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Lisboa, Portugal

Marco Cristani†, Alexandre Bernardino‡, Vittorio Murino†

†Pattern Analysis & Computer Vision
Istituto Italiano di Tecnologia

Genova - Italy

Abstract

Person re-identification is probably the open challenge
for low-level video surveillance in the presence of a camera
network with non-overlapped fields of view. A large num-
ber of direct approaches has emerged in the last five years,
often proposing novel visual features specifically designed
to highlight the most discriminant aspects of people, which
are invariant to pose, scale and illumination. On the other
hand, learning-based methods are usually based on sim-
pler features, and are trained on pairs of cameras to dis-
criminate between individuals. In this paper, we present a
method that joins these two ideas: given an arbitrary state-
of-the-art set of features, no matter their number, dimen-
sionality or descriptor, the proposed multi-class learning
approach learns how to fuse them, ensuring that the fea-
tures agree on the classification result. The approach con-
sists of a semi-supervised multi-feature learning strategy,
that requires at least a single image per person as training
data. To validate our approach, we present results on differ-
ent datasets, using several heterogeneous features, that set
a new level of performance in the person re-identification
problem.

1. Introduction

Re-identification is considered one of the fundamen-
tal building blocks of any multi-camera automated video-
surveillance system. In the presence of a wide-area camera
network with non-overlapped fields of view (as in the case
of airports, stadiums, train stations, etc.), it allows the as-
sociation of different instances of the same person across
different locations and times.

The most important family of re-identification ap-
proaches, to which the proposed approach belongs, is called
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Figure 1. Overview of the proposed method. The features of each
individual are extracted from labeled and unlabeled images. Then,
kernels are computed for each feature and finally the multi-feature
classifier is trained.

appearance-based, since it considers solely the visual as-
pect of people. Appearance-based methods can be further
partitioned in two groups: direct and learning-based. Direct
approaches focus primarily on designing effective descrip-
tors which are invariant to pose, illumination, and scale, by
exploiting the morphological aspects of humans and their
peculiar characteristics. In particular, body symmetries and
textural properties seem to be the most effective cues to dis-
tinguish people [7, 8, 12, 11], along with the chromatic dis-
tribution. The idea of these approaches is to compute dis-
tances among gallery and probe subjects, where a specific
similarity measure has to be designed for each cue. The dis-
tances are minimized to establish matches among probe and
gallery subjects. Multiple features are empirically merged
to enrich the signature of a person by a weighted aver-
age of the single distances and/or their concatenation (e.g.,
[11, 19]).

At the other extreme, learning-based methods investigate
the aspects which are kept across different fields of view
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and which differentiate people the most. Specifically, bi-
nary classifiers (e.g., [3, 26]) are usually trained on pairs of
instances of the same person (positive class) and pairs of
different subjects (negative class). This setup is computa-
tionally demanding in real scenarios, because it requires a
training set for each pair of cameras, composed by at least
two images per person (one for each camera).

In this paper, we propose a learning-based solution that
synthesizes the best aspects of both worlds : 1) it allows the
exploitation of multiple features independently of their na-
ture and, at the same time 2) it does not require training a
classifier for each pair of cameras. Our approach casts re-
identification as a semi-supervised multi-class recognition
problem, where each class corresponds to the identity of one
individual. In particular, we exploit the general framework
of multi-view (multi-feature1 here) learning with manifold
regularization in vector-valued Reproducing Kernel Hilbert
Spaces (RKHS), recently proposed in [23]. In this setting,
each feature is associated with a component of a vector-
valued function in an RKHS. Unlike multi-kernel learning
[4], all components of a function are forced to map in the
same fashion, i.e., to distinguish in a coherent way the dif-
ferent individuals. The desired final output is given by their
combination, in a form to be made precise below, which is
a fusion mechanism joining together the different features.

As depicted in Fig. 1, the proposed approach trains a
classifier from a labeled (gallery) set of P different individ-
uals, exploiting the structure of unlabeled data that can be
the probe set or images acquired during tracking. In other
words, it does not require to have inter-camera image pairs
of the same person, but only a single labeled image per per-
son. This makes our approach truly applicable in real sce-
narios. In general, unlabeled data can be any acquired im-
age, such as individuals that are not in the gallery set.

The proposed method is compared with several state-
of-the-art approaches on several challenging benchmarks.
In all of the experiments, we outperform other compet-
ing methods, thereby demonstrating the validity of our ap-
proach, and encouraging further experiments with novel
cues.

The remainder of the paper is organized as follows. In
Sec. 2, we briefly review the related literature and our con-
tribution with respect to the state of the art. Sec. 3 fully de-
tails our method, along with the features considered in this
work. Experiments are then reported in Sec. 4, and, finally,
conclusions and future perspectives are given in Sec. 5.

2. Related Work

Following the taxonomy introduced in [11] , appearance-
based techniques can be divided into learning-based and

1We prefer to use the term multi-feature instead, because views mean
different images of the same person in the context of re-identification.

direct methods and into single-shot and multi-shot ap-
proaches.

Learning-based techniques are characterized by the use
of a training dataset of different individuals where the fea-
tures and/or the policy for combining them are analyzed to
ensure high re-identification accuracy. The underlying as-
sumption is that the knowledge extracted from the training
set generalizes to unseen samples. Binary Support Vec-
tor Machines (SVM) [3], multi-class SVM [24], nearest
neighbor classifier [20], partial least square reduction [28],
boosting [6, 17], distance learning [5, 18, 32], descriptor
learning [12], and ensemble RankSVM [26] have been cus-
tomized for the re-identification problem.

Direct methods do not consider any training sets. These
methods are usually focused on finding discriminant parts
of the human appearance and manually designing fea-
tures that perform very well on a particular re-identification
scenario. The framed person is typically subdivided
into horizontal stripes [13], symmetrical and asymmetri-
cal parts [11], semantic parts [14, 15], regions clustered
by color [31], concentric rings [33], or a grid of localized
patches [8]. Several features can be extracted from these
regions: color histograms or other statistics [13, 11, 15],
maximally stable color regions [11], depth features [10],
histogram of oriented gradients [28], Gabor and Schmid fil-
ters [26], interest points [16], covariance matrices [5, 9],
attributes [19] and Haar-like features [6] have been exhaus-
tively tested in the literature.

Single-shot approaches focus on associating pairs of im-
ages, each containing one instance of an individual (e.g.,
[20, 24, 26, 28]). Multi-shot methods employ multiple im-
ages of the same person as probe and/or gallery elements
(e.g., [8, 11, 14, 29, 27]). The assumption of the multi-shot
methods is that individuals are tracked so that it is possi-
ble to gather a lot of images. The hope is that the system
will obtain a set of images that vary in terms of resolution,
partial occlusions, illumination, poses, etc.

Our approach lies in the category of the single-shot
learning-based methods. It differs from the related litera-
ture for the following reasons: 1) In contrast to all other
learning-based strategies, it is able to learn the appearance
of the individuals just from one labeled sample and from
the additional unlabeled data, e.g., images gathered during
tracking. 2) It offers a principled manner to fuse together
different modalities/features, enforcing coherence among
them.

3. The Proposed Approach
The pipeline of the proposed method is depicted in

Fig. 1. The feature descriptors of each individual in the la-
beled and unlabeled sets are extracted from detected body
parts. Then, the similarity between the descriptors is com-
puted for each feature by mean of kernel matrices (see
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Figure 2. Different features represented by blocks are computed
from the detected parts {pi}4i=1.

Sec. 3.1). Multi-feature learning consists in estimating the
parameters of the model given the training set (see Sec. 3.2
and Sec. 3.3). Given a probe image, the testing phase con-
sists in computing the similarity of each descriptor with the
training samples and use the learned parameter to classify it
(see Sec. 3.3).

3.1. Descriptors and Kernels

The first step of the algorithm is to frame the human ap-
pearance in order to discard the background information
that is considered noise for re-identification. In the same
spirit of [14], the pictorial structure (PS) detector [2] is ap-
plied to the images of each individual. Then, features are
extracted from each of the four parts found by the detector
(head, torso, upper-legs and lower-legs, see Fig. 2).

Two complementary aspects of the human appearance
often used in the literature for re-identification [11, 12]
are extracted from the images: the color distribution and
the gradient patterns. For the former, the Black-Value-
Tint (BVT) histograms used in [14] and the Hue Satura-
tion Value (HSV) and Lightness color-opponent (Lab) his-
tograms are adopted. For the latter, the Local Binary Pattern
(LBP) histograms [25] and the histograms of the Maximum
Responses filter banks (MR8) [30] are used. Fig. 2 shows
the dimensionality of each feature and how they are con-
catenated to generate each feature vector.

As described in Sec. 3.3, the learning algorithm requires
computing a kernel matrix for each feature. Given the na-
ture of the features, we used the Bhattacharyya kernel to
compute similarity between samples, which usually shows
good performance when dealing with histograms. Assume
that each input vector x can be decomposed intom different
views x = (x1, . . . , xm) where xj ∈ RC is the j-th feature
descriptor. Then the Bhattacharyya kernel of the i-th feature
is defined as follows:

ki(xi, ti) = exp

(
−D(xi, ti)

(σi)
2

)
, (1)

D(xi, ti) =

√√√√1−
C∑

c=1

√
xic · tic,

where D(·, ·) is the Hellinger distance between two distri-
butions (normalized histograms), and σi is a parameter es-
timated as σi =

√
2 ·Di

med, where Di
med is the median dis-

tance of the distance matrix D(xi, ti) given each (xi, ti) in
the training set.

3.2. Multi-feature Learning

The re-identification problem is defined in the multi-
feature learning framework of [23], with their views corre-
sponding to our features, as follows. Suppose that we have
access to a training set {(xi, yi)}li=1 ∪ {xi}

u+l
i=l+1, where

xi ∈ X represents the i-th image of the individual with label
(identity) yi ∈ Y . The first set is called the labeled set with
l samples while the second is the unlabeled set with u sam-
ples, that is, where yi is not available. In re-identification,
the labeled set corresponds to the gallery set and the unla-
beled set can contain either the probe images or arbitrary
images gathered during tracking. If the unlabeled set is not
available, the method performs supervised learning.

Given that P is the number of identities in the re-
identification problem, let the output space be Y = RP .
Each output label yi ∈ Y , 1 ≤ i ≤ l, has the form
yi = (−1, . . . , 1, . . . ,−1), with 1 at the p-th location if xi
is in the p-th class.

Let the number of features be m. LetW = Ym = RPm.
Let K : X × X → RPm×Pm be a matrix-valued posi-
tive definite kernel that induces an RKHS HK of functions
f : X → W = RPm. For each function f ∈ HK ,
f(x) = (f1(x), . . . , fm(x)), where f i(x) ∈ RP is the
value corresponding to the ith feature.

The different features are fused together via a combina-
tion operator C as follows

Cf(x) =
1

m
(f1(x) + · · ·+ fm(x)) ∈ RP . (2)

In terms of the Kronecker tensor product, C is

C =
1

m
eTm ⊗ IP , (3)

where IP is the P × P identity matrix and em =
(1, . . . , 1)T ∈ Rm. Other options to merge the different
features may be adopted, but we prefer to not introduce ad-
ditional parameters that would have to be optimized during
training.

Given the training set, re-identification consists of the
following optimization problem based on the least square
loss function:

f? = argminf∈HK

1

l

l∑
i=1

||yi − Cf(xi)||2Y

+γA||f ||2HK
+ γI〈f ,M f〉Wu+l (4)



with f = (f(x1), . . . , f(xu+l)) and the regularization pa-
rameters γA > 0 and γI ≥ 0. The matrix M is defined as
M = Iu+l⊗(Mm⊗IP ), whereMm = mIm−emeTm [23].

The first term of Eq. 4 is the least square loss function
that measures the error between the final output Cf(xi) for
xi with the given output yi for each i. The main difference
with the standard least square optimization in the first term
is that this formulation combines the different features. In
particular, if each input instance x has many features, then
f(x) ∈ W represents the output values from all the fea-
tures, constructed by their corresponding hypothesis spaces.
These values are combined by the operator C to give the
final output value in Y . The second summand is the stan-
dard RKHS regularization term. The third summand, multi-
feature manifold regularization [23], performs consistency
regularization across different features.

3.3. Solution of the Minimization Problem

The solution of the general minimization problem of
Eq. 4 is reported in the following2. The problem has a
unique solution f? =

∑u+l
i=1 Kxi

ai, where the vectors
ai ∈ W are given by the following system of equations:

(C∗CJu+l
l K[x] + lγIMK[x] + lγAI)a = C∗y, (5)

where a = (a1, . . . , au+l) is a column vector inWu+l and
y = (y1, . . . , yu+l) a column vector in Yu+l. Here K[x]
denotes the (u+ l)×(u+ l) block matrix whose (i, j) block
isK(xi, xj); Ju+l

l is the block diagonal matrix of size (u+
l)×(u+l), with the first l blocks on the main diagonal being
IW and the rest being 0; C∗C is the (u+ l)× (u+ l) block
diagonal matrix, with each diagonal block being C∗C; C∗

is the (u + l) × (u + l) block diagonal matrix, with each
diagonal block being C∗.

Assume that each input x is decomposed into x =
(x1, . . . , xm) for the m different features. Define K(x, t)
as a block diagonal matrix, with the (i, i)-th block given by

K(x, t)i,i = ki(xi, ti)IP , (6)

where ki is a kernel of the i-th feature as defined in Sec. 3.1.
Define the matrix G[x] that contains all the kernels as

(G(x, t))i,i = ki(xi, ti), (7)

and G[x] as the (u+ l)× (u+ l) block matrix, where each
block (i, j) is the respective m×m matrix G(xi, xj).

Given this choice of K and M = Iu+l ⊗ (Mm ⊗ IP ),
the system of linear equations 5 is equivalent to

BA = YC , (8)

2For the derivations and the proofs of the equations contained in this
paper, we refer to the original paper [23].

where

B =

(
1

m2
(Ju+l

l ⊗ emeTm) + lγI(Iu+l ⊗Mm)

)
G[x]

+lγAI(u+l)m,

which is of size (u + l)m × (u + l)m, A is the matrix of
size (u + l)m × P such that a = vec(AT ), and YC is the
matrix of size (u+ l)m× P such that C∗y = vec(Y T

C ).
Given the matrices B and YC , solving the system of lin-

ear equations 8 with respect to A is straightforward. There-
fore, the learning method is simple to implement and is very
efficient in practice.

Evaluation on a Testing Sample. Once A is thus
computed, we need to estimate the labels/identities of the
probe images v = {v1, . . . , vt} ∈ X . First, we compute
f?(vi) for each image, and compose the matrix f?(v) =
(f?(v1), . . . , f

?(vt))
T ∈ RPmt, with

f?(vi) =

u+l∑
j=1

K(vi, xj)aj .

LetK[v,x] denote the t×(u+l) block matrix, where block
(i, j) is K(vi, xj) and similarly, let G[v,x] denote the t ×
(u+ l) block matrix, where block (i, j) is them×mmatrix
G(vi, xj). Then

f?(v) = K[v,x]a = (G[v,x]⊗IP )a = vec(ATG[v,x]T ).

In re-identification, v contains the unlabeled samples, i.e.,
v = {xi}u+l

i=l+1.
For the i-th image of the p-th individual, f?(vi) rep-

resents the vector that is as close as possible to yi =
(−1, . . . , 1, . . . ,−1), with 1 at the p-th location. The iden-
tity of the i-th image is estimated a-posteriori by taking the
index of the maximum value in the vector f?(vi).

4. Experimental Evaluation
The experiments are carried out using public datasets to

show that: 1) multi-feature learning increases the perfor-
mance when adding multiple features, and 2) the proposed
method outperforms other state-of-the-art techniques.

Datasets. We used standard challenging datasets
for re-identification: iLIDS [33], VIPeR [17] and
CAVIAR4REID [14]. iLIDS for re-identification [33] con-
tains 119 people and was built from iLIDS Multiple-Camera
Tracking Scenario. The challenges are the presence of oc-
clusions and quite large illumination changes. VIPeR [17]
contains two views of 632 pedestrians captured from dif-
ferent viewpoints. CAVIAR4REID [14] contains images of
pedestrians extracted from the CAVIAR dataset. It has a to-
tal of 72 individuals: 50 with two camera views and 22 with
one view. The individuals with one view are not considered
in our experiments as in [14].



Table 1. Results on iLIDS (left) and VIPeR (right) datasets, comparing the single-feature and multi-feature learning. Best scores in bold,
second best scores in italic.

iLIDS VIPeR
Feature r = 1 r = 5 r = 10 r = 20 nAUC

SFL

LBP 11.60 27.06 38.66 53.44 74.36
MR8 12.19 31.85 44.12 55.71 78.75
Lab 24.87 46.81 54.71 65.63 83.42
HSV 24.37 45.55 55.88 66.13 83.27
BVT 26.89 47.48 56.22 66.64 83.96

MFL

LBP+MR8 19.92 38.49 49.16 61.43 81.26
LBP+MR8+Lab 26.72 50.08 60 .17 72 .94 86 .96
LBP+MR8+Lab+HSV 29.50 50.34 58.23 71.43 86.81
LBP+MR8+Lab+HSV+BVT 30 .76 50 .59 58.74 70.42 86.44

MFL opt. LBP+MR8+Lab+HSV+BVT 31.51 51.18 62.43 74.79 88.40

r = 1 r = 5 r = 10 r = 20 nAUC
1.68 7.56 11.71 20.63 66.93
2.02 8.13 12.82 22.85 73.46
11.17 28.51 36.90 48.51 85.68
17.94 38.42 51.99 66.14 91.61
16.71 34.71 46.30 58.32 88.73
3.39 10.06 17.72 28.23 76.56
10.38 24.87 35.35 47.56 85.48
18.01 37.44 48.73 62.34 91.89
19 .59 40 .76 52 .21 66 .11 92 .34
22.53 44.40 55.92 70.70 93.75

Table 2. Results on iLIDS (top), VIPeR (middle) and
CAVIAR4REID datasets (bottom), comparing the proposed
method with the state of the art. Best scores in bold, second best
scores in italic.

iLIDS
r = 1 r = 5 r = 10 r = 20 nAUC

SDALF [11] 28.49 48.21 57.28 68.26 84.99
PS [14] 27.39 52.27 60 .92 71 .85 87 .08
[22] 25.97 43.27 55.97 67.31 83.14
[33] 24.00 43.50 54.00 66.00 −
MFL 30 .76 50.59 58.74 70.42 86.44
MFL opt. 31.51 51 .18 62.43 74.79 88.40

VIPeR
r = 1 r = 5 r = 10 r = 20 nAUC

SDALF [11] 19.87 38.89 49.36 65.72 92.24
PS [14] 21 .17 42 .66 56.90 72.82 93 .51
RDC [32] 15.66 38.42 53.86 70.09 −
[21]+RankSVM [26] 15.73 37.66 51.17 66.27 −
[21]+RDC [32] 16.14 37.72 50.98 65.95 −
MFL 19.59 40.76 52.21 66.11 92.34
MFL opt. 22.53 44.40 55 .92 70 .70 93.75

CAVIAR4REID
r = 1 r = 5 r = 10 r = 20 nAUC

SDALF [11] 6.80 25.00 44.40 65.80 68.65
PS [14] 8.60 30.80 47.80 71 .60 72.38
MFL 6.40 31 .60 48 .20 70.60 72 .61
MFL opt. 8 .20 35.20 53.20 74.00 74.39

Results. Standard metrics are used to evaluate the per-
formance of the proposed method against the state of the art:
the Cumulative Match Curve (CMC) and the normalized
Area Under the CMC (nAUC). We pay particular attention
to the first ranks of the CMCs, r = {1, 5, 10, 20}, because
they better reveal the behavior of the methods in practice.
The experiment protocol is consistent with the methods we
compare with. Each dataset was randomly split 10 times in
gallery and probe sets, and the results shows the average of
the results over the different trials. In our experiments, the
probe set is considered as unlabeled data.

We first tested the proposed re-identification method in
a Single-Feature Learning setup (SFL in Table 1), i.e. the
kernel of a single feature is used. Then, we added one fea-
ture for each experiment to evaluate the increment in per-
formance when including more features, that is the Multi-
Feature Learning (MFL) in Table 1. For these experi-

ments, the regularization parameters are empirically set to
γI = 10−5 and γA = 0.1 and the kernel parameters (σi)
were estimated as noted in Sec. 3.1. In the last experiment
(MFL opt. in Table 1), the regularization parameters along
with the kernel parameters in Eq. 1 were optimized using
the pattern search algorithm [1].

The results reported in Table 1 show the results on dif-
ferent datasets: iLIDS on the left and VIPeR on the right. It
is easy to notice that MFL is always better than the respec-
tive single-feature experiment even when considering just
two features. In fact, LBP+MR8 (sixth row) outperforms
the SFL experiments of both LBP (first row) and MR8 (sec-
ond row). The results show also that adding more features
increases the accuracy. For the VIPeR dataset, the nAUC in-
crease by 15.78 percentage points from the 2-feature to the
5-feature experiment. The best results are obtained when
the parameters are optimized (MFL opt.).

Having demonstrated that the proposed MFL method
is able to fuse different features, we now report the re-
sults comparing it to the state-of-the-art learning-based and
direct techniques proposed in last few years on different
datasets. We show in Table 2 the results related to other
re-identification techniques. MFL opt. outperforms all
the methods in terms of nAUC and almost all the reported
points of the CMC. PS is slightly better than MFL opt.
in few points: r = {10, 20} in VIPeR and r = 1 in
CAVIAR4REID. In general, MFL opt. outperforms PS
when considering the overall statistics on the CMC, such
as the nAUC.

5. Conclusions

In this work, a semi-supervised multi-feature learn-
ing framework has been proposed to deal jointly with
the appearance-based and learning-based re-identification
problem. Our solution poses re-identification as a multi-
class recognition problem in a single-shot learning setup.
An advantage of the presented technique is that it relies on
a multi-feature learning framework to properly fuse differ-
ent modalities and exploits the unlabeled data that are avail-
able during tracking. The proposed method opens many



other interesting challenges, such as how to perform on-line
learning to include new classes (individuals). Another point
that should be investigated is a more complex loss function
that considers the structure of the data and the correlation
and differences across different classes.
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