
Online Learning of Humanoid Robot Kinematics Under Switching
Tools Contexts

Lorenzo Jamone1, Bruno Damas2,3, José Santos-Victor2 and Atsuo Takanishi1,4

Abstract— In this paper a novel approach to kinematics
learning and task space control, under switching contexts, is
presented. Such non-stationary contexts may appear in many
robotic tasks: in particular, the changing of the context due
to the use of tools with different lengths and shapes is herein
studied. We model the robot forward kinematics as a multi-
valued function, in which different outputs for the same input
query are related to actual different hidden contexts. To do
that, we employ IMLE, a recent online learning algorithm
that fits an infinite mixture of linear experts to the online
stream of training data. This algorithm can directly provide
multi-valued regression in a online fashion, while having, for
classic single-valued regression, a performance comparable to
state-of-the-art online learning algorithms. The context varying
forward kinematics is learned online through exploration, not
relying on any kind of prior knowledge. Using the proposed
approach, the robot can dynamically learn how to use different
tools, without forgetting the kinematic mappings concerning
previously manipulated tools. No information is given about
such tool changes to the learning algorithm, nor any assumption
is made about the tool kinematics. To our knowledge this
is the most general and efficient approach to learning and
control under discrete varying contexts. Some experimental
results obtained on a high-dimensional simulated humanoid
robot provide a strong support to our approach.

I. INTRODUCTION AND RELATED WORK

In the last decades we have seen a remarkable growth of
the field of robotics. On one side, there has been a huge
increase in the complexity of available robots, with current
humanoid robots bearing tens of degrees of freedom and a
multitude of different sensors. On the other hand, more so-
phisticated methods were developed to control these robots,
in order to make them execute the desired tasks. However, as
robots became more complex, building the analytical models
needed for robot control turned more and more difficult
and time-consuming. Moreover, the lack of knowledge of
certain hard to measure physical parameters (e.g. friction)
and the existence of highly non-linear physical interactions,
such as actuator nonlinearities, soft or deformable parts
and unmodeled mass distributions made infeasible to obtain
adequate and accurate models for such kind of systems [1];

1L. Jamone and A. Takanishi are with the Faculty of Science and Engi-
neering, Waseda University, Tokyo, Japan lorejam@liralab.it,
contact@takanishi.mech.waseda.ac.jp

2B. Damas and J. Santos-Victor are with the Instituto de
Sistemas e Robótica, Instituto Superior Técnico, Lisboa, Portugal.
{bdamas,jasv}@isr.ist.utl.pt

3B. Damas is with Escola Superior de Tecnologia de Setúbal, Portugal.
4A. Takanishi is with the Humanoid Robotics Institute, Waseda Univer-

sity, Tokyo, Japan
This work was partially supported by Handle, First-MM, and Poeticon++

projects from the European FP7 program (grant agreements no 231640,
248258 and 288382 respectively).

as a consequence, an increasing number of researchers has
started to employ modern machine learning techniques to
provide these complex robots with the necessary representa-
tion capability (see [2] for a recent survey). Among these
techniques, there are a few that were very successful at
learning the forward kinematics or inverse dynamics of a
robot: Gaussian Processes Regression achieves a state of
the art performance with respect to estimation generalization
error [3], while the Locally Weighted Projection Regression
(LWPR) algorithm [4], a online non-linear function approxi-
mation algorithm, has been widely used for robotic learning
problems due to its excellent memory requirements and low
computational complexity.

Many robotic tasks, however, involve handling and ma-
nipulation of different objects, making the environment and
the mappings to be learned non-stationary. The kinematics
mapping from robot joint angles to end-effector position, for
instance, changes whenever different tools are used; another
classical example is the change in the robot dynamics due to
the variation of the load of the end-effector. This is known
as learning under a varying context, where an unobserved
context variable changes the map to be learned. Such context
can generally be a discrete variable, corresponding to the
case where only a finite, albeit unknown, number of different
contexts exist, or continuous, indicating a smooth change on
the mapping to learn. The most straightforward answer to this
problem is to introduce some form of adaptation in the learn-
ing algorithms, making them forget past experience through
the use of some kind of forgetting factors mechanism.
Of course, it is terribly inefficient to relearn the complete
mapping every time the context changes, specially when
there is an effective chance that a previously learned context
may be presented again to the robot. Another approach to this
problem, for the discrete case, is to keep a set of models that
describe the robot model for each different context: some
of the earliest work on this subject is given by the works
of [5] on adaptive control and the MOSAIC architecture [6],
while [7] constitutes a more recent vision on this matter.
This latter work identifies three critical issues when learning
multiple models for use in robot control. The first issue is
how to identify the correct number of models to use without
any problem specific information. The other two issues are:
i) how to estimate the current context, given that the correct
number of models to use is known, and ii) how to use
such estimation for either controlling the robot or further
training the models. The adaptive control of [5], for instance,
considers that an appropriate number of models is given
a priori, already trained and exhibiting good performance

within each context; the MOSAIC architecture, on the other
hand, assumes that some perceptual cues are available that
can guide a correct context estimation in the early learning
process, that can in turn successfully assign the perceived
data points to a predefined number of models — this is a
very optimistic assumption, in this paper authors opinion.
Additionally, the results presented for the MOSAIC model
are somewhat limited to a very simple system consisting of
an object moving along a single direction axis. Finally, the
approach presented in [7] ambitiously claims the ability to
deal with varying contexts, although, as the authors admit,
their method only holds under changes in the mass of the
object being manipulated — it could not be applied, for
instance, when varying a robot link length while trying to
learn its forward kinematics. Their assumption of an explicit
latent context variable also brings some problems when the
current context needs to be inferred for training purposes:
in the continuous case they need to resort to two models
previously trained using context labelled data before they are
able to generalize to unseen contexts, while in the discrete
case a bootstrap, based on a EM procedure over a batch of
unlabelled data points, is required when no trained models
exist yet — this however, goes against the online, incre-
mental philosophy of LWPR [4], the function approximation
algorithm used in the corresponding simulations.

Some recent works focus more specifically on the problem
of adapting the robot kinematics under different tools opera-
tion. In [8] a simple 2-joints planar manipulator is controlled
using an analytical model of the Jacobian, and when a tool
is added to the kinematic chain the corresponding Jacobian
is obtained through multiplication of the analytical Jacobian
by a linear constant matrix, which is learned exploiting
the temporal integration of visual and tactile information
during motor exploration. Another approach is proposed in
[9], where a recurrent neural network parametrized with the
length of the tool is used to estimate the inverse kinematics
of a humanoid robot. However, the length of the tool must
be known in advance to train and query the neural network.
Additionally, training is done using circular trajectories in a
fixed plane: this procedure learns a subspace of much lower
dimensionality than the joints space dimension being used.
Another big limitation of these works is that they can account
only for rigid transformations (e.g. they cannot cope with
flexible or deformable tools).

This paper takes a different approach, by directly mod-
elling the map to be learned as an unknown multi-valued
function, a multimap that can assign different solutions for
the same query input point: in such a scheme, each branch
of the multimap represents the relation from an input vector
to an output vector, for a specific unknown context. This
multi-valued function is learned from sensory data using the
Infinite Mixture of Linear Experts (IMLE) algorithm [10], a
recent online, incremental learning algorithm that is partic-
ularly suited for these kind of multi-valued functions. This
algorithm describes the map to be learned as a collection of
local linear models that can coexist in similar input locations,
thus potentially producing multi-valued estimates for the

output corresponding to a particular input query point: the
most important mechanisms of this algorithm are detailed in
Section II. Using a single IMLE multi-valued model for the
discrete context estimation problem has some tremendous
advantages over the previous approaches to discrete varying
context and control. On one hand, there is no need to
maintain a bank of single-valued function approximation
models, since IMLE produces a discrete set of solutions for
each input query point; the number and values for this set of
solutions depend on the specific input query location and the
information gathered so far by the algorithm. This also avoids
the need to define or estimate the number of single-valued
models to use. Secondly, the IMLE training process, based
on the EM algorithm, automatically and transparently assigns
responsibilities to each of the local models for each training
point, with no need to explicitly maintain an estimate for the
hidden context variable. This even allows for the existence
of a different number of contexts in different locations of
the input space. Choosing an appropriate control action
is also very simple using IMLE: assuming some form of
continuity and smoothness, a particular solution, for a given
query point, can be picked by simply choosing the predicted
solution closest to the previous output point: using IMLE
for robot control is described in Section III. To evaluate
the performance of the IMLE algorithm under the discrete
varying context situation we used it to learn the kinematics
of a simulated iCub humanoid robot, actuating 7 of its joints
(4 DOFs for the right arm, 3 DOFs for the waist) in order
to control the end-effector position of the robot in the 3D
Cartesian space, for different tool geometries and lengths.
No information whatsoever was conveyed to the algorithm
whenever the tool was changed; moreover, no assumption
was made about the size or geometry of the tools being used.
The results are shown in Section IV: to our knowledge, this
is the most general and efficient approach to learning and
control under discrete varying contexts.

II. THE IMLE ALGORITHM

The IMLE algorithm [10] is a probabilistic algorithm that
uses a generalized expectation-maximization procedure to
update its parameters, fitting an infinite mixture of linear
experts to an online stream of training data (zi, xi), where
zi ∈ Rd denotes an input point and xi ∈ RD denotes
the corresponding output. Its only assumptions about the
training data nature is that it can be approximated by a
mixture of local linear models: this naturally allows for
multi-valued function learning, as the different branches
of the multimap can be approximated by different experts
sharing the same input region. It starts with the following
probabilistic generative model,

p(xi|zi, wij ; Θ) ∼ N (µj + Λj(zi − νj),Ψj) , (II.1)
p(zi|wij ; Θ) ∼ N (νj ,Σj) , (II.2)

where the mean νj and covariance Σj define each expert
j active input region, while µj and Λj define the linear
relation from input to output for a particular expert; Ψj

represents the output noise. The unobserved, latent variable

wij assigns sample points to experts, while the parameter
vector Θ gathers all the parameters to be learned; this model
is in essence similar to the one presented in [11]. Some
additional priors, however, are additionally defined over the
mixture parameters to perform some regularization and to
enforce the principle of localized learning, thus avoiding
the interference of experts across different regions of the
input space. More details on the full probabilistic model are
available in [10].

Training of the model is done using an online EM algo-
rithm: in the expectation step responsibilities are assigned to
experts for a new point (zi, xi), according to:

hij ≡ E[wij |xi, zi; Θ̂] = p(wij |xi, zi; Θ̂) , (II.3)

where Θ̂ is the most recent estimate for the mixture pa-
rameters being learned. Maximization step then updates
the parameters in Θ̂ according to the responsibilities hij
previously obtained. Based on a model for outlier points,
the mixture can grow by automatically adding new experts
whenever the perceived data points are not well explained by
the mixture. Once again, please refer to the original paper
for details.

The E-Step above avoids the typical interference between
experts for the multi-valued function estimation case, since
it assigns responsibilities based on both the input and output
part of the training point. LWPR, for instance, although
sharing the mixture of localized linear models concept with
IMLE, adapts the distance metrics of each receptive field
using a procedure based on the minimization of the (single-
valued) prediction error; this, together with an attribution of
responsibilities based on the input part of a data point only,
makes the coexistence of linear models in the same input
region infeasible, as required for multi-valued learning.

Given a current set of mixture parameters, a single-valued
prediction algorithm will commonly mixture the individual
linear models predictions according to some weighted av-
erage scheme, using weights wx

j (zq) that depend on how
strong each model is activated given only the input query
point zq . This is of course unacceptable for multi-valued
prediction, as different solutions in the output space become
blended together. The IMLE algorithm tries to find, for a
given input query zq , a set of estimated predictions ˆ̄xk by
grouping and clustering the linear models point estimates
into a minimal set of predictions. It uses a probabilistic
model that relates linear models point predictions x̂j to
the unknown set of true multi-valued predictions x̄k, also
taking into account the weights wx

j (zq) and the estimation
variances Rj provided by each linear model. This process
then has to tackle two major questions, namely how to group
linear models point estimates into a set of Npred coherent
predictions and how to choose Npred, the appropriate number
of such predictions. The clustering problem is solved using
another EM procedure, by assuming some latent variables
sjk exist that assign models point estimates to unknown
predictions. After the EM procedure is carried through, a
statistical hypothesis test is performed, to assess the fit of the
resulting set of multi-valued predictions: if the test rejects the

goodness of fit hypothesis than it is assumed that the number
of predictions Npred is insufficient. For a query point zq
the IMLE algorithm starts with the single-valued prediction:
if the test finds evidence to reject the hypothesis that the
models point estimates are distributed according to a single-
valued prediction, the value of Npred is increased to 2 and
the EM clustering procedure is carried on; if the goodness
of fit hypothesis is again rejected the number of predictions
Npred is again increased, until the test fails to reject the
hypothesis and a final set of Npred multi-valued predictions
is obtained. This clustering procedure is a distinctive feature
of IMLE when compared, for instance, to the work described
in [12], that can also deal with multi-valued prediction: while
IMLE, for each query, can provide a minimal set of coherent
predictions, the latter algorithm is only able to stochastically
sample a prediction from the set of models. As noted by their
authors, this can lead to unwanted rapid changes of predicted
context, that can have disastrous consequences in the control
phase.

As a final remark, IMLE features a very low computational
complexity: for each training point the learning algorithm is
O(Md(d+D)), i.e., linear in the number of active experts
M and output dimensions D and quadratic in the number of
input dimensions d, thus making it directly comparable to the
state-of-the-art LWPR in terms of computational complexity
per training pointLike LWPR, this complexity can be made
linear in d if the input distance metrics Σj are constrained to
be diagonal. It also has been shown in [10] that IMLE can
outperform LWPR in terms of prediction error for single-
valued problems, while keeping in general a lower number of
allocated linear models. Since both algorithms have at least
a handful of tuning parameters, comparing their performance
may of course be debatable, but a yet unpublished com-
parison of both algorithms under an exhaustive variation of
parameters seems to confirm a better performance of IMLE.
For prediction, IMLE computational time grows linearly with
Npred, the number of multi-valued solutions found.

III. TASK SPACE CONTROL

To control the end-effector position in task space we
follow the approach originally proposed in [13], where
due to the redundancy of the system two tasks can be
simultaneously executed: a main task in the Cartesian space
(i.e. positioning of the end-effector) and a secondary task in
joints space (i.e. keeping the joints as far as possible from
the physical limits), projected in the null space of the main
task. Motor velocities q̇ are thus computed as follows:

q̇ = KmJ
†(q)ẋd

m +Ks(I − J†(q)J(q)) q̇d
s , (III.1)

where the Jacobian matrix J(q) maps from motor velocities
to task velocities, J†(q) is its Moore-Penrose generalized
inverse, (I−J†(q)J(q)) is a null-space projector, ẋd

m is the
desired task space velocity for the main task and q̇d

s is the
desired joints space velocity for the secondary task. At every
control step these desired velocities are chosen as

ẋd
m = xd − x and q̇d

s = −∇M(q) , (III.2)

where xd and x are the desired and actual task space
positions and ∇M(q) is the gradient of M(q), the function
we want to minimize as a secondary task. Km and Ks are
positive definite diagonal gain matrices respectively for the
main and secondary task. Since our secondary task is to keep
the joints as far as possible from their limits we chose M(q)
as in [13]:

M(q) =
1

N

N∑
i=1

(
qi − ai

ai − qmax
i

)2

, (III.3)

ai =
qmax
i + qmin

i

2
, (III.4)

where N is the overall number of joints and qmin and
qmax are lower and upper joints limits. At every control
step we check whether the system is close to singularities by
computing the smaller singular value of the Jacobian through
singular value decomposition (SVD). If the smaller singular
value δm is lower than a predefined threshold δT we rely
on the damped least squares solution [14]. In this case the
pseudoinverse is computed as follows:

J†(q) = JT (q)(J(q)JT (q) + λ2I)−1 , (III.5)

with

λ2 =

[
1−

(
δm
δT

)2
]
· λ2MAX ; (III.6)

our implementation sets these values to δT = 0.0001 and
λ2MAX = 0.00005.

The Jacobian J(q) is obtained estimating the local slope,
for input query point q, of the current learned map from joint
to task space, x = f̂(q). This solution has been proposed
in [15], using LWPR for the map estimation. Of course, when
using IMLE to provide the Jacobian estimate, we must first
choose one of the possible multiple solutions provided by
the algorithm for the same query point q. A fairly simple
and efficient solution is then to pick the prediction closest
to the previous acquired output point x. This procedure is
implicitly assuming that the context does not change very
frequently, which seems a reasonable assumption.

IV. EXPERIMENTAL RESULTS

The experiments are carried out using the iCub Dynamic
Simulator [16]: snapshots are displayed in Figure 1. The right
arm and the waist of the robot are actuated to control the end-
effector position in the 3D Cartesian space, using the task
space controller described in Section III. The end-effector
can be either the robot hand or the tip of a tool: the two
tools used in the experiments (a 28 cm long stick tool and a
48x30 cm L shaped tool) are displayed in Figure 1. All the
software has been realized using YARP [17]. For the sake of
clarity, we recall the definition of joints space vector q and
task space vector x, as used hereinafter:

. q = [θsy θsp θsr θe θwy θwr θwp]T ∈ R7

. x = [xp yp zp]T ∈ R3

where θsy , θsp, θsr are the shoulder yaw, pitch and roll
rotations (elevation/depression, adduction/abduction and ro-
tation of the arm), θe is the elbow flexion/extension, θwy ,

θwr, θwp are the waist yaw, roll and pitch rotations (rotation,
adduction/abduction, elevation/depression of the trunk), and
xp, yp, zp are the three cartesian coordinates describing the
position of the end-effector (it can be either the hand or the
tip of a tool) with respect to a fixed reference frame placed
on the ground, in the middle between the robot feet. The
robot joints limits are defined in Table I.

arm waist
qmin −80◦ 0◦ 0◦ 20◦ −30◦ −30◦ −10◦

qmax 0◦ 80◦ 80◦ 80◦ 30◦ 30◦ 30◦

TABLE I
JOINTS LIMITS OF THE ICUB ROBOT SIMULATOR.

Fig. 1. Snapshots of the iCub Simulator grabbing the two different tools
used in the experiments: on the left, the 28 cm stick tool, on the right, the
48x30 cm L shaped tool.

Section IV-A evaluates the online estimation perfomance
of IMLE during a motor babbling phase, while in Section IV-
B we use the map learned with IMLE for task space control.
Some of the results present a comparison with LWPR, in
order to show that:

a) the performance of IMLE and LWPR (a state-of-the-art
online algorithm for non-linear regression) are directly
comparable for single-valued regression;

b) the multi-valued approach (which is supported by
IMLE) allows to efficiently deal with the dynamical
inclusion of different tools in the kinematic model, a
problem in which the classical single-valued approach
fails.

A. Model estimation during motor babbling

During the motor babbling phase the robot moves to ran-
dom reference configurations in the joints space using a low-
level joint position control, spanning the whole joints space
within the robot limits defined in Table I. Training points,
consisting of joint values q and respective 3D positions of
the end-effector x, are acquired and presented to the learning
algorithms. We start the motor babbling without any tool;
after 100,000 training points, the 28 cm stick tool (see left
image in Figure 1) is attached to the robot hand, without
informing the algorithm of such change in the forward
kinematics. After more 100,000 training points the tool is
removed and the robot continues the motor babbling for more
100,000 points (without the tool). During this procedure, the
root mean square error (RMSE) over two independent test
sets of 3,000 samples each, S1 and S2, is calculated: the joint
values q are the same in both test sets, while the x values

0 100,000 200,000 300,000
0

0.05

0.1

0.15

0.2

0.25

0.3

RMSE on Test Set S
1

Training Samples

E
s
ti
m

a
ti
o
n
 E

rr
o
r

(R
M

S
E

)

IMLE

LWPR

0 100,000 200,000 300,000
0

0.05

0.1

0.15

0.2

0.25

0.3

RMSE on Test Set S
2

Training Samples

E
s
ti
m

a
ti
o
n
 E

rr
o
r

(R
M

S
E

)

IMLE

LWPR

0 100,000 200,000 300,000
0

0.05

0.1

0.15

0.2

0.25

0.3

RMSE on Switching Test Set (S
1
/S

2
/S

1
)

Training Samples

E
s
ti
m

a
ti
o
n
 E

rr
o
r

(R
M

S
E

)

IMLE

LWPR

Fig. 2. RMSE of the forward kinematic estimation during motor babbling, using different test sets. IMLE and LWPR are trained first without the tool
(until sample 100,000), then with the tool (until sample 200,000) and then again without the tool (until sample 300,000). Left: test set S1 (no tool). Center:
test set S2 (28 cm stick tool). Right: test set is changed according to the tool used during the training, i.e. first S1 is used, then S2 and finally S1 again.

are the positions of the end-effector, that is either the hand
(S1, no tool) or the tip of the 28 cm stick tool (S2, tool). The
obtained results are shown in Figure 2. These results show
that:

a) for single-valued regression the RMSE performance
of IMLE is comparable to LWPR (in these particular
experiments it is slightly better, and the number of
allocated linear models is significantly lower for IMLE
than LWPR — not shown in the figure);

b) modeling the kinematics as a multi-valued function
allows to learn different tool kinematics within a single
model;

c) IMLE is an effective algorithm for multi-valued regres-
sion and prediction.

Indeed, the estimation performance of IMLE in the case
of single-valued regression (during the first part of the motor
babbling, before the inclusion of the tool) is in line with the
one of LWPR; this can be noticed in Figure 2, looking at
the evolution of the estimation error during the first 100,000
training samples. Then, after motor babbling with the tool is
performed, the advantages of multi-valued regression speak
for themselves. LWPR, as well as any other single-valued
regression algorithm, updates the model to the tool condition,
forgetting the previous kinematics (the one without the tool);
IMLE, on the other hand, creates a new branch of the model
for the new tool, without forgetting the previously learned
kinematics. After removing the tool (at 200,000 training
points) LWPR starts to update the model again to cope with
the initial context (the RMSE suddenly raises again, and
then slowly decreases with training), while IMLE, having
kept the knowledge of the kinematics with no tool, suffers
almost no change in its RMSE. In general, after learning a
model, the error in the corresponding test set will remain low
irrespectively of further training under different kinematics.

B. Task space control experiment

To evaluate the performance of the task space control
using the learned kinematics a test movement is executed.
A sequence of 16 target positions is provided to the robot:
the end-effector trajectory resulting from the control should
draw a cube in the task space, including two diagonals. The
end-effector can be either the hand or the tip of a tool.

Figure 3 shows the execution of the test movement with
the hand, after motor babbling without any tool (100,000
training samples); the overall position error of the end-
effector during the movement is displayed in Figure 4. The
same movement is then realized by the robot using the
28cm stick tool, after additional motor babbling with the tool
(100,000 training samples): results are displayed in Figure
5. Then, the motion is executed again without the tool,
with results shown in Figure 6. Then, motor babbling is
performed again without the tool (100,000 training samples),
and the test trajectory is executed controlling either the hand
or the tool position (see Figure 7). To test the online learning
performance of IMLE during the control, the test movement
is also executed using the stick tool after motor babbling was
performed only without the tool: the resulting trajectories are
shown in Figure 8.

Lastly, as we expect the advantages of the multi-valued
approach to be even more evident when dealing with bigger
tools, the test movement is executed with the 48x30cm
L shaped tool depicted in the right image in Figure 1;
the target positions used in the previous test are shifted
in space, as the robot reaches a different workspace when
using this tool. Additional motor babbling with the tool is
performed (100,000 training points), then the test movement
is executed (see Figure 9). Then, more motor babbling
without the tool is realized (100,000 training points), and
the test movement is executed again (see Figure 10). Overall,
this set of experiments leads to the following results:

a) IMLE provides a good Jacobian estimation, and can
therefore be used for task space control, relying, for
instance, on the approach that was proposed in [15]
using LWPR.

Trajectories resulting from the control using IMLE (left
images in Figures 3, 5, 6, 9 and 10, both images in Figures
7 and 8) look straight and regular, suggesting that the esti-
mation of the Jacobian J(q) (which is obtained computing
the local slope of the learned multi-valued kinematic model,
x = f(q)) is good both when controlling the hand and when
controlling the tip of a tool. Figure 4 shows how the overall
task space position error is canceled during the control of the
hand using IMLE. The error is computed as the difference

between current and target hand position; the sum of the
absolute values of the three components (X , Y and Z) of
the error is displayed. Every 20 seconds the target position
is changed and the position error raises accordingly: for
instance, the error goes to 0.5 before starting the shorter
edge of the cube-shaped trajectory, while it goes to 2.5 before
starting the diagonal. The particular trajectory of the error,
which decreases fast at first and then progressively more
slowly, is peculiar of Jacobian based control, and is a further
proof of the good quality of the Jacobian estimation.

b) New tools can be dynamically included in the learned
model, not only relying on motor babbling, but also
directly during the task space control.

Results in Figure 8 show that the robot can learn to control
a new tool on a specific trajectory without relying on any
motor babbling with the tool: the left image displays the
trajectory of the tip of the tool during the first iteration of the
test movement (after motor babbling was performed without
the tool), while in the right image the trajectory on the third
iteration is depicted. During one iteration the robot collects
about 15,000 training points, even if a big part of them have
the same values, as the robot holds static positions for large
portions of the movement (i.e., when the task space position
error is zero).

c) Considering single-valued regression the performance
of IMLE in the control is in line with the one of LWPR.

As expected from the results in Section IV-A, without
including any tool the control performance of IMLE is in
line with LWPR (see Figure 3).

d) If multiple tools are used, the improvements of the
multi-valued approach with respect to the single-valued
one are dramatic.

The superiority of the multi-valued approach can be
clearly seen from the control performance in Figures 5 and
6. This is especially evident when dealing with the bigger
L shaped tool (see Figures 9 and 10): while for IMLE the
100,000 training points collected during the motor babbling
were sufficient to obtain a good model of the new tool,
allowing to control the system in task space, for LWPR they
were not enough to make the system controllable (see Figure
9). Moreover, the additional motor babbling without the tool
does not affect IMLE performance to a big extent, as it does
for LWPR (see Figure 10).

e) The computational requirements for IMLE are reason-
ably low (i.e. a small number of local experts is allo-
cated), allowing the use of IMLE for real-time online
learning, estimation and control.

During the experiments, IMLE was allocating about 40
experts to describe the robot forward kinematics, raising to
about 130 and 280 with the inclusion of the stick tool and
the L shaped tool, respectively. The number of allocated
linear models has a strong influence on the computational
burden of the algorithm, and it may also signal some sort
of learning overfitting. These are reasonably low numbers,
especially considering the dimension of the explored space.
As a reference, with the learning parameters that led to the

control performance shown in Figure 3, LWPR was creating
about 400 local experts only for the robot kinematics without
any tool attached.

Fig. 3. Task space trajectory of the hand during the test movement, after
motor babbling without tool was performed. On the left: using IMLE. On
the right: using LWPR.

Fig. 4. Task space position error during test movement.

Fig. 5. Task space trajectory of the tip of the stick tool during the test
movement, after motor babbling was performed first without and then with
the tool. On the left: using IMLE. On the right: using LWPR.

Fig. 6. Task space trajectory of the hand during the test movement, after
motor babbling was performed first without and then with the tool. On the
left: using IMLE. On the right: using LWPR.

V. CONCLUSIONS

We presented a novel approach to learn the kinematic
model of a redundant robot for task space control that can
cope with the use of tools of different lengths and shapes.
Modeling the forward kinematics as a multi-valued function
and using IMLE (an online multi-valued function approxi-
mation algorithm) to learn this model allows to control the

Fig. 7. Task space trajectory during the test movement using IMLE, after
motor babbling was performed first without tool, then with tool, and then
again without tool. On the left: controlling the hand. On the right: controlling
the tip of the tool.

Fig. 8. Task space trajectory of the tip of the stick tool during the test
movement using IMLE, without previous motor babbling with the tool. On
the left: first iteration of the movement. On the right: after 3 iterations of
the movement.

Fig. 9. Task space trajectory of the tip of the L shaped tool during the
test movement, after motor babbling was performed first without tool, then
with the stick tool, then without tool, and then with the L shaped tool. On
the left: using IMLE. On the right: using LWPR.

Fig. 10. Task space trajectory of the tip of the L shaped tool during the
test movement, after motor babbling was performed first without tool, then
with the stick tool, then without tool, then with the L shaped tool, and then
again without tool. On the left: using IMLE. On the right: using LWPR.

system under dynamically switching contexts, due to tool
changes. Differently from previous works in the literature,
no assumptions are made about the kinematic properties of
the tool. Also, no information is given to the robot about the
current tool being used, or when a change or removal of the
tool is performed. Moreover, the number of different contexts
represented by the model doesn’t need to be decided a priori,
but it is automatically determined by the learning algorithm
based on the training samples. Simulation results show the
effectiveness of the proposed strategy: after acquiring some
training data through autonomous exploration, the robot can

easily switch from one tool to another without degradation
in the control performance, and can cope with new tools
being dynamical included during the control phase. In this
work, learning is performed both during motor babbling and
control; however, the motor babbling part can be limited or
eliminated due to the online nature of IMLE, hence leading
to a complete goal-directed exploration, as proposed in [18].

REFERENCES

[1] J. Peters and S. Schaal, “Learning Operational Space Control,”
Robotics: Science and Systems (RSS 2006), 2006.

[2] O. Sigaud, C. Salan, and V. Padois, “On-line regression algorithms
for learning mechanical models of robots: A survey,” Robotics and
Autonomous Systems, no. 59(12), pp. 1115–1129, 2011.

[3] D. Nguyen-Tuong and J. Peters, “Local gaussian process regression
for real-time model-based robot control,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2008, pp. 380–
385.

[4] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental Online
Learning in High Dimensions,” Neural Computation, vol. 17, no. 12,
pp. 2602–2634, 2005.

[5] K. Narendra and J. Balakrishnan, “Adaptive control using multiple
models,” IEEE Transactions on Automatic Control, vol. 42, no. 2, pp.
171–187, 1997.

[6] M. Haruno, D. Wolpert, and M. Kawato, “Mosaic model for sensori-
motor learning and control,” Neural Computation, vol. 13, no. 10, pp.
2201–2220, 2001.

[7] G. Petkos and S. Vijayakumar, “Context estimation and learning
control through latent variable extraction: From discrete to contin-
uous contexts,” in IEEE International Conference on Robotics and
Automation (ICRA), 2007, pp. 2117–2123.

[8] C. Nabeshima, Y. Kuniyoshi, and M. Lungarella, “Adaptive body
schema for robotic tool-use,” Advanced Robotics, no. 20(10), pp.
1105–1126, 2006.

[9] M. Rolf, J. J. Steil, and M. Gienger, “Learning flexible full body
kinematics for humanoid tool use,” in Int. Symp. Learning and
Adaptive Behavior in Robotic Systems, 2010.

[10] B. Damas and J. Santos-Victor, “An Online Algorithm for Simul-
taneously Learning Forward and Inverse Kinematics,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2012.

[11] L. Xu, M. Jordan, and G. Hinton, “An Alternative Model for Mixtures
of Experts,” Advances in Neural Information Processing Systems, pp.
633–640, 1995.

[12] D. Grollman and O. Jenkins, “Incremental learning of subtasks from
unsegmented demonstration,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2010, pp. 261–266.

[13] A. Liégeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” Transactions on System, Man and
Cybernetics, no. 7, pp. 868–871, 1977.

[14] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control,” Transactions of
the ASME Journal of Dynamic Systems, Measurement and Control,
no. 108, pp. 163–171, 1986.

[15] C. Salaun, V. Padois, and O. Sigaud, “Control of reundant robots
using learned models: an operational space control approach,” in
International Conference on Intelligent Robots and Systems (IROS),
St. Luis, USA, October, 11-15 2009, pp. 878–885.

[16] V. Tikhanoff, P. Fitzpatrick, G. Metta, L. Natale, F. Nori, and A. Can-
gelosi, “An open source simulator for cognitive robotics research:
The prototype of the icub humanoid robot simulator,” in Workshop
on Performance Metrics for Intelligent Systems, National Institute of
Standards and Technology, Washington DC, August 19-21 2008.

[17] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: yet another robot plat-
form,” International Journal on Advanced Robotics Systems, March
2006, special Issue on Software Development and Integration in
Robotics.

[18] L. Jamone, L. Natale, K. Hashimoto, G. Sandini, and A. Takanishi,
“Learning task space control through goal directed exploration,” in
International Conference on Robotics and Biomimetics. Phuket,
Thailand: IEEE-RAS, 2011.

