and L. De
Raedt. Learning relational affordance models for robots in multi-object
manipulation tasks. In ICRA, 2012.

[20] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learn-
ing object affordances: From sensory-motor coordination to imitation.
IEEE Transactions on Robotics, 24:15–26, 2008.

[21] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling. Learning
symbolic models of stochastic domains. JAIR, 29:309–352, 2007.

[22] U. Pattacini, F. Nori, L. Natale, G. Metta, and G. Sandini. An
experimental evaluation of a novel minimum-jerk cartesian controller
for humanoid robots. In IROS, 2010.

[23] F. Stulp and M. Beetz. Combining declarative, procedural, and predic-
tive knowledge to generate, execute, optimize robot plans. Robotics
and Autonomous Systems, 56:967–979, 2008.

[24] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[25] M. Toussaint, N. Plath, T. Lang, and N. Jetchev. Integrated motor
control, planning, grasping and high-level reasoning in a blocks world
using probabilistic inference. In ICRA, 2010.

[26] G. Van den Broeck, I. Thon, M. van Otterlo, and L. De Raedt.
DTProblog: A decision-theoretic probabilistic prolog. In AAAI, 2010.

[27] M. van Otterlo. The Logic of Adaptive Behavior. IOS Press,
Amsterdam, The Netherlands, 2009.

[28] J. Vennekens, M. Denecker, and M. Bruynooghe. CP-logic: A
language of causal probabilistic events and its relation to logic
programming. TPLP, 9(3):245–308, 2009.

[29] M. A. Wiering and M. van Otterlo. Reinforcement Learning: State-
of-the-Art. Springer, 2012.


