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Abstract— This paper addresses the problem of obtaining an
inertial trajectory and map, with the associated uncertainty, us-
ing the sensor-based map provided by a globally asymptotically
stable SLAM filter. An optimization problem with a closed-
form solution is formulated, and its uncertainty description is
derived resorting to perturbation theory. The combination of
the algorithm proposed in this paper with the sensor-based
SLAM filter results in a complete SLAM methodology, which
can be directly applied to unmanned aerial vehicles (UAVs).
Both simulation and preliminary experimental results, using
an instrumented quadrotor equipped with a RGB-D camera,
are included in this work to illustrate the performance of the
proposed algorithm under realistic conditions.

I. INTRODUCTION

Navigation and positioning systems are of the utmost
importance in the development of unmanned aerial vehi-
cles (UAVs). Particularly in mission scenarios where geo-
referencing is not possible, either indoors or outdoors, rela-
tive positioning systems are fundamental to accomplish any
given mission, avoid collisions, or even to maintain stability.
This paper presents an algorithm, which can be used within
the scope of simultaneous localization and mapping (SLAM)
[1], to address the problem of estimating the trajectory and
map, in a generic inertial reference frame, using only sensor-
based map information.

The authors have devised a novel dual strategy to tackle
the problem of developing an online SLAM algorithm for
unmanned aerial vehicles with global convergence properties.
This strategy encompasses 1) a sensor-based SLAM filter
which estimates the landmark map, the linear velocity and
the angular measurement bias expressed in the body-fixed
frame [2]; and 2) an Inertial Trajectory and Map (ITM)
estimation algorithm resulting from an optimization problem
with closed-form solution, which uses the sensor-based map
estimate of the SLAM filter, and provides a fully charac-
terized uncertainty approximation for this highly nonlinear
problem. This approach generalizes the dual algorithm for
the bidimensional case proposed in [3] and [4].

The framework of the sensor-based SLAM filter is com-
pletely independent of the inertial frame, as every input and
state are expressed in the body-fixed frame. Therefore, the
localization of the vehicle is trivial, corresponding to the
origin of the body-fixed frame, and the sensor-based map
is readily available. Nevertheless, most SLAM algorithms
perform the mapping and localization in an inertial reference
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frame, as many applications require the inertial map and
the trajectory of the vehicle. In the proposed dual strategy
algorithm the pose of the vehicle can be estimated by the
comparison of the sensor-based and previous inertial maps.
The problem of computing the transformation that maps two
sets of points is usually called the Procrustes Problem [5]. Its
generalization for rotation, translation and scaling has been
subject of extensive research in areas such as computer vision
applications and scan-matching, and can be traced back to
[6] and [7]. The statistical characterization of this problem
has also been the subject of study in works such as [5], [8],
and [9]. However, some rather limiting options were taken,
namely, the absence of weighting of the point sets, the use
of small rotations, or the same covariance for all landmarks.
This work proposes a methodology for obtaining the inertial
map and the pose of the vehicle corresponding to a body-
fixed map produced by a sensor-based SLAM filter, which
builds on the work presented in [4], by extending the formu-
lation of the orthogonal Procrustes problem therein to three
dimensions, and providing the uncertainty characterization
of the obtained transformation. This is achieved resorting to
perturbation theory, by considering arbitrary rotations and
translations, individual weights, and individual covariance
matrices for the landmarks of the inertial map.

The paper is organized as follows: Section II presents an
overview of the sensor-based SLAM filter that complements
this work. In Section III, the Procrustes problem is defined
as an optimization problem solved in a closed-form, and the
uncertainty of the solution is described. The ITM algorithm
is described in Section IV, from the problem formulation to
the uncertainty characterization. The simulation results are
presented in Section V and preliminary experimental results
using an instrumented quadrotor are detailed in Section VI.
Finally, concluding remarks and some directions for the
future are presented in Section VII.

Notation: The superscript I indicates a vector or matrix
expressed in the inertial frame {I}. For the sake of clarity,
when no superscript is present, the vector is expressed in the
body-fixed frame {B}. In is the identity matrix of dimension
n × n, and 0n×m is a n by m matrix filled with zeros.
If m is omitted, the matrix is square. S[a] is a special
skew-symmetric matrix, henceforth called the cross-product
matrix, as S[a]b = a × b with a,b ∈ R3. The matrix
norm of a generic matrix A is defined as the Frobenius
norm ‖A‖2 = tr

(
AAT

)
, and the determinant is denoted

as det(A). The expected value of any quantity is denoted
by the symbol 〈.〉.

II. OVERVIEW

The algorithm proposed in this paper was designed to
complement a sensor-based SLAM filter, as part of a SLAM
algorithm that provides estimates in both the body-fixed

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 4214



frame and the local inertial frame. A brief description of
the sensor-based filter is provided in this section, as an
introduction to the ITM algorithm detailed later in this paper.
This sensor-based SLAM filter was introduced in [2] and
consists of a Kalman filter for the system{

ẋ(t) = A(t,xM (t))x(t)

y(t) = xO(t)
, (1)

with
A(t,xM (t)) =

06×3 06×3 06×3 · · · 06×3

−I3 −S [p1(t)] −S [ωm(t)] · · · 03

...
...

...
. . .

...
−I3 −S [pNM

(t)] 03 · · · −S [ωm(t)]

 ,
where pi(t) ∈ R3 represents a landmark, ωm(t) ∈ R3 is the
noisy and biased angular velocity, the state x(t) is composed
by the linear velocity and the angular measurement bias as
well as with the landmark based state xM (t), all expressed
in body-fixed coordinates, and the output is composed by the
visible landmarks.

Relieving (1) of the non-visible landmarks yields a system
that is shown to be uniformly completely observable, allow-
ing the design of the globally asymptotically stable filter in
[2] that provides estimates of the sensor-based map and its
uncertainty, which are used in what follows to obtain the
inertial trajectory and map estimation algorithm proposed.

III. PROCRUSTES PROBLEM

This section addresses the extended orthogonal Procrustes
problem. An optimization problem is formulated using in-
dividual weights and a closed-form solution is found. Fur-
thermore, the uncertainty characterization of the obtained
translation and rotation is also performed.

A. Optimization Problem and Closed-form Solution
Consider the existence of two landmark sets, LA and LB ,

which contain, respectively, the landmarks expressed in an
arbitrary frame {A} and the same landmarks expressed in
some other frame {B}. Each landmark ai ∈ LA corresponds
to a landmark bi ∈ LB , with i ∈ {1, . . . , NL}, and that
correspondence is expressed by ai = Rbi + t, where the
pair (R, t) ∈ SO(3) × R3 fully defines the transformation
from frame {B} to frame {A}, as it represents the rotation
and translation from {B} to {A}. Obtaining the pair (R, t)
is the purpose of the optimization problem

(R∗, t∗) = arg min
R ∈ SO(3)

t ∈ R3

G (R, t) , (2)

where the functional G (R, t) is defined as

G (R, t) =
1

NL

∥∥∥(Y −RX− t1T
)
Σ−1/2

e

∥∥∥2

,

that is the sum of the norm of the error ei = ai−Rbi−t over
{1, . . . , NL} weighted with σ2

i > 0, i ∈ {1, . . . , NL}, which
account for the intrinsic uncertainty of each landmark pair.
Y = [a1 · · · aNL ] and X = [b1 · · · bNL ] are, respec-
tively, the concatenation of the landmark vectors expressed in
frames {A} and {B}, 1 = [1 · · · 1]

T ∈ RNL is a vector
of ones, and the weight matrix Σe is a diagonal matrix whose
entries are the weights σ2

1 , . . . , σ
2
NL

that model the landmark
uncertainty. These can be conservatively chosen as σ2

i =
λmax (Σai)+λmax (Σbi) as the true Σe is not known. This

weight matrix allows the use of the information regarding
the different degrees of uncertainty of each landmark pair.

The optimization problem here described has a closed-
form solution based on the work exposed in [6], [10] , and
[5]. The optimal translation vector is

t∗ =
1

NW
(Y −R∗X)Σ−1

e 1 = µA −R∗µB . (3)

Notice that the optimal translation is the vector that translates
the weighted centroid of the landmarks in LB µB , rotated
to frame {A} to the weighted centroid of the landmarks in
LA, µA. For computing the optimal rotation, consider the
matrix

B := XWYT

where W := Σ−1
e − 1

NW
Σ−1

e 11TΣ−1
e and NW := 1TΣ−1

e 1.
The singular value decomposition of BT ,

UDVT = svd(BT ),

is important in finding the optimal rotation that is given by
R∗ = U diag (1, 1, |U| |V|)VT . (4)

B. Uncertainty Characterization
The solution of the optimization problem now defined

involves uncertainty at the input and output level: 1) the
landmark sets used to estimate the transformation between
frames are not exact, having a non-deterministic part; and,
thus, 2) the estimated translation and rotation are also non-
deterministic. Within the scope of perturbation theory, the
error models of the known variables are defined as,

ai = a
(0)
i + ε a

(1)
i +O(ε2) (5a)

bi = b
(0)
i + ε b

(1)
i +O(ε2) (5b)

where ε is the smallness parameter and the notation O(εn)
stands for all the terms of order n and higher, the zero
order terms are deterministic, i.e, 〈c(0)

i 〉 = c
(0)
i , and the first

order terms, c
(1)
i , are assumed to be Gaussian distributed

with zero mean and covariance matrices defined by Σcij :=

〈c(1)
i c

(1)
j

T
〉. The optimal translation vector is assumed to

have an error model with a similar structure to that of (5),
t = t(0) + ε t(1) +O(ε2). (6)

Conversely, the rotation matrix from {B} to {A} is assumed
to have the special structure

R = exp (S [Ω])R(0) =
[
I + ε S [Ω] +O(ε2)

]
R(0), (7)

where Ω ∈ R3 is expected to denote the rotation error and
R(0) the true rotation matrix. With all the error models
defined, the next step is to compute the expressions that
define t(0), t(1), R(0), and Ω as well as their expected values
and covariance matrices.

1) Rotation Uncertainty: The rotation matrix obtained
through the optimization process described before belongs
to the special orthogonal group SO(3), which yields the two
constraints RTR = I and det(R) = 1. It is straightforward
to see that R(0) must belong to SO(3) and that S [Ω] is
indeed skew-symmetric, a consequence of using the error
model (7). It can also be seen that the rotation matrix R(0) is
deterministic, as it is computed using the deterministic terms
a

(0)
i and b

(0)
i , for all i ∈ {1, . . . , NL}, and thus, considered

the true rotation matrix from {B} to {A}.
The next steps describe the computation of the rotation er-

ror and its statistical properties, starting with some quantities
associated with the closed-form solution of the optimization
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problem (2). Consider the matrix that is used to compute the
estimated rotation, B. This matrix can be described in terms
of its error model, using that of matrices X and Y, which
are a generalization of (5b) and (5a). Discarding the higher
order terms in the previous expressions, it is simple to obtain
the error model for B

B = B(0) + ε B(1), (8)
with B(0) = X(0)WY(0)T , and B(1) = X(1)WY(0)T +

X(0)WY(1)T . From the proof of [6, Lemma], it is known
that the matrix BR is symmetrical, and thus, using the error
models (7) and (8) it is possible to show that both the
deterministic and uncertain parts are also symmetric. This
property is to be exploited in the determination of the rotation
error, Ω. For that purpose, apply the skew operator to the
uncertain part of BR. This leads to AS [Ω] + S [Ω]AT =
CT − C, where for simplicity of notation the matrices
A := R(0)B(0) and C := R(0)B(1) were introduced.
Computing this expression element by element, and then
rearranging the result allows to extract the underlying linear
matrix equation AΩ = c, where the matrix A ∈ R3×3 is
defined as A := [tr(A) I3 −A], and, noting that cij ∈ R
is the element on the i-th row and j-th column of C, the
vector c ∈ R3 is defined as

c := [c23 − c32 c31 − c13 c12 − c21]
T
. (9)

From the linear equation now derived it is straightforward
to obtain Ω, as long as A is invertible. The next step in
finding Ω is then to unveil the conditions for which A is
invertible. The following lemma aids in achieving that goal.

Lemma 1: Let V be an Euclidean normed vector space of
dimension n, αi ∈ V , and ki ∈ R, with i = 1, . . . , N . Then,

N∑
j=1

k2
j

N∑
i=1

‖kiαi‖2 ≥

∥∥∥∥∥
N∑
i=1

k2
iαi

∥∥∥∥∥
2

,

where the equality only applies if αi = αj ∀i, j = 1, . . . , N .
Proof: The proof is done resorting to the triangle

inequality and Young’s inequality. It is trivial and it is
omitted due to space limitations.
The following theorem addresses the conditions under which
A is invertible.

Theorem 1: Assume that b
(0)
i 6= 0 for all i ∈ LB . The

matrix A is invertible if and only if there exist at least two
non-collinear landmarks b

(0)
i and b

(0)
j .

Proof: The proof starts by rewriting matrix A as a sum
of terms involving the landmarks of both sets, as this new
form provides a better insight on its properties. The necessity
part of the theorem is proved by contradiction, negating the
conditions of the theorem and showing that the matrix cannot
be invertible. As the theorem states that there are at least two
non-collinear landmarks, its negation is twofold: 1) there is
only one landmark; or 2) there is an arbitrary number of
landmarks, all of them collinear.

Recall that A = R(0)B(0), and consider matrix A ex-
pressed as a summation, after using the relation between the
true values in analysis, a

(0)
i = R(0)b

(0)
i + t(0),

A =

NL∑
i=1

σ−2
i

[
R(0)b

(0)
i

(
R(0)b

(0)
i

)T
− 1

NW

NL∑
j=1

σ−2
j R(0)b

(0)
i

(
R(0)b

(0)
j

)T , (10)

where some algebraic manipulation was done, including
isolation of the terms with t(0). Applying the identities
aTbI3 − abT = ST [b]S [a] and tr(abT ) = aTb, the
computation of A is straightforward, yielding

A =

NL∑
i=1

σ−2
i ST

[
R(0)b

(0)
i

]
S
[
R(0)b

(0)
i

]
− 1

NW

NL∑
i,j=1

σ−2
i σ−2

j ST
[
R(0)b

(0)
j

]
S
[
R(0)b

(0)
i

]
.

Consider that there exists only one landmark. Then it is
straightforward to see that A = 03, which obviously proves
the necessity of the existence of two or more landmarks. If
A is non-singular, the only solution for

uTAu = 0, u ∈ R3, (11)

is the trivial solution u = 0. It can be shown after some
algebraic manipulation that (11) is the same as

NL∑
i=1

∥∥∥σ−1
i

(
R(0)b

(0)
i

)
× u

∥∥∥2

− 1

NW

∥∥∥∥∥
NL∑
i=1

σ−2
i

(
R(0)b

(0)
i

)
× u

∥∥∥∥∥
2

= 0. (12)

noting that uST [d∗i ]S [d∗i ]u = ‖d∗i × u‖2 and that∑
i,j d∗j · d∗i = (

∑
j d∗j ) · (

∑
i d∗i ) = ‖

∑
i d∗i ‖2, for any

arbitrary vector d∗i . Recall now Lemma 1. It is trivial to see
that it applies, showing that the left-hand member of (12)
is always greater than or equal to zero, only being zero if(
R(0)b

(0)
i

)
× u =

(
R(0)b

(0)
j

)
× u for all i, j ∈ LB and

i 6= j. This implies that the solutions of (11) are either u = 0,
b

(0)
i = 0 ∀i ∈ LB , or that all the landmarks are collinear.

Note that the second solution contradicts the assumption that
b

(0)
i 6= 0 for all i ∈ LB . Thus, if the hypothesis of the

theorem does not hold, i.e., if all the landmarks are collinear,
A is not invertible, concluding the necessity part of the proof.
On the other hand, if there are at least two non-collinear
landmarks, as the theorem states, the only solution of (11)
is u = 0, thus demonstrating the sufficiency of the condition
and concluding the proof.
With the insight provided by Theorem 1, it is now possible to
compute the statistical properties of Ω, namely its expected
value and covariance matrix. The expected value of the
rotation error is zero as it is straightforward to show that C
has zero mean. Given that Ω is a zero mean quantity, its co-
variance matrix is simply given by ΣΩ = A−1〈ccT 〉A−1T

or

ΣΩ = A−1

[
〈(C−CT )2〉 −

1

2
tr〈(C−CT )2〉 I3

]
A−1T . (13)

The process of obtaining 〈(C−CT )2〉 = 〈C2〉 − 〈CCT 〉 −
〈CTC〉+ 〈C2〉T includes expressing C as a sum of terms,
following the same reasoning of (10), and rearranging the
obtained expressions. After some computation, it is possible
to show that the three components of 〈(C−CT )2〉 are

〈CC〉 =
NL∑

i,j=1

σ−2
j

[
R(0)ΣbijR

(0)T ā
(0)
i ā

(0)
j

T

+R(0)b
(0)
i b

(0)
j

T
R(0)T 〈ā(1)

i ā
(1)
j

T
〉
]
,

4216



〈CCT 〉 =
NL∑

i,j=1

σ−2
i σ−2

j

[
R(0)ΣbijR

(0)T ā
(0)
i

T
ā

(0)
j

+R(0)b
(0)
i b

(0)
j

T
R(0)T tr〈ā(1)

i ā
(1)
j

T
〉
]
,

〈CTC〉 =
NL∑

i,j=1

σ−2
i σ−2

j

[
b

(0)
i

T
b

(0)
j 〈ā

(1)
i ā

(1)
j

T
〉

+tr(Σbij )ā
(0)
i ā

(0)
j

T
]
,

with

〈ā(1)
i ā

(1)
j

T
〉 = Σaij

+
1

N2
W

NL∑
r,s=1

σ−2
r σ−2

s Σars

− 1

NW

NL∑
r=1

σ−2
r

(
Σair + Σarj

)
,

where ā
(.)
i ∈ R3 is the deterministic or uncertain part,

depending on whether the superscript is respectively (0)
or (1), of a landmark in LA to which are subtracted
the coordinates of the weighted centroid of the set, i.e.,
ā

(.)
i := a

(.)
i − 1

NW

∑
j∈LA

σ−2
i a

(.)
j . In these computations, it

is assumed that the uncertainty of the landmarks from one
set is independent from the ones in the other. Note that, as
the true rotation R(0) is unknown, a possible approximation
is to use R∗ in these computations.

2) Translation Uncertainty: The optimal translation be-
tween frames is given by (3), and the associated error model
is assumed to be (6). Using this information along with the
error models for the landmarks in both sets, defined in (5),
it is possible to expand (3) to obtain

t(0) =
1

NW

NL∑
i=1

σ−2
i

(
a

(0)
i −R(0)b

(0)
i

)
,

and

t(1) =
1

NW

NL∑
i=1

σ−2
i

(
a

(1)
i − S [Ω]R(0)b

(0)
i − R(0)b

(1)
i

)
. (14)

It is easy to confirm that t(0) is deterministic and that t(1)

has zero mean, noting that all the non-deterministic quanti-
ties involved have zero mean. An approximate expression
for the covariance matrix may be obtained by expanding
t(1) according to (14), using the cross product property
S [a]b = −S [b]a to extract the Ω from the skew-symmetric
matrix, and neglecting the cross covariance terms between
the rotation error and the landmarks of both sets, i.e., the
terms with combinations of Ω and a

(1)
i , and Ω and b

(1)
i .

This yields

Σt ≈
1

N2
W

NL∑
i,j=1

σ−2
i σ−2

j

(
Σaij

+ R(0)ΣbijR
(0)T

+ S
[
R(0)b

(0)
i

]
ΣΩST

[
R(0)b

(0)
j

])
, (15)

where all the cross terms between landmarks of different sets
were omitted, as they are assumed to be independent.

IV. INERTIAL TRAJECTORY AND MAP ESTIMATION

This section addresses the problem of obtaining an es-
timate of the pose of the vehicle and of the inertial map,
by formulating an optimization problem with a solution that
corresponds to an estimate of the transformation between the
body-fixed frame {B} and the inertial frame {I}, yielding

the ITM algorithm here proposed. An error function is
defined and then used to construct a functional for the
optimization problem. The algorithm builds on the derivation
of the Subsection III-A and the uncertainty characterization
of III-B.

A. Formulation and Solution of the Problem
The problem of estimating the transformation between the

body-fixed and inertial frames, defined by the orientation and
position of the vehicle in frame {I}, I p̂k ∈ R3 and R̂k ∈
SO(3), respectively, is analogous to the Procrustes problem
proposed in the previous section. The optimization problem
treated in Section III assumes that the landmarks in both
sets are known before the computation of the transformation
between frames. However, the sensor-based SLAM filter only
outputs the body-fixed map, IBk

, and the inertial set IIk can
only be computed using the transformation between frames,
as the following update equation for all i ∈ {1, . . . , NM}
shows

I p̂ik = R̂kp̂ik + I p̂k. (16)

This algebraic loop may be averted if it is noticed that, as the
landmarks in IIk are static, there is also a correspondence
between I p̂ik−1

and p̂ik , i ∈ {1, . . . , NM}. This step is
of the utmost importance in the design of the algorithm,
and yields the error function Ieik = I p̂ik−1

− R̂kp̂ik −
I p̂k, that represents the error between the previous esti-
mate of the inertial landmark i ∈ IIk−1

and its sensor-
based homologous at time k, rotated and translated with
the estimated transformation. The pair

(
R̂k,

I p̂k

)
can be

obtained using the optimization problem (2), considering

the cost functional G
(
R̂k,

I p̂k

)
=

NT∑
i=1

σ−2
ik

Ieik . The ITM

algorithm uses only a subset of NT more recent landmarks
to make the algorithm more computationally efficient, while
maintaining a minimum NT for statistical consistency and
numerical robustness. The estimates of the vehicle position
and attitude are then computed using (3) and (4), respectively,
and their uncertainties are those derived in Subsection III-
B. The inertial map estimate at instant k is computed using
the update equation (16), following the computation of the
optimal translation and rotation using the sensor-based map
estimate of instant k and the inertial estimate of the previous
iteration, enabling the real-time estimation of the inertial
map.

The algorithm is initialized with the pose of the vehicle
that is known at k = 0. This yields I p̂i0 = R0p̂i0 +

Ip0 and
ΣIpij0

= R0Σpij0
RT

0 .
The work presented in this paper, including the estimates

for the vehicle pose, given by (3) and (4), and the update
equation (16), allows the real-time computation of the vehicle
trajectory and the inertial map. However, the ITM algorithm
here described assumes the knowledge of the uncertainty of
both the inertial and sensor-based landmark estimates. The
latter is directly provided by the filter in [2], but the former
is yet to be described. The scope of this section is also to
provide approximate uncertainty descriptions of the estimates
provided by this algorithm, using perturbation theory. A
similar approach for the bidimensional case is hinted in [4].

B. Inertial Map Uncertainty
The final step in the process of studying the uncertainty

description of the algorithm is computing ΣIpijk
, for all
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i, j ∈ IIk . Recall that the inertial map estimate is calculated
with the update equation (16) which can be combined with
the error models (5b), (6) and (8) to write,

I p̂ik = I p̂
(0)
k + R

(0)
k p̂

(0)
ik

+

ε
(
I p̂

(1)
k + S [Ωk]R

(0)
k p̂

(0)
ik

+ R
(0)
k p̂

(1)
ik

)
,

while ignoring second or higher order terms. Once again,
it is quite simple to confirm that I p̂

(0)
ik

is deterministic and
that I p̂

(1)
ik

has zero mean. Thus, the covariance matrix of the
position estimate may be approximated by

ΣIpijk
≈ ΣIpk

+ R
(0)
k Σpijk

R
(0)
k

T

+ S
[
R

(0)
k p̂

(0)
ik

]
ΣΩk

ST
[
R

(0)
k p̂

(0)
jk

]
+ ST

[
R

(0)
k p̂

(0)
ik

]
ΣT

IpkΩk
+ ΣIpkΩk

S
[
R

(0)
k p̂

(0)
jk

]
,

where all the cross terms between inertial and sensor-based
landmarks were omitted, as they are assumed to be zero and,
as before, the cross covariance terms between the rotation
error and the landmarks were neglected. Furthermore, the
cross covariance terms between the vehicle position and
the landmarks (both inertial and sensor-based) were also
neglected. The covariances ΣIpk

and ΣΩk
are computed

using (15) and (13), respectively. The matrix ΣIpkΩk
:=

〈I p̂(1)
k ΩT

k 〉 = 〈I p̂
(1)
k cTk 〉A

−1 denotes the cross covariance
of the translation and rotation estimates, whose columns
are related to linear combinations of 〈I p̂(1)

k clm〉, l,m ∈
{1, 2, 3} (recall the definition of c in (9)). This covariance
is approximately given by

〈I p̂(1)
k clm〉 ≈

1

NWk

NT∑
i,j=1

σ−2
ik
σ−2
jk

[
ΣIpijk

1m1T
l R

(0)
k p̂

(0)
jk

− 1

NWk

NT∑
r=1

σ−2
r ΣIpirk

1m1T
l R

(0)
k p̂

(0)
jk

− R
(0)
k Σpijk

R
(0)
k

T
1l1

T
ma

(0)
jk

]
,

where all the usual assumptions were taken into account,
1m :=

[
01×(m−1) 1 01×(3−m)

]T
, and a

(0)
ik

is the equiv-
alent of ā

(0)
i for this problem.

Remark 1: The computation of the cross-covariances is
a highly nonlinear problem where, for example, ΣIpipj

depends on itself. That is the reason why they are neglected
in this work.

Remark 2: In this procedure an inertial landmark is only
updated if the associated uncertainty decreases. Thus, in each
iteration the candidate inertial landmarks covariance matrix
is computed, and the trace of each ΣIpik

is compared to
its previous value. If the uncertainty is raised, then the old
covariance is kept and ΣIpijk+1

= 0 for all j 6= i.

V. SIMULATION RESULTS

This section provides simulation results for the perfor-
mance evaluation of the overall algorithm, which includes
the sensor-based SLAM filter described in Section II and
the inertial trajectory and map estimation algorithm pro-
posed in this paper. The simulated environment consists
of 70 landmarks spread throughout a 16m×16m×3m map,
including a closed 2m wide corridor in the outer borders
of the map. The trajectory is simply a loop through the
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Fig. 1. Error norm and 2σ bounds of the position and rotation matrix
estimates.
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Fig. 2. Error and standard-deviation of the 10 first landmarks.

(a) Full map. (b) Map detail.

Fig. 3. Estimated inertial map at t = 191 s.

corridors at half-height, with the vehicle starting on the
floor. The simulation starts with the vehicle stopped for
50 seconds, which then takes off and circles through the
map for around 230 seconds at an average speed of 0.45
m/s, making a whole loop around the corridor. The zero-
mean noise added to the angular velocity measurements is
Gaussian-distributed with a standard deviation of σωm

=
5 × 10−4 rad/s in each coordinate and the noise included
in the landmark observations is also zero-mean Gaussian
white noise with a standard deviation of σy = 10−3 m.
Figure 1 presents the norm of the estimation error and the
standard deviation of the position (Fig. 1(a)) and attitude
(Fig. 1(b)) of the vehicle. It can be seen that the position
error is kept under 10 cm and the rotation error, expressed
by
∥∥∥R̃k

∥∥∥ = arccos
(

1
2

(
tr
(
R̂k

T
Rk

)
− 1
))

, remains under
1◦. Notice the convergence of the uncertainty when the
vehicle is stopped and 5 landmarks are visible, i.e., the
observability conditions are satisfied. The estimation error
norm and the standard deviation of the first 10 landmarks is
show in Fig. 2(a) and Fig. 2(b), respectively. Note also that
the uncertainty never increases, as explained in Section IV.
Finally, the estimated trajectory and map after a complete
loop are shown in Fig. 3. The blue line is the estimated
trajectory, and the red star denotes the position of the vehicle
at the time. Figure 3(b) shows a detail of the upper-right
part of the map as seen from above, this time with the 95%
confidence bounds of the landmarks estimates, represented
by the coloured ellipsoids.

This simulation was designed to show the performance of
the algorithm as a whole, allowing the demonstration of its
convergence and consistency. In the results here presented,
the validity of the optimization-based solution found in
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Section III may be evaluated, as well as the consistency of
the uncertainty characterization derived here.

VI. PRELIMINARY EXPERIMENTAL RESULTS

The simulation results were consolidated by a preliminary
experiment at the Sensor-Based Cooperative Robotics Re-
search Laboratory - SCORE Lab of the Faculty of Science
and Technology of the University of Macau.

The experimental setup consists of an AscTec Peli-
can quadrotor, which is equipped with an Intel Atom pro-
cessor board, and into which was added a Microstrain 3DM-
GX3-25 inertial measurement unit working at 200Hz and a
Microsoft Kinect camera, at 30Hz. The experiment consisted
in moving the quadrotor inside a 6m×6m room (usable
area of 16m2) equipped with a VICON motion capture
system. An implementation of SURF [11] was employed to
detect landmarks. In the first 15 seconds the vehicle was
stopped and in the remaining time it was moved in a small
lap around the room. Figure 4 shows the comparison of
the estimation of the inertial trajectory (in red) with the
ground truth provided by the VICON, the dashed blue line.
It can be seen that the estimated trajectory follows very
closely the true trajectory of the vehicle, never being more
than 20 centimeters off, except after the first 30 seconds,
where less observations were available as it can be seen
in Fig. 6. Figure 5 compares the ground truth data with
the estimation of the yaw angle of the vehicle. Again, the
estimation follows within reasonable accuracy the ground
truth. Finally, the evolution of the number of landmarks
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Fig. 4. Time evolution of the real and estimated trajectory.
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Fig. 5. The estimated yaw against the ground truth data.
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Fig. 6. Evolution of the number of landmarks stored (in blue), the number
of landmarks used for inertial estimation (in green), and the number of
visible landmarks (in red).

involved in the algorithm is shown. The number of landmarks
in the SLAM filter state is presented in blue, the number of
landmarks used in the ITM algorithm to compute the optimal
transformation is the green dashed line, and the number of
visible landmarks in each observation instant is shown in
red. Note that, after the first 30 seconds, the refresh rate
of the observations is reduced drastically, due to technical
issues with the equipment, while the number of landmarks
observed is also small. This explains the degradation in the
estimation that occurs around that time.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented an optimization-based algorithm to
solve the orthogonal Procrustes problem, fully character-
ized uncertainty-wise, that is part of a novel algorithm
for Simultaneous Localization and Mapping. The complete
algorithm provides estimates of the landmark map and of
the attitude and position of the vehicle in both the body-
fixed and inertial frames. Building on the body-fixed map
provided by the sensor-based filter, the problem of obtaining
the inertial trajectory and map was formulated using an
orthogonal Procrustes problem approach, and a statistical
description associated with the closed form solution is also
proposed. Furthermore, the performance and consistency of
the algorithm were validated in simulation, while preliminary
experimental results, with ground truth data, showed also the
good performance of the SLAM algorithm as a whole.

Future work includes the design of an improved experi-
mental setup to further demonstrate the capabilities of the
proposed overall SLAM algorithm.
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