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Abstract— This paper presents the design, analysis, perfor-
mance evaluation, and preliminary experimental validation of a
globally asymptotically stable (GAS) filter for simultaneous lo-
calization and mapping (SLAM) with application to unmanned
aerial vehicles (UAVs). The SLAM problem is formulated in
a sensor-based framework and modified in such a way that
the system structure may be regarded as linear time-varying
for observability purposes, from which a Kalman filter with
GAS error dynamics follows naturally. The proposed solution
includes the estimation of both body-fixed linear velocity and
rate-gyro measurement biases. Both simulation results and pre-
liminary experimental results, using an instrumented quadrotor
equipped with a RGB-D camera, are included in the paper
to illustrate the performance of the algorithm under realistic
conditions.

I. INTRODUCTION

Autonomous robot missions, including surveillance, crit-
ical infrastructure inspection, and search and rescue, raise
the need for dependable navigation and relative positioning
algorithms, particularly in environments where absolute po-
sitioning systems may not be used, either because of their
absence or unreliability. These can take the form of aided
localization algorithms, that make use of known character-
istics of the environment such as maps or beacons typically
employing ranging or, more recently, vision sensors (see [1]
for an interesting view of the application of vision in robot
navigation). There is, however, a more general solution to the
problem of navigating an autonomous vehicle that does not
require a priori knowledge of the environment: simultaneous
localization and mapping (SLAM). Its importance to the
research community is evident when looking at the wide set
of solutions as diverse as EKF-SLAM, graph-based SLAM,
or particle filters. A two-part interesting and thorough survey
on SLAM techniques can be found in [2] and [3].

The algorithm proposed in this paper is a state-space
SLAM filter and it is influenced by EKF-SLAM procedures
such as [4], in which the filtering process is centered on the
vehicle. The EKF approach uses a single filter to maintain
estimates of the map and vehicle pose, as well as the cross-
covariances. Even though it was one of the first solutions to
the SLAM problem, this formulation has evidenced consis-
tency and convergence problems studied in works like [5] and
[6]. This paper proposes an alternate formulation that uses
the linear time-varying Kalman filter and achieves global
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convergence results. Aside from the vehicle-centric approach
of [4], the works of [7] and [8] are also related to the
work here presented, as vision techniques are also employed:
stereo images processed through SIFT for landmark detection
in the former, and RGB-D images ran through SURF/SIFT
algorithms in the latter.

The main contributions of this paper are the design, anal-
ysis, and validation of a novel sensor-based SLAM filter for
tridimensional (3-D) environments. It is part of an integrated
SLAM algorithm, extending the work in [9] and [10], by gen-
eralising many of its contributions. The proposed algorithm
1) has globally asymptotically stable (GAS) error dynamics;
2) resorts to the linear and angular motion kinematics, that
are exact; 3) uses the low-cost Microsoft Kinect, in opposition
to the 2-D landmark approach, which demands the use of
considerably more expensive laser range finders; 4) builds
on the well-established linear time-varying Kalman filter; and
5) explicitly estimates the rate-gyro bias.

The paper is organized as follows. Section II presents a
short description of the problem, with the definition of the
system dynamics. The observability analysis is performed
in Section III. The filter design is described in Section IV
including landmark detection, data association and loop clos-
ing procedures. Simulation results are presented in Section V
and preliminary experimental results using an instrumented
quadrotor are detailed in Section VI.

II. DESCRIPTION OF THE PROBLEM

This section presents the problem of designing a naviga-
tion system for a vehicle operating in an unknown environ-
ment. This problem is solved resorting to a novel SLAM
algorithm, where no linearization or approximation is used.
The only available sensors are a triaxial rate-gyro, and a
RGB-D camera, such as the Microsoft Kinect, which provide
angular rate measurements and RGB-D images, respectively,
from where 3-D landmarks may be extracted.

A. Nonlinear System Dynamics
Let R(t) ∈ SO(3) be the rotation matrix from the body-

fixed frame {B} to the inertial frame {I}, with Ṙ(t) =
R(t) S[ω(t)], where ω(t) ∈ R3 is the angular velocity
expressed in body-fixed coordinates and S[a] encodes the
cross-product, i.e. S[a]b = a × b. Then, the position
and velocity of a landmark expressed in the body-fixed
frame, pi(t) ∈ R3 and ṗi(t) ∈ R3, satisfy pi(t) =
RT (t)

(
Ipi(t)− Ip(t)

)
and

ṗi(t) = −v(t)− S[ω(t)] pi(t), (1)
respectively, where Ip(t) ∈ R3 represents the vehicle posi-
tion (as well as the origin of the body-fixed frame) in the
inertial frame {I} at time t, Ipi(t) ∈ R3 is the position of
landmark i ∈ {1, . . . , NM} expressed in the same frame,
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and v(t) ∈ R3 denotes the velocity of the vehicle expressed
in the body-fixed frame. Note that landmarks are assumed
to be static in the inertial frame. It is important to notice
that ω(t) is available through noisy and biased rate-gyros
measurements ωm(t) = ω(t) + bω(t) + nω(t), where the
bias bω(t) ∈ R3 is assumed constant and nω(t) ∈ R3

corresponds to the rate-gyro noise, which is assumed to be
zero-mean white Gaussian noise with standard deviation σnω

in each component, i.e., nω(t) ∼ N(0, σ2
nω

I3). Taking this
into account, and using the cross product property a× b =
−b× a, it is possible to rewrite (1) as

ṗi(t) = −v(t)− S[pi(t)] bω(t)− S[ωm(t)] pi(t). (2)

The vehicle-related variables, i.e., the linear velocity and
the angular measurement bias will constitute the vehicle
state, xV (t) :=

[
vT (t) bTω (t)

]T ∈ RnV , with simple
dynamics given by ẋV (t) = 0, which means that both
are assumed, in a deterministic setting, as constant. In the
filtering framework, the inclusion of state disturbances allows
to consider them as slowly time-varying.

It is now possible to derive the full state dynamics. For
that purpose consider the position landmark dynamics (2),
which may now be expressed as a function of the state vector,
yielding

ṗi(t) = AMVi(pi(t)) xV (t)− S[ωm(t)]pi(t),

where AMVi
(pi(t)) = [−I3 −S[pi(t)]] and In is the

identity matrix of dimension n. Finally, the NO observed,
also designated as visible, landmarks xO(t) ∈ RnO

and the NU unobserved or non-visible ones xU (t) ∈
RnU are concatenated in the landmark-based state vector,
xM (t) :=

[
xTO(t) xTU (t)

]T ∈ RnM . The two state vec-
tors here defined constitute the full state vector xF (t) =[
xTV (t) xTM (t)

]T
, with the full system dynamics reading{

ẋF (t) = AF (t,xM (t))xF (t)

y(t) = xO(t)
, (3)

with

AF (t,xM (t)) =

[
0nV

0nV ×nM

AMV (xM (t)) AM (t)

]
,

where

AMV (xM (t)) =
[
AT

MV1
(p1(t)) · · · AT

MVNM
(pNM

(t))
]T

,

AM (t) = diag (−S[ωm(t)], · · · ,−S[ωm(t)]), and 0n×m is
a n by m matrix filled with zeros and, if m is omitted, the
matrix is square. From (3) it follows that the system may
be expressed in a way similar to the usual linear dynamical
system form. However, it is obvious to conclude that the
system above is nonlinear, as the dynamics matrix depends
on the landmarks that may be visible or not.

B. Problem Statement

The problem addressed in this paper is the design of a
SLAM filter in the space of the sensors, providing a sensor-
based map and the velocity of the vehicle. The maps are
represented by tridimensional position landmarks, which may
also include up to 3 directions for each position. The pose
of the vehicle is deterministic as it simply corresponds to the
position and attitude of the body-fixed frame.

III. OBSERVABILITY ANALYSIS

Observability is of the utmost importance in any filtering
problem, and the work presented in this section aims at
analysing the observability of the dynamical system pre-
viously exposed. It is important to notice that, although
system (3) is inherently nonlinear, discarding the non-visible
landmarks xU (t) makes it possible to regard the resulting
system as linear time-varying (LTV).

Consider the new state vector x(t) =
[
xTV (t) xTO(t)

]T
,

which does not include the non-visible landmarks, for which
the resulting system dynamics can be written as{

ẋ(t) = A(t,y(t))x(t)

y(t) = Cx(t)
, (4)

where A(t,y(t)) =

[
0nV

0nV ×nO

AMVO
(y(t)) AMO

(t)

]
and C =

[0nO×nV
InO ]. Note that the matrix A(t,y(t)) depends not

only on time but also on the system output. Nevertheless,
the dependency on the system state is now absent and
the system output is known, thus, the system can be seen
as a linear time-varying system for observability analysis
purposes. According to [11, Lemma 1, Section 3], if the
observability Gramian associated with a system with a dy-
namics matrix depending on the system output is invertible,
then the system is observable. This result will be used
throughout this section. Before proceeding with this analysis
the following assumption is needed.

Assumption 1: Any two detected position landmarks are
assumed to be different and nonzero, i.e., yi(t),yj(t) 6= 0
and yi(t) 6= yj(t) for all t ≥ t0 and i, j ∈ IO, where IO
denotes the set of visible landmarks.
It is important to notice that it is physically impossible
to have two collinear visible landmarks at the same time,
because of the intrinsic characteristics of the camera: the
angle of view of the camera is always smaller than 180◦.

The following theorem states the analysis of the observ-
ability of system (4).

Theorem 1: Consider system (4) and let T := [t0, tf ] and
{t1, t2, t3} ∈ T . The system is observable on T in the sense
that, given the system output, the initial condition is uniquely
defined, if at least one of these conditions hold:

(i) There are, at least, three visible position landmarks at
the same time t1 that define a plane.

(ii) There exist two visible position landmarks in the inter-
val [t1, t2] such that at least one of the landmark sets
{p1(t1),p2(t1),p2(t2)} and {p1(t1),p2(t1),p1(t2)}
defines a plane.

(iii) There is a visible time-varying position landmark
whose coordinates, {p1(t1),p1(t2),p1(t3)}, define a
plane.
Proof: The proof follows by transforming the system

in question by means of a Lyapunov transformation [12,
Chapter 1, Section 8], and then proving that the observability
Gramian of the transformed system is non-singular.

Let T(t) be a Lyapunov transformation such that
z(t) = T(t) x(t), (5)

where T(t) = diag (InV
,Rm(t), · · · ,Rm(t)) and Rm(t) ∈

SO(3) is a rotation matrix respecting Ṙm(t) =
Rm(t)S[ωm(t)]. A Lyapunov transformation preserves the
observability properties of a system, hence it suffices to
prove that the new, transformed system is observable. This
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approach has been used successfully in the past, see [11].
The computation of the new system dynamics and output is
simple, yielding {

ż(t) = A(t,y(t))z(t)

y(t) = C(t) z(t),
(6)

with
A(t,y(t)) =

[
0nV 0nV ×nO

AMV (t,y(t)) 0nO

]
,

and
C(t) =

[
0nO×nV diag

(
RT

m(t), · · · ,RT
m(t)

)]
,

where

AMV (t,y(t)) =
[
AT

MV 1
(t,y1(t)) · · · AT

MV NO
(t,yNO

(t))
]T

,

and
AMV i(t,yi(t)) = [−Rm(t) −Rm(t)S[pi(t)]] .

Before proceeding to compute the observability Gramian
associated with (6), it is necessary to know its transition
matrix. A simple computation of z(t) as a function of z(t0)
by solving z(t) = z(t0) +

∫ t
t0
A(τ, y(τ))z(τ)dτ yields

φ(t, t0) =

[
InV

0nV ×nO

φMV (t, t0) InO

]
,

where
φMV (t, t0) =
−
∫ t
t0

Rm(σ)dσ −
∫ t
t0

Rm(σ)S [p1(σ)] dσ
...

...
−
∫ t
t0

Rm(σ)dσ −
∫ t
t0

Rm(σ)S
[
pNO

(σ)
]
dσ

 .
Finally, the observability Gramian is

W(t0, tf ) =

tf∫
t0

φT (τ, t0)CT (τ)C(τ)φ(τ, t0)dτ,

and, if W(t0, tf ) is invertible, the system (6) is observable,
in the sense that given the system input and output, the initial
condition z(t0) is uniquely defined. The next step is to prove,
by contradiction, that this is the case, i.e, by assuming that
W(t0, tf ) is singular. In that case, there exists a unit vector
c =

[
cT1 cT2 cT3 · · · cT2+NO

]T ∈ Rnx , such that,

cTW(t0, tf )c = 0. (7)
The objective now is to expand the above expression, in
order to prove that there is no unit vector c that satisfies
the equality. It is possible to see that

cTW(t0, tf )c =

tf∫
t0

‖g(τ, t0)‖2 dτ,

where g(τ, t0) and its derivative are given by
g(τ, t0) := [φMV (τ, t0) InO ] c,

and

d

dτ
g(τ, t0) =

 −Rm(τ)c1 −Rm(τ)S [p1(τ)] c2
...

−Rm(τ)c1 −Rm(τ)S
[
pNO

(τ)
]
c2

 .
In order for (7) to be true, both g(τ, t0) and d

dτ g(τ, t0) must
be zero for all τ ∈ T , which implies that c2+i = 0 for all
i ∈ IO and

I3 S [p1(τ)]
...

...
I3 S

[
pNO

(τ)
]
[c1c2

]
= 0, ∀τ ∈ T . (8)

Thus, it remains to show that, under the conditions of
Theorem 1, the only possible solution is c1 = c2 = 0.
Consider then the situation where there are three visible
landmarks pi(t1), i ∈ {1, 2, 3}. In this case (8) can be
rewritten as[

I3 S [p1(t1)]
03 S [p2(t1)− p1(t1)]
03 S [p3(t1)− p1(t1)]

] [
c1
c2

]
= 0. (9)

From this, it follows that either c2 = c1 = 0 or all three land-
marks form a line, which contradicts the hypothesis of the
theorem. Then, if condition (i) holds, c is not a unit vector.
In the case where any of the remaining conditions applies,
an equation similar to (9) may be constructed, this time with
the sets {p1(t1),p2(t1),p2(t2)} or {p1(t1),p2(t1),p1(t2)},
for condition (ii) and {p1(t1),p1(t2),p1(t3)} for condition
(iii). Hence, if at least one of the conditions of Theorem
1 holds, then the observability Gramian is invertible on T ,
and, using [11, Lemma 1, Section 3], it follows that (6) is
observable. Moreover, as the Lyapunov transformation (5)
preserves observability, the system (4) is also observable,
thus concluding the proof of the theorem.

Given the sufficient conditions for observability, a Kalman
Filter for the nonlinear system (3), with globally asymp-
totically stable error dynamics, can be designed following
the classical approach. The following result addresses the
equivalence between the state of the nonlinear system (4),
regarded as LTV, and that of the nominal nonlinear system
(3), when the non-visible landmarks are not considered.

Theorem 2: Consider that the conditions of Theorem 1
hold. Then,

(i) the initial state of the nonlinear system (3), discarding
the non-visible landmarks, is uniquely determined, and
is the same of the nonlinear system (4), regarded as
LTV;

(ii) a state observer with uniformly globally asymptotically
stable error dynamics for the LTV system is also a state
observer for the underlying nonlinear system, with uni-
formly globally asymptotically stable error dynamics.
Proof: The proof of the first part of the theorem is made

by comparison of the derivative of the output of the two
systems in analysis, by computing y(t) = C(t)φ(t, t0)z(t0)
and y(t) = CF

∫ t
t0

AF (xF (σ), σ)xF (σ)dσ + CFxF (t0),
where CF = [C 0nO×nU ]. It is omitted due to lack of
space.

The first part of the theorem gives insight for the proof of
the second part. An observer designed for a LTV system with
GAS error dynamics has an estimation error convergent to
zero, implying that the estimates asymptotically tend to the
true state. Therefore, if the true state of the nonlinear system
and the state of the LTV system are one and the same, the
estimation error of the state observer for the nonlinear system
converges to zero too.

Given this result, the design of a GAS observer for
the LTV system follows. This step requires that the pair
(A(t,y(t)),C) is uniformly completely observable as de-
clared in [13]. The following theorem states the conditions
under which this property is verified.
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Theorem 3: Consider system (4). The pair (A(t,y(t)),C)
is uniformly completely observable, if there exists a δ > 0
such that, for all t ≥ t0, it is possible to choose {t1, t2, t3} ∈
Tδ , Tδ = [t, t + δ], such that at least one of the following
conditions hold:

(i) There are at least three visible landmarks p1(t1),
p2(t1) and p3(t1) such that they define a plane,

(ii) There exist two visible position landmarks at
times t1 and t2 such that at least one of
the landmark sets {p1(t1),p2(t1),p2(t2)} or the
{p1(t1),p2(t1),p1(t2)} defines a plane,

(iii) There is a visible time-varying position landmark
whose coordinates, at three different instants of time
{t1, t2, t3}, define a plane.
Proof: The proof follows similar steps to those of the

proof of Theorem 1, considering uniform bounds for all t ≥
t0 and the intervals Tδ := [t, t+δ], and therefore it is omitted.
The reader is referred to a similar proof with slightly different
dynamics in [14].

IV. SLAM FILTER DESIGN

This section addresses the design of the sensor-based 3D-
SLAM filter. A discrete Kalman filter is designed, consider-
ing the sample-based/digital characteristics of both sensors
needed for this work: an IMU (or more precisely a triad of
rate-gyros) and a RGB-D camera (or other tridimensional
relative position sensor). Hence, it is important to obtain the
discrete-time version of the dynamic system under analysis.

1) Discrete dynamics: Denoting the synchronized sam-
pling period of both sensors as Ts, the discrete time steps
can be expressed as tk = kTs + t0, where k ∈ N0

and t0 is the initial time. Thus, the discretized system is
characterized by the full state xFk

:= xF (tk), the dynam-
ics matrix AFk

:= AF (tk,y(tk),xU (tk)) and the output
matrix CFk

:= CF (tk). Finally, the Euler discretization of
the system dynamics (3), including system disturbance and
measurement noise, yields{

xFk+1
= FkxFk

+ ξk
yk+1 = Hk+1xFk+1

+ θk+1
(10)

where Fk = Inx + TsAFk
and Hk+1 := CFk+1

. The
disturbance vector ξk and the measurement noise vector
θk are both zero-mean discrete white Gaussian noise, with
〈ξkξ

T
k 〉 = Ξk and 〈θkθTk 〉 = Θk, where 〈.〉 denotes

the expected value of its arguments. Note that this system
includes the non-visible landmarks, which are propagated in
open-loop.

2) Prediction Step: The prediction step uses the full sys-
tem (10) and the measurements of the rate-gyros, propagating
the state every time a reading is available. Its equations are
standard, and are therefore omitted.

3) Update Step: This step occurs every time 2-D colour
and depth images are available from the Kinect. Then, an
implementation of SURF [15] detects features in the 2-D
picture of the environment that are matched to a pointcloud
built with the depth image. This matching returns a set of
observed tridimensional landmarks in cartesian coordinates.
The SLAM filter does not know a priori if a landmark
from this set is in the current map or if it is the first
time it is seen. This is when data association takes place,
associating the measured data with the existing landmarks.
The algorithm used, the Joint Compatibility Branch and

Bound [16], performs a depth-first search only expanding
nodes when the joint associations are jointly compatible
in a probabilistic sense. Both the landmark detection and
association algorithms may be substituted by others as they
are independent from the filtering technique. The association
algorithm provides the innovation vector and its covariance
matrix, and also redefines the new sets of visible and non-
visible landmarks. The update equations are standard.

4) Loop closing: Loop closing enables the recognition
of previously visited places, allowing the reduction of the
uncertainty associated with the landmarks. The rather naive
loop closing algorithm used consists of using only a subset
of the state landmarks in the association algorithm, namely
the more recent ones Irec, and separating the full state
into three subsets, the recent, the old, Iold, and the ones
in between, Igap. This allows the duplication of landmarks
when an area is revisited. Then, periodically, the algorithm
tries to associate landmarks in Irec and Iold using an adapted
version of the association algorithm. If the number of jointly
compatible associations passes a certain predefined threshold,
a loop closure takes place and is incorporated in the filter by
means of a noise free measurement.

V. SIMULATION RESULTS

The simulated environment consists of 70 landmarks
spread throughout a 16m×16m×3m map, including a closed
2 m wide corridor in outer borders of the map. The trajectory
is simply a loop through the corridors at half-height, with the
vehicle starting on the floor.

1) SLAM filter parameters: The SLAM filter param-
eters include the usual Kalman filter parameters, as
well as time thresholds for the sets, and tuning knobs
for the loop closure and state maintenance procedures.
The output noise covariance is Θk = 10−3I3 and
the state disturbance covariance is given by Ξk =
Ts diag

(
25I3, 10

−6I3, 10
−4I3, . . . , 10

−4I3
)
10−4. The ini-

tial estimates of velocity and angular bias are set to zero.
As to the SLAM-specific parameters, the recent landmark
set is composed by landmarks seen in the last 15 s, and the
old by landmarks not seen in more than 100 s. The first
loop closure is tried at 100 s and it is triggered if at least 6
landmarks are associated. Finally, any landmark not visible
for more than 200 s is discarded.

2) Results: The simulation starts with the vehicle stopped
for 50 seconds, which then takes off and circles through the
map for around 350 seconds at an average speed of 0.45
m/s. The zero-mean noise added to the angular velocity
measurements is normal-distributed with a standard deviation
of σωm

= 5× 10−4 rad/s at each coordinate, and the noise
included in the landmark observations is also zero-mean
Gaussian white noise with a standard deviation of σy = 10−3

m.
Firstly, the Kalman filter performance can be evaluated

through Fig. 1 that depicts the evolution of 5 landmarks,
with Fig. 1(b) showing the standard deviation of each sensor-
based landmark growing to around 1m, when a loop closure
is triggered at t = 190 s and the uncertainty diminishes
considerably. In Fig. 1(a) the norm of estimation error of
those 5 landmarks is shown. The velocity estimation error
has mean under 10−3 m/s with standard deviation below
5 × 10−3 m/s, and both the mean and standard deviation
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of the estimation error of the angular measurement bias are
lower than 10−4 rad/s.

The statistics regarding the number of landmarks can be
found in Fig. 2. In blue, the number of visible landmarks.
The stems represent loop closure trials and events, and the
dashed line the minimum number of landmark associations
necessary for loop closing. In the whole simulation, the state
can contain over 90 landmarks.
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(a) Estimation error norm.
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(b) Standard deviation.

Fig. 1. Estimation error and standard deviation of the first 5 landmarks.
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Fig. 2. Evolution of the number of landmarks used in the Kalman filter (in
blue), and the number of visible landmarks (in green). Loop closure trials,
threshold and events also present.
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(a) Vehicle variables.
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(b) State landmarks.

Fig. 3. Evolution of the standard deviations of all the variables in the first
20 seconds of simulation.

Fig. 4. Picture of estimated map rotated and translated using the true
parameters.

The convergence of the standard deviation of the state
variables when the observability conditions are satisfied is
presented in Fig. 3. In these first 5 seconds of simulation,

the vehicle is immobilized on the ground, and 5 different
landmarks are visible.

Finally, the estimated map at t = 200s, 10s after a loop
closing event, rotated and translated using the true quantities
along the true trajectory is shown in Fig. 4. The coloured
ellipsoids represent the 2σ bounds of each landmark, the
red star denotes the position of the vehicle at the time, and
the small circles mark the real positions. Note that the older
landmarks have greater uncertainty, and that the landmarks
closer to the position of the vehicle (the ones more affected
by the loop closure) have low uncertainty.

This simulation was designed to allow the practical val-
idation of the consistency of the algorithm, by exposing
the vehicle to previously visited terrain after exploring new
areas, in order to trigger a loop closing. The results show
that the sensor-based map is consistent, allowing the loop to
be closed repeatedly (see Fig. 2). Moreover, the simulation
results here presented demonstrate that the uncertainty is
coherent with the estimation errors, as shown in Fig. 1.

VI. PRELIMINARY EXPERIMENTAL RESULTS

The simulation results were consolidated by a preliminary
experiment in the Sensor-Based Cooperative Robotics Re-
search Laboratory - SCORE Lab of the Faculty of Science
and Technology of the University of Macau.

The experimental setup consists of an AscTec Peli-
can quadrotor, which is equipped with an Intel Atom pro-
cessor board, and into which was added a Microstrain 3DM-
GX3-25 inertial measurement unit working at 200Hz and a
Microsoft Kinect camera, at 30Hz. The experiment consisted
in moving the quadrotor inside a 6m×6m room (usable area
of 16m2). The room was equipped with a VICON motion
capture system, which provides accurate estimates of the
position, attitude, linear and angular velocities of any vehicle
placed inside the working area with the correct markers.
Figure 5 represents the flow of information in the algorithm
used in the experimental setup. The last block named Inertial

[17]

Fig. 5. The full algorithm used in the experiments.

Trajectory and Map estimation represents the algorithm
presented in [17] that estimates the vehicle pose and the
map in the inertial frame using only the sensor-based map.

In the first 15 seconds the vehicle was stopped and in
the following it was hand-driven in a small lap around the
room. Figure 6 shows the comparison of the estimation of
the inertial trajectory, provided by the ITM algorithm with
the ground truth provided by VICON, in blue. It can be seen
that the estimated trajectory follows very closely the true
trajectory of the vehicle.

Figure 7 compares the ground truth with the estimation of
the body-fixed velocity of the vehicle. The former is obtained
by rotating the inertial estimate by the VICON system with
the rotation matrix it provides. Again, the estimates follow
the ground truth very closely, aside from the fact that the
VICON estimate is somewhat noisier.

3097



0 5 10 15 20 25 30 35

−2

0

2

x
[m

]

t [s]

 

 
SLAM
VICON

0 5 10 15 20 25 30 35

−2

0

2

y
[m

]

t [s]

 

 
SLAM
VICON

0 5 10 15 20 25 30 35

−2

0

2

z
[m

]

t [s]

 

 
SLAM
VICON

Fig. 6. Time evolution of the real and estimated trajectory
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Fig. 8. Evolution of the number of landmarks used in the Kalman filter
(in blue) and the visible (in green).

Finally, the evolution of the number of landmarks involved
in the algorithm are shown in Fig. 8. In blue, the number of
landmarks in the SLAM filter state are presented. Note the
constant number while the vehicle is stopped. The number
of visible landmarks in each instant is shown in green. Note
that just after the first 30 s the number of observation instants
is small (due to technical problems with the equipment) and
the number of visible landmarks is also very small, which
explains the degradation in the estimation that occurs around
that time.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented the design, analysis, simulation,
and preliminary experimental validation of a novel glob-
ally asymptotically stable sensor-based SLAM filter. The
framework in which all work is based is intended to filter
within the space of the sensors, thus avoiding the attitude
representation in the filter state. The main focus of this work
was the observability analysis, which provided theoretical
results in observability and, subsequently, on the convergence
of the error dynamics of the proposed nonlinear system.

Furthermore, the performance and consistency of the algo-
rithm were validated in simulation showing the convergence
of the uncertainty in every variable except the non-visible
landmarks, as well as the production of a consistent map
which allows the closure of a loop with nearly 50 meters.
Preliminary experimental results, with ground truth data,
showed also the good performance of the SLAM filter and
hinted at the good estimation of the transformation to the
inertial frame.

The complete algorithm involves two different main
blocks, the SLAM filter on one side, and an Inertial Tra-
jectory and Map Estimation algorithm on the other, using
as inputs the sensor-based estimated map [17]. Future work
may also address the inclusion of landmark directions and
the establishment of necessary conditions in the observability
analysis.
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