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Abstract— This paper addresses a filtering problem that
arises in the design of dynamic positioning systems for ships
and offshore rigs subjected to the influence of sea waves. The
vessel’s dynamic model adopted captures the sea state as an
uncertain parameter. The proposed adaptive Wave Filtering
(WF) consists of a recursive optimization procedure which
seeks to identify the dominant wave frequency (the uncertain
parameter) by minimizing an appropriate defined performance
index. The estimated dominant wave frequency is used to
identify the sea condition, based on which adaptive wave
filtering (using a Kalman filter) is performed for dynamic
positioning purposes. The adaptive WF enables the DP system
to operate in different operational conditions and hence, it
is a step forward to a so-called all-year marine DP system.
The results are experimentally verified by model testing a DP
operated ship, the Cybership III, under different sea conditions,
in a towing tank equipped with a hydraulic wave maker.

I. INTRODUCTION

The advent of offshore exploration and exploitation at an
unprecedented scale has brought about increasing interest in
the development of dynamic positioning (DP) systems for
surface vessels. As a consequence, the number of vessels
whose position is regulated by means of DP systems has in-
creased significantly during the last decades. In deep waters,
Jack-up barges and anchoring systems cannot be used eco-
nomically and therefor DP systems are also needed to keep
the position and heading of marine structures within pre-
specified excursion limits under expected weather windows.
Early DP systems were implemented using PID controllers.
In order to restrain thruster trembling caused by the wave-
induced motion components, notch filters in cascade with
low pass filters were used with the controllers. However,
notch filters restrict the performance of closed-loop systems
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Técnico (IST), University of Lisbon, Portugal. He is also an Adjunct
Scientist with the National Institute of Oceanography (NIO), Goa,
India.

∗∗∗Asgeir J. Sørensen is with the Centre for Autonomous Marine
Operations and Systems (AMOS) and Dept. of Marine Technology,
Norwegian Univ. of Science and Technology, Trondheim, Norway.

because they introduce phase lag around the crossover fre-
quency, which in turn tends to decrease phase margin. An
improvement in performance was achieved by exploiting
more advanced control techniques based on optimal control
and Kalman filtering (KF) theory, see [1]. These techniques
were later modified and extended in [2]–[9]. For a survey
of dynamic positioning control systems, see [7]–[10] and
the references therein. One of the most fruitful concepts
introduced in the course of the body of work referred
above was that of wave filtering, together with the strategy
of modeling the total vessel motion as the superposition
of low-frequency (LF) vessel motion and wave-frequency
(WF) motions. It was further recognized that in order to
reduce the mechanical wear and tear of the propulsion
system components, in small to high see states, the estimates
entering the DP control feedback loop should be filtered by
using a so-called wave filtering technique so as to prevent
excessive control activity in response to WF components.
Furthermore, only the slowly-varying disturbances should
be counterbalanced by the propulsion system, whereas the
oscillatory motion induced by the waves (1st-order wave
induced loads) should not enter the feedback control loop.
To this effect, DP control systems should be designed so as
to react to the low frequency forces on the vessel only. In
practice, position and heading measurements are corrupted
not only by sensor noise but also by colored noise caused
by wind, waves, and ocean currents. Moreover, in general
the measurements of the vessel’s velocity are not available;
thus the need for an observer to estimate the velocity from
corrupted measurements of position and heading and achieve
wave filtering and “separate” the LF and WF position and
heading estimates (see [11] for details).

In [4], WF filtering was done by exploiting the use of
KF theory under the assumption that the kinematic equa-
tions of the ship’s motion can be linearized about a set
of predefined constant yaw angles (36 operating points in
steps of 10 degrees, covering the whole heading envelope);
this is necessary when applying linear KF theory and gain
scheduling techniques. However, global exponential stability
(GES) of the complete system cannot be guaranteed. In [12],
a nonlinear observer with wave filtering capabilities and bias
estimation was designed using passivity. The sea state may
undergo large variations and therefore the observer in charge
of reconstructing the LF motion should adapt to the sea state
itself; adaptive WF and DP were introduced in [5]–[10], [12],
where adaptation to sea state change was introduced.

In this paper, inspired by previous pioneering work on DP
systems, a modified model for wave filtering, proposed in



[7]–[9], is used. Based on the adopted model we propose
the use of an adaptive wave filter coupled with a parameter
identification technique. To this effect, a KF based on an
initial value for the uncertain parameter is formed and a
performance index is defined to evaluate the performance of
the wave filter. Minimization of the performance index over
the uncertain parameter is studied and the gradient of the
performance index (with respect to the uncertain parameter)
is computed. A new estimate for the uncertain parameter
is computed and the KF is tuned for the new estimate of
the uncertain parameter accordingly. The main emphasis of
the paper is on the new parameter identification for WF;
however, for the sake of completeness, in the numerical
simulations (and practical model tests) a multivariable PID
is used to control the position of the vessel.

The structure of the paper is as follows. Section II
proposes a linear representative vessel model. Section III
introduces the proposed parameter identification technique.
It also reviews the basic structure of a Kalman wave filter.
Analytic and computational details required to implement the
proposed parameter identification technique are described in
section IV. In section V, a short description of the model
test vessel, Cybership III, and experimental results of model
tests are presented. Conclusions and suggestions for future
research are summarized in Section VI.

II. LINEAR MODEL OF THE DP VESSEL

In what follows, the vessel model that is by now standard1

is presented. See for example [7], [12]. The model admits
the realization

ξ̇W = AW (ω0)ξW + EWwW (1)
ηW = R(ψL)CW ξW (2)

ḃ = −T−1b+ Ebwb (3)
η̇L = R(ψL)ν (4)

Mν̇ +Dν = τ +RT (ψtot)b (5)
ηtot = ηL + ηW (6)
ηy = ηtot + v, (7)

where (1) and (2) capture the 1st-order wave induced motions
in surge, sway, and yaw; equation (3) represents the 1st-order
Markov process approximating the unmodelled dynamics
and the slowly varying environmental forces (in surge and
sway) and torques (in yaw) due to waves (2nd order wave
induced loads), wind, and currents. The latter are given in
earth fixed coordinates but expressed in body-axis. In the
above, ηW ∈ R3 is the vessel’s WF motion due to 1st-
order wave-induced disturbances, consisting of WF position
(xW , yW ) and WF heading ψW of the vessel; wW ∈ R3 and

1The model described by (1)-(6) has minor differences with respect to
the ones normally available in the literature. While in most of the literature
the WF components of motion are modeled in a fixed-earth frame, in this
paper the WF motion is modeled in body-frame. The reader is referred to
[7] for details and improvements of the present model.

wb ∈ R3 are zero mean Gaussian white noise vectors, and

AW =

[
03×3 I3×3

−Ω3×3 −Λ3×3

]
, EW =

[
03×1

I3×1

]
,

CW =
[
03×3 I3×3

]
,

with

Ω = diag{ω2
01, ω

2
02, ω

2
03},

Λ = diag{2ζ1ω01, 2ζ2ω02, 2ζ3ω03},
where ω0 = [ω01 ω02 ω03]

T and ζi are the Dominant Wave
Frequency (DWF) and relative damping ratio, respectively.
Matrix T = diag(Tx, Ty, Tψ) is a diagonal matrix of positive
bias time constants and Eb ∈ R3×3 is a diagonal scaling
matrix. Vector ηL ∈ R3 consists of low frequency (LF),
earth-fixed position (xL, yL) and LF heading ψL of the
vessel relative to an earth-fixed frame, ν ∈ R3 represents
the velocity vector decomposed in a vessel-fixed reference,
and R(ψL) is the standard orthogonal yaw angle rotation
matrix (see [11] for complete details). Equation (5) describes
the vessels’s LF motion at low speed (see [11]), where
M ∈ R3×3 is the generalized system inertia matrix including
zero frequency added mass components, D ∈ R3×3 is the
linear damping matrix, and τ ∈ R3 is a control vector
of generalized forces generated by the propulsion system,
that is, the main propellers aft of the ship and thrusters
which can produce surge and sway forces as well as a
yaw moment. Vector ηtot ∈ R3 describes the vessel’s total
motion, consisting of total position (xtot, ytot) and total
heading ψtot of the vessel. Finally, (7) represents the position
and heading measurement equation, with v ∈ R3 a zero-
mean Gaussian white measurement noise.

From (1)-(6), using practical assumptions, a linear model
with parametric uncertainty was obtained in [8] as follows:

ξ̇W = AW (ω0)ξW + EWwW (8)

ηbW = CW ξW (9)

ḃp = −T−1bp + wfb (10)
η̇pL = ν (11)

Mν̇ +Dν = τ + bp (12)

ηfy = ηpL + ηbW (13)

where ηbW are WF components of motion in the body-
coordinate axis, wfb and ηfy are a new modified disturbance
and a modified measurement defined by wfb = RT (ψy)Ebwb
and ηfy = RT (ψy)ηy , respectively, ω0 is parametric uncer-
tainty, and matrix S is given by

S =

 0 1 0
−1 0 0
0 0 0

 .
The equations describing the kinematics and the dynamics
of the vessel can be represented in the following standard
form for multiple-input-multiple-output (MIMO) linear plant
models:

ẋ(t) = A(ω0)x(t) +Bu(t) +Gw(t), (14a)
y(t) = Cx(t) + v(t), (14b)



where x(t) = [ξW
T bpT ηpL

T
νT ]T ∈ R15 denotes the state

of the system, u(t) =M−1τ ∈ R3 its control input, y(t) =
ηfy ∈ R3 its measured noisy output, w(t) = [wW

Twfb
T
]T ∈

R6 an input plant disturbance that cannot be measured, and
v(t) ∈ R3 is the measurement noise. The equations in (14)
are simply a compact way of presenting equations in (8)-(13);
A(ω0), B, G and C are defined in the obvious manner. Table
I shows the definition of the sea conditions characterized
by the DWF. The sea conditions are associated with the
particular model of offshore supply vessel that is used in our
study. We assume that DWF lies in the interval [0.39 1.8]1

TABLE I
DEFINITION OF SEA STATES FROM [13]

Sea States DWF Significant Wave Height
ω0 (rad/s) Hs (m)

Calm Seas > 1.11 < 0.1
Moderate Seas [0.74 1.11] [0.1 1.69]

High Seas [0.53 0.74] [1.69 6.0]
Extreme Seas < 0.53 > 6.0

that covers calm, moderate, high and extreme sea conditions.

III. PROBLEM FORMULATION

This section introduces a class of adaptive observers for
uncertain linear dynamic systems in a stochastic setting.
Consider the discretized plant model2

x(t+ 1) = Aθx(t) +Bu(t) +Gθw(t), (15a)
y(t) = Cθx(t) + v(t), (15b)

where x(t) ∈ Rn denotes the state of the system, u(t) ∈ Rm
its control input, y(t) ∈ Rq its measured noisy output, w(t) ∈
Rr an input plant disturbance that can not be measured,
and v(t) ∈ Rq is the measurement noise. Vectors w(t) and
v(t) are zero-mean, mutually independent white Gaussian
sequences, with covariances cov[w(t);w(τ)] = Qδtτ and
cov[v(t); v(τ)] = Rδtτ , respectively. The initial condition
x(0) of (15a) is a Gaussian random vector with mean and co-
variance given by E{x(0)} = 0 and E{x(0)xT (0)} = P (0).
The matrices Aθ, Gθ, and Cθ contain unknown constant
parameters denoted by vector θ ∈ Θ ⊂ Rl where Θ is some
compact set. If θ were fixed and known, the standard KF
[14] would provide optimal estimation of the states, x̂(t),
given by

x̂θ(t+ 1|t) =
[
Aθ −AθHθ(t)Cθ

]
x̂θ(t|t− 1) +Bu(t)

+AθHθ(t)y(t) (16a)

Hθ(t) = Σθ(t|t− 1)CTθ S
−1
θ (t) (16b)

Sθ(t) = CθΣθ(t|t− 1)CTθ +R (16c)

Σθ(t+ 1|t) = AθΣθ(t|t− 1)ATθ +GθQG
T
θ

−AθHθ(t)Sθ(t)H
T
θ (t)A

T
θ , (16d)

1We use the same interval for DWF in surge, sway and yaw.
2In order to consider more general class of LTI systems, in this section,

the plant model (14) is changed to (15) so that parametric uncertainties enter
the G and C matrices.

where [Aθ, Gθ] and [Aθ, Cθ] are assumed to be stabilizable
and detectable. In practice, due to unmodelled dynamics,
uncertain parameter values, etc., the actual system and the
model used for the KF are not identical. For these reasons,
it is necessary to evaluate the performance of a mismatched
KF, (a KF designed based on a model that is different from
the actual system). Let us consider the case where the exact
value of the uncertain parameter is not known and a KF with
parametric mismatch, designed assuming θ = θi, is used for
the estimation. In [15] a steady state performance index is
introduced which computes the performance degradation of
KF in presence of parametric mismatch, between the true
model and the KF, as

Γθ⋆θn ≡ +
1

2
log(|Sθn |) +

1

2
tr(S−1

θn
Sθ⋆
θn
), (17)

where θ⋆ is the exact value of uncertain parameter in the
plant and θn is the nominal value of the uncertain parameter
used in designing the KF. Denote by Sθ the steady state
covariance matrix of residuals in the KF (limt→∞ Sθn(t))
given by (16c) as t → ∞; let Sθ⋆

θn
be the steady state

covariance of the residuals in KF tuned for θn while the
true parameter in the plant is θ⋆. The performance index
introduced in (17) is closely related to Baram Proximity
Measure (BPM), see [15], [16] for more information on the
BPM. The BPM is used to design a bank of KFs in multiple
model adaptive estimation and control methodologies [9],
[15]. In [17], a new time varying performance index is
presented to assess the estimation performance of the KFs
in multiple model robust adaptive control methodology, as
follows:

µθ(t) :=
1

2

τ=t∑
τ=1

[
ỹTθ (τ)S

−1
θ (τ)ỹθ(τ) + log |Sθ(τ)|

]
, (18)

where ỹθ(t) = y(t) − Cθx̂θ(t|t − 1) is the output estima-
tion error (residual). It is further shown in [17] that µθ(t)
converges to the BPM as t→ ∞.

In the current paper we seek to identify the uncertain
parameter in the plant by minimizing µθ(t) over θ ∈ Θ.
To this effect, a KF is designed based on a model of
plant assuming θ = θ0. The residuals of the KF are used
to compute µθ(t)|θ=θ0

. Then, the derivative of µθ(t) with
respect to θ is computed (for θ = θ0) and a new estimate of
θ̂ (denoted by θ1) is computed as

θn = θn−1 − γ∇µθ(t)|θ=θn−1
, (n = 1, 2, . . .) (19)

where γ is the minimization step size and ∇µθ(t)|θ=θn−1

is the gradient of µθ with respect to θ, evaluated at θ =
θn−1. Then, a new KF is designed based on a model of
plant assuming θ = θn. We should highlight that (19) is
updated with a slower rate than the sampling time of the
system. The update rate in (19) depends on the effective
convergence time of the dynamic Riccati equation (given in
16) and the dynamics of the system. In the next section we
consider the problem of computing ∇µθ(t).



IV. GRADIENT EVALUATION

Defining g(θ, τ) = 1
2

[
ỹTθ (τ)S

−1
θ (τ)ỹθ(τ) + log |Sθ(τ)|

]
,

(18) is given by

µθ(t) =

τ=t∑
τ=1

g(θ, τ). (20)

In order to evaluate ∇µθ(t), we first study ∇g(θ, t) (the
gradient of g(θ, t) with respect to θ). is straightforward to
show that

∂g(θ, t)

∂θi
=

1

2

∂[ỹTθ (t)S
−1
θ (t)ỹθ(t)]

∂θi
+

1

2

∂ log |Sθ(t)|
∂θi

, (21)

where θi is the ith component of θ. The first term in the
right hand side of (21) yields

1

2

∂[ỹTθ (t)S
−1
θ (t)ỹθ(t)]

∂θi
= ỹTθ (t)S

−1
θ (t)

∂ỹθ(t)

∂θi

− 1

2
ỹTθ (t)S

−1
θ (t)

∂Sθ(t)

∂θi
S−1
θ (t)ỹθ(t).

(22)

The second term in the right hand side of (21) can be written
as

1

2

∂ log |Sθ(t)|
∂θi

=
1

2
trace[S−1

θ (t)
∂Sθ(t)

∂θi
]. (23)

We now need to compute ∂ỹθ(t)
∂θi

and ∂Sθ(t)
∂θi

in order to
evaluate ∇µθ(t). Using (16) it follows that

∂ỹθ(t)

∂θi
=

∂

∂θi

[
y(t)− Cθx̂θ(t|t− 1)

]
= −∂Cθ

∂θi
x̂θ(t|t− 1)− Cθ

∂x̂θ(t|t− 1)

∂θi
. (24)

The term ∂x̂θ(t|t−1)
∂θi

is called the Kalman filter sensitivity
equation [14], [18]. Using (16a), it can be shown that

∂x̂θ(t+ 1|t)
∂θi

= Aclθ (t)
∂x̂θ(t|t− 1)

∂θi
+ϖi

θ(t), (25)

where Aclθ (t) = Aθ −AθHθ(t)Cθ and

ϖi
θ(t) =

∂Aclθ (t)

∂θi
x̂θ(t|t− 1) +

∂[AθHθ(t)]

∂θi
y(t). (26)

All terms in equation (26) are computed and available to
propagate the Kalman filter sensitivity equation, given by
(25), except the term ∂Hθ(t)

∂θi
. Computing the derivatives of

both sides of (16b) with respect to θi we obtain

∂Hθ(t)

∂θi
=
∂Σθ(t|t− 1)

∂θi
CTθ S

−1
θ (t) + Σθ(t|t− 1)

∂CTθ
∂θi

S−1
θ (t)

− Σθ(t|t− 1)CTθ S
−1
θ (t)

∂Sθ(t)

∂θi
S−1
θ (t). (27)

Similarly, differentiating both sides of (16c) with respect to
θi yields

∂Sθ(t)

∂θi
= Cθ

∂Σθ(t|t− 1)

∂θi
CTθ

+
∂Cθ
∂θi

Σθ(t|t− 1)CTθ + CθΣθ(t|t− 1)
∂CTθ
∂θi

(28)

At this stage, only the term ∂Σθ(t|t−1)
∂θi

remains to be com-
puted in order to complete this section. Using (16d) it follows
that

∂Σθ(t+ 1|t)
∂θi

=
∂Aθ
∂θi

Σθ(t|t− 1)ATθ +AθΣθ(t|t− 1)
∂ATθ
∂θi

+Aθ
∂Σθ(t|t− 1)

∂θi
ATθ − ∂Aθ

∂θi
Hθ(t)Sθ(t)H

T
θ (t)A

T
θ

+
∂GθQG

T
θ

∂θi
−AθHθ(t)Sθ(t)H

T
θ (t)

∂ATθ
∂θi

−AθHθ(t)
∂Sθ(t)

∂θi
HT
θ (t)A

T
θ

−Aθ
∂Hθ(t)

∂θi
Sθ(t)H

T
θ (t)A

T
θ

−AθHθ(t)Sθ(t)
∂HT

θ (t)

∂θi
ATθ , (29)

Recalling from (16b) that Hθ(t)Sθ(t) = Σθ(t|t− 1)CTθ and
Sθ(t)H

T
θ (t) = CθΣθ(t|t− 1), and using (27) for ∂Hθ(t)

∂θi
we

obtain

∂Σθ(t+ 1|t)
∂θi

=
∂Aθ
∂θi

Σθ(t|t− 1)ATθ +AθΣθ(t|t− 1)
∂ATθ
∂θi

+Aθ
∂Σθ(t|t− 1)

∂θi
ATθ − ∂Aθ

∂θi
Σθ(t|t− 1)CTθ H

T
θ (t)A

T
θ

+
∂GθQG

T
θ

∂θi
−AθHθ(t)CθΣθ(t|t− 1)

∂ATθ
∂θi

−AθHθ(t)
∂Sθ(t)

∂θi
HT
θ (t)A

T
θ

−Aθ
∂Σθ(t|t− 1)

∂θi
CTθ H

T
θ (t)A

T
θ

−AθΣθ(t|t− 1)
∂CTθ
∂θi

HT
θ (t)A

T
θ

+AθΣθ(t|t− 1)CTθ S
−1
θ (t)

∂Sθ(t)

∂θi
HT
θ (t)A

T
θ

−AθHθ(t)Cθ
∂Σθ(t|t− 1)

∂θi
ATθ ,

−AθHθ(t)
∂Cθ
∂θi

Σθ(t|t− 1)ATθ ,

+AθHθ(t)
∂Sθ(t)

∂θi
S−1
θ (t)CθΣθ(t|t− 1)ATθ . (30)

Substituting for ∂Sθ(t)
∂θi

from (28) and reordering the terms,
we obtain the dynamic Riccati sensitivity equations [18], [19]
as

∂Σθ(t+ 1|t)
∂θi

= Aclθ (t)
∂Σθ(t|t− 1)

∂θi
Aclθ

T
(t)+φiθ(t)+φ

i
θ

T
(t),

(31)
where

φiθ(t) =
∂Aθ
∂θi

Σθ(t|t− 1)Aclθ
T
(t) +

∂Gθ
∂θi

QGTθ

−AθHθ(t)
∂Cθ
∂θi

Σθ(t|t− 1)Aclθ
T
(t). (32)

To summarize this section we provide, in the following, a
procedure by which ∇µθ(t) is computed. At each sampling
time the following algorithm enables us to compute ∇g(θ, t).



Then, by using (20) we can evaluate ∇µθ(t).
Algorithm
Input Data: Aθ, Gθ, Cθ, Hθ(t), Sθ(t), Σθ(t|t−1), Q, y(t),
and x̂θ(t|t− 1).
Output Data: ∇g(θ, t).
Process:
For each component of θ,

1) Compute φiθ(t) in (32) and propagate (31).

2) Compute ∂Sθ(t)
∂θi

using (28).

3) Compute ∂Hθ(t)
∂θi

using (27).

4) Compute ϖi
θ(t) in (26) and propagate (25).

5) Compute ∂ỹθ(t)
∂θi

using (24).

6) Compute ∂g(θ,t)
∂θi

using (21), (22), and (23).

V. EXPERIMENTAL RESULTS
The proposed adaptive wave filter was tested using the

model vessel Cybership III, at the Marine Cybernetic Labo-
ratory (MCLab) of the Department of Marine Technology
at the Norwegian University of Science and Technology
(NTNU). The performance of the parameter identification
methodology was evaluated under different sea conditions
produced by a hydraulic wave maker. The DWF was identi-
fied using the proposed methodology and the wave filtering
was performed using the Kalman wave filter tuned according
to the identified DWF.

A. Overview of the CybershipIII
CyberShip III is a 1:30 scaled model of an offshore vessel

operating in the North Sea. Fig. 1 shows the vessel at the
basin in the MCLab and table II presents the main parameters
of the model and full scale vessel.

TABLE II
MODEL MAIN PARAMETERS

Model Full Scale
Overall Length 2.275 m 68.28 m
Length between
perpendiculars 1.971 m 59.13 m

Breadth 0.437 m 13.11 m
Breadth at water line 0.437 m 13.11 m

Draught 0.153 m 4.59 m
Draught front perpendicular 0.153 m 4.59 m
Draught aft. perpendicular 0.153 m 4.59 m

Depth to main deck 0.203 m 6.10 m
Weight (hull) 17.5 kg Unknown

Weight (normal load) 74.2 kg 22.62 tons
Longitudal center of gravity 100 cm 30 m

Vertical center of gravity 19.56 cm 5.87 m
Propulsion motors max

shaft power (6% gear loss) 81 W 3200 HP
Tunnel thruster max

shaft power (6% gear loss) 27 W 550 HP
Maximum Speed Unknown 11 knots

Cybership III is equipped with two pods located at the
aft. A tunnel thruster and an azimuth thruster are installed
in the bow.3 It has a mass of m = 75 (kg), length of

3For technical reasons, in this experiment the tunnel thruster was deacti-
vated.

Fig. 1. Cybership III.

L = 2.27 (m) and breadth of B = 0.4 (m). The main
parameters of the model are presented in Table II. The
internal hardware architecture is controlled by an onboard
computer which can communicate with onshore PC through
a WLAN. The PC onboard the ship uses the QNX real-time
operating system (target PC). The parameter identification,
adaptive wave filter, and control systems described before
were developed on a PC in the control room (host PC) under
Simulink/Opal and downloaded to the target PC using auto-
matic C-code generation and wireless Ethernet. The motion
capture unit (MCU), installed in the MCLab, provides Earth-
fixed position and heading of the vessel. The MCU consists
of onshore 3-cameras mounted on the towing carriage and
a marker mounted on the vessel. The cameras emit infrared
light and receive the light reflected from a marker on the
vessel. To simulate the different sea conditions, a hydraulic
wave maker system was used. It consists of a single flap
covering the whole breadth of the basin, and a computer
controlled motor, moving a flap. The device can produce
regular and irregular waves with different spectra. We have
used the JONSWAP spectrum to simulate the different sea
conditions for our experiment.

Due to limited computation power of the PC onboard the
ship we implemented the proposed methodology using a
steady state KF. In this case, Hθ and Sθ are independent
of time and the equations above simplify notably and can
be implemented easier on computers with limited computa-
tion power. Using a steady state KF, the recursive Riccati
sensitivity equations in (31) simplify to a discrete Lyapunov
equation given by

∂Σθ
∂θi

= Aclθ
∂Σθ
∂θi

Aclθ
T
+ φiθ + φiθ

T
. (33)

Moreover, we assumed that the DWF in surge, sway, and
heading are equal, i.e. ω01 = ω02 = ω03 = ω. During the
numerical simulations we found that the proposed parameter
identification technique is sensitive to initial value of the
uncertain parameter. To alleviate this problem, we used four
KFs designed based on four different representative values
of the uncertain parameter (uniformly distributed in the
uncertain parameter space, {0.672 , 0.954 , 1.236 , 1.518})
and the performance index of each KF (given by (18)) was
evaluated. The representative value of the KF with minimum
performance index was selected as the initial value for the
parameter identification algorithm.

Fig. 2 shows the results of an experiment where the wave
maker system simulates a moderate sea state with ω = 0.8



(rad/sec). In this experiment we updated the DWF estimation
every 25 seconds. During the first 25 seconds, four KFs
ran in parallel and at time t = 25 (sec) the KF tuned
for ω = 0.9540 (rad/sec) had the minimum performance
index value; therefore, ω = 0.954 (rad/sec) was selected
as the initial value for parameter identification. Throughout
the experiment a multivariable PID controller was used for
station keeping. The first (upper) sub-figure in Fig. 2 shows
the wave elevation profile recorded by a probe installed five
meters away from the wave maker. The second, third and
fourth sub-figures in Fig. 2 show the time evolution of the
positions and heading of the vessel. The last sub-figure in
Fig. 2 shows the estimated DWF. The final estimate of the
DWF take its value around ω = 0.86 (rad/sec) which is
different from the set value of the wave maker. Later, when
we estimated the power spectral density of time series of
wave elevation, we found that a more accurate DWF value
was ω = 0.90 (rad/sec). We suspect that the small bias in
the estimation is due to a) the simplified model of plant used
for identification, b) the assumption of equal DWFs in sure,
sway, and heading, and c) tuning of disturbance covariances
in the KFs.4
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Fig. 2. Experimental results: evolution of the wave profile, the position
and heading of the vessel, and the DWF estimation in moderate sea state.

VI. CONCLUSIONS AND FUTURE RESEARCH
This paper proposed a new technique for adaptive wave

filtering, with applications to DP. Its key contribution was
the use of a new parameter identification technique (for
estimating the sea state) in adaptive wave filtering. A nu-
merical optimization methodology was proposed to estimate
the dominant wave frequency. The estimated dominant wave
frequency was used to design an adaptive Kalman filter
for marine vessel adaptive wave filtering. The results were
experimentally verified by model testing a DP operated
ship, the Cybership III, under simulated sea condition in a
towing tank. The experimental data confirms that the method
developed holds promise for practical applications. Future
work will include the application of the method developed
to time-varying operational conditions, from calm to extreme
seas.

4We should stress that we have tuned the algorithm during a few tests
and Fig. 2 shows the final tuned system.

ACKNOWLEDGMENT
We thank our colleagues A. Pedro Aguiar, J. Hespanha and

Michael Athans for many discussions on adaptive estimation
and control. We would also like to thank T. Wahl, Øyvind
Smogeli, M. Etemaddar, E. Peymani, M. Shapouri, and B.
Ommani for their generous assistance during the model tests.

REFERENCES

[1] J. Balchen, N. Jenssen, and S. Sælid, “Dynamic positioning using
Kalman filtering and optimal control theory,” in the IFAC/IFIP Sympo-
sium On Automation in Offshore Oil Field Operation, Bergen, Norway,
1976, pp. 183–186.

[2] M. J. Grimble, R. J. Patton, and D. A. Wise, “The design of dynamic
ship positioning control systems using stochastic optimal control
theory,” Optimal Control Applications and Methods, vol. 1, pp. 167–
202, 1980.

[3] S. Sælid, N. A. Jenssen, and J. Balchen, “Design and analysis of a
dynamic positioning system based on Kalman filtering and optimal
control,” IEEE Transactions on Automatic Control, vol. 28, no. 3, pp.
331–339, 1983.

[4] A. J. Sørensen, S. I. Sagatun, and T. I. Fossen, “Design of a dynamic
positioning system using model-based control,” Journal of Control
Engineering Practice, vol. 4, no. 3, pp. 359–368, 1996.

[5] G. Torsetnes, J. Jouffroy, and T. I. Fossen, “Nonlinear dynamic
positioning of ships with gain-scheduled wave filtering,” in Proc. IEEE
Conference on Decision and Control (CDC’04), Paradise Iceland,
Bahamas, 2004.

[6] T. D. Nguyen, A. J. Sørensen, and S. T. Quek, “Design of hybrid con-
troller for dynamic positioning from calm to extreme sea conditions,”
Automatica, vol. 43, no. 5, pp. 768–785, 2007.

[7] V. Hassani, A. J. Sørensen, A. M. Pascoal, and A. P. Aguiar, “Multiple
model adaptive wave filtering for dynamic positioning of marine
vessels,” in Proc. ACC’12 - American Control Conference, Montreal,
Canada, 2012.

[8] V. Hassani, A. J. Sørensen, and A. M. Pascoal, “Robust dynamic
positioning of offshore vessels using mixed-µ synthesis, part I: De-
signing process; part II: Simulation and experimental results,” in Proc.
ACOOG 2012 - IFAC Workshop on Automatic Control in Offshore Oil
and Gas Production, Trondheim, Norway, 2012.

[9] ——, “A novel methodology for robust dynamic positioning of marine
vessels: Theory and experiments,” in Proc. ACC’13 - American
Control Conference, Washington, DC, USA, 2013.

[10] A. J. Sørensen, “A survey of dynamic positioning control systems,”
Annual Reviews in Control, vol. 35, pp. 123–136, 2011.

[11] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control. Chichester, UK: John Wiley & Sons. Ltd, 2011.

[12] T. I. Fossen and J. P. Strand, “Passive nonlinear observer design for
ships using lyapunov methods: Full-scale experiments with a supply
vessel,” Automatica, vol. 35, pp. 3–16, 1999.

[13] W. G. Price and R. E. D. Bishop, Probabilistic Theory of Ship
Dynamics. London, UK: Chapman and Hall, 1974.

[14] B. D. O. Anderson and J. B. Moore, Optimal Filtering. New Jersey,
USA: Prentice-Hall, 1979.

[15] V. Hassani, A. P. Aguiar, A. M. Pascoal, and M. Athans, “A perfor-
mance based model-set design strategy for multiple model adaptive
estimation,” in ECC’09 - European Control Conference, Budapest,
Hungary, 2009.

[16] Y. Baram and N. Sandell, “An information theoretic approach to
dynamical systems modeling and identification,” IEEE Trans. on
Automat. Contr., vol. 23, pp. 61–66, 1978.

[17] V. Hassani, J. Hespanha, M. Athans, and A. M. Pascoal, “Stability
analysis of robust multiple model adaptive control,” in Proc. of The
18th IFAC World Congress, Milan, Italy, 2011.

[18] N. R. Sandell and K. I. Yared, “Maximum likelihood identification of
state space models for linear dynamic systems,” Electronic Systems
Laboratory, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Tech. Rep. Report ESL-R-814,
1978.

[19] N. K. G. R. K. Mehra, “Computational aspects of maximum likelihood
estimation and reduction in sensitivity function calculations,” IEEE
Trans. on Automat. Contr., vol. 19, no. 6, pp. 774–783, 1974.


