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Abstract— This paper addresses the problem of state estima-

tion under parametric uncertainty of discrete lumped nonlinear

systems with application to the HIV-1 infection. We present

an estimation algorithm using a multiple-model adaptive es-

timation approach with a bank of moving horizon estimators

with decimated observations. This is motivated by its possible

applications to the HIV-1 infection where, in practice, we are

unable to observe the patient on a regular basis (non-periodic

measurements) and because the HIV-1 dynamics depends on

parameters unique to each patient (parameter uncertainty).

We show that under reasonable assumptions, the proposed

estimation algorithm is robust to parametric uncertainty and

the estimation error converges to a small neighborhood of zero.

The robustness and performance of the algorithm are illustrated

through computer simulations.

Index Terms— Moving Horizon, Estimation, Nonlinear, HIV-

1 infection, stability, decimated observations, MMAE.

I. INTRODUCTION

While current clinical practice for the treatment of HIV-1
infection relies mostly on average population models, there
is an increasing motivation to consider personalized therapy.
Progress in dynamic modeling of HIV-1 infection [17] as
well as on associated instrumentation technology based on
real-time polymerase chain reaction (PCR) [1] set the ground
for the consideration of designing therapy based on control
principles for this infectious disease [2], [3], [4], [5], [6]. In
this framework, drug dosage is computed depending on the
patient, being adjusted along time according on his/her clin-
ical state. A natural way to pursue this objective is to resort
to feedback control techniques, which in turn motivates the
problem considered here, namely the estimation of the state
associated to HIV-1 infection from measurements obtained
from blood samples.

When confronted with the problem of state estimation for
the HIV-1 dynamics we immediately face two problems: the
non-availability of measurements at every sampling instant
(referred as decimated observations) and the dependence
of the HIV-1 model to parameters that are unique to each
patient. Both these problems arise when studying almost all
dynamics associated to biomedical applications.

In addition to its intrinsic robustness properties, that makes
moving horizon estimation (MHE) adequate to solve esti-
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mation problems in the presence of unmodeled dynamics,
such as when considering biomedical applications, a major
advantage of this approach is the capacity to incorporate con-
straints [7], [8]. In [14], MHE was extended to operate under
decimated observations (DMHE). The strategy proposed in
the present paper consists in a Multiple Model Adaptive
Estimator (MMAE) with banks of DMHEs so as to tackle
the high level of parameter uncertainty typically of HIV-1
infection dynamics.

The main contribution of the paper consists, therefore,
on a new estimation algorithm using MMAE with DMHE
filters. The convergence properties of the algorithm are
presented and a simulation example of its application to HIV-
1 infection is described, as well as a comparison with existing
estimation methods.

The paper is organized as follows. Section II describes
the nonlinear model for the HIV-1 dynamics. In Section
III, we recall the Moving Horizon Estimation (MHE) with
decimated observations and describe the Multiple Model
Adaptive Estimator (MMAE) based on a bank of MHEs
with decimated observations for parameter estimation. The
convergence properties, both of the parameters and state are
presented in Section IV. In Section V we show the perfor-
mance for the HIV-1 dynamics, as well as a comparison with
a MMAE with banks of decimated Extended Kalman filters
and finally, in Section VI, we conclude the paper and make
final remarks on what could be improved in the proposed
algorithm. Due to space limitations the proofs are omitted.

II. HIV-1 MODEL

This section presents the mathematical model that de-
scribes the dynamic interactions between the healthy CD4+
cells, the infected CD4+ cells, and the free viruses. The
model adopted in this paper for the estimator design is the
following [17]






Ṫ = s− dT − e−u1βTν

Ṫ ∗ = e−u1βTν − µ2T
∗

ν̇ = e−u2kT ∗ − µ1ν

(1)

where T is the concentration of healthy T-CD4+ cells, T ∗ is
the concentration of infected cells and ν is the concentration
of free virus particles, all in units per [mm3]. The quantities
u1 and u2 are the manipulated variables related to the quan-
tities of drugs administered that model two major categories
of antiretroviral drugs: reverse transcriptase inhibitors (RTIs)
modeled by u1 and protease inhibitors (PIs) associated to
u2. The other variables, d, k, s, β, µ1 and µ2 collected in



the vector Θ = (d, k, s,β, µ1, µ2)T are constant parameters
unique to each individual. In this paper the following nominal
values were adopted [13]: d = 0.02 s−1 - Mortality rate for
healthy cells; κ = 100 s−1 - Production rate of virus by
infected cells; s = 10mm−3s−1 - Production rate of healthy
cells; β = 2.4 × 10−5 mm3s−1 - Infection rate coefficient;
µ1 = 2.4 s−1 - Elimination rate for the virus; µ2 = 0.24 s−1

- Elimination rate for infected cells;
It is important to stress that model (1) is highly nonlinear

and (with zero inputs) has two equilibrium points [13].
One equilibrium point is unstable and corresponds to the
“healthy” individual, and the second equilibrium point, that
corresponds to an infected individual, is stable, around which
the behavior is oscillatory.

To derive the estimator that will be presented in the next
section we will use the discretized system

xt+1 =




T
T ∗

ν





t+1

= φ(Tt, T
∗
t , νt, u1t , u2t ; Θ) (2)

with the following update formula given by Euler’s method

φ(T, T ∗, ν, u1, u2; Θ) =




T + ts(s− dT − e−u1βTν)
T ∗ + ts(e−u1βTν − µ2T ∗)

ν + ts(e−u2κT ∗ − µ1ν)





where ts is the time interval between two consecutive points
in the discretization.

Motivated by the current clinical practice, we consider that
we only have measurements of the concentration of the free
virus particles ν, and furthermore that these measurements
are not available at every sampling instant of time (decimated
observations). In this case, the output equation is given by

yσk = hk(T, T ∗, ν) = ν,

where the function σk represents a renumbering of the time
index. This renumbering stands for the fact that observations
are not available at every time instant, but only in a subset
of them (the precise definition is given in the next section).
An example is when an observation is only available every
ns samples, in which case σk := ns k.

This model, although one of the simplest HIV-1 dynam-
ics, already accounts for a number of parameters that are
unknown and unique to each patient.

III. MULTIPLE-MODEL ADAPTIVE ESTIMATOR

In this section we propose a multiple-model adaptive
estimator (MMAE) architecture combined with a moving
horizon (MH) strategy. This MMAE architecture is mainly
used for two reasons: it is not trivial to estimate both state and
parameters of a nonlinear system and the MMAE provides
a tool to explore a wide range of the unknown parameters
domain (at the expense of computational effort). On the HIV-
1 case, since the sampling time might be in the order of days
this is not a real issue. The moving horizon strategy is used
because of its estimation properties and better performance
on the HIV-1 model with respect to other approaches, [14].
In Fig. 1 the structure of the MMAE is outlined – it consists
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Fig. 1. Schematic Representation of the MMAE model

of i) a bank of N state estimators, where each observer is
designed based on a given parameterized model of the plant,
and ii) a dynamic weighting signal generator system that
is responsible for the time-evolution of the weights p[i]

t . The
state estimate x̂t is given by a weighted sum of the local state
estimates produced by the bank of observers. More precisely,

x̂t =
N�

i=1

p[i]
t x̂[i]

t ,

where each x̂[i]
t , i = 1, . . . , N corresponds to a local state

estimate generated by the ith local observer.
We now provide in more detail the role of each block.

A. Process model

We consider that the process model can be described by
a general nonlinear discrete dynamical system of the form

xt+1 = φt(xt, ut, wt; Θ)
yσk = hk(xσk ; Θ) + vk

(3)

where xt ∈ Xt is the state vector of the system, ut ∈ Ut its
control, yσk denotes the measurements, Θ ∈ RnΘ is a con-
stant vector that contains all the unknown model parameters,
and wt ∈ Wt and vk ∈ Vk represent input disturbances and
measurement noise, respectively. The sets Xt, Wt and Vk

are subsets (with appropriate dimension) of the Euclidean
space that incorporate the constraints associated to (3). The
initial condition x0, the parameter set Θ, and the signals
wt, vk are assumed to be unknown. In the output equation
we address explicitly the case in which the measurements
may not be available at every sampling instant t (decimated
observations). To this effect, we define M as the set of
time instants (indexes) where measurements are available,
and σ : N → M as the index time given by σ(k) = t, where
t is the time index of the k-th measurement.

B. Local state estimator

For the local estimators we propose a MHE with deci-
mated observations (DMHE) as described in [14]. In this
case, each ith estimator is designed according to the process



model (3) but assigning a given candidate parameter Θ[i].
To tackle the fact that the measurements do not arrive at
every sampling instant of time t, we have first to find a
transformation that allows us to apply the MHE strategy in
a more convenient representation of (3). For that purpose
we introduce two operators. The first operator, denoted by
Σ, allows to write in an appropriate way the recursive
composition of a function and is defined as

Σ
h
{φ}b−1

a , z, {ω}b−1
a , a, b

i
:=

(
z, if a = b

φb−1

“
Σ

ˆ
{φ}b−2

a , z, {ω}b−2
a , a, b− 1

˜
, ub−1, ωb−1

”
, otherwise

where {φ}b
a denotes a sequence of functions {φa(·),

φa+1(·), ..., φb(·)}, z is the initial state and {ω}b
a a sequence

of input disturbances. Note that the state solution of system
(3) at time t + 1 with initial condition x0 can be written as
xt+1 = Σ[{φ}t

0, x0, {ω}t
0, 0, t + 1].

The second operator, the accumulated noise χ, is
defined as the difference between the evolution of state
x with input disturbance and the state x with zero
input disturbance, that is, χ

�
{φ}b−1

a , z, {w}b−1
a , a, b

�
:=

Σ
�
{φ}b−1

a , z, {w}b−1
a , a, b

�
− Σ

�
{φ}b−1

a , z, {0}b−1
a , a, b

�

For simplicity of notation the following abbreviations
are used Σ [φ, z,ω, a, b] := Σ

�
{φ}b−1

a , z, {ω}b−1
a , a, b

�
,

χ [φ, z,ω, a, b] := χ
�
{φ}b−1

a , z, {ω}b−1
a , a, b

�
.

Using the above operators, to design each ith local esti-
mator we use the corresponding process model

x[i]
k+1 = f [i]

k (x[i]
k ) + w[i]

k (4a)

y[i]
k = h[i]

k (x[i]
k ) + vk (4b)

where f [i]
k (x) = Σ

�
φ[i], x, 0, σk, σk+1

�
and w[i]

k =
χ

�
φ[i], xσk , ω, σk, σk+1

�
. We have used the abbreviation

φ[i] to denote φ(·; Θ[i]). Since f [i]
k (xk) + w[i]

k is equal to
Σ

h
φ[i], x, ω, σk, σk+1

i
, it is straightforward to conclude that

x[i]
k in (4) is equal to xσk in (3) with Θ = Θ[i]. Thus, system

(4) describes how the state in (3) is transferred from a point
where a measurement is available to the next point where a
measurement occurs again for a given parameter Θ[i]. Note
however that in (4) w[i]

k might depend on x[i]
k .

Hereafter we use the index k for solutions of system
(4) and t for solutions of system (3). We denote by
x(k; z, l, {wj}) the solution of system (4) at time k when
the initial state is z at time l and the disturbance sequence
is {wj}k

j=l. When wj = 0 we will write x(k; z, l). Also
y(k; z, l, {wj}) := hk(x(k; z, l, {wj})) and y(k; z, l) :=
hk(x(k; z, l)).

The objective of each local MHE is to find the state
sequence {x̂[i]

t } that is most likely to be in some sense close
to the real state {xt}, given the sequence of observations
{yσk}, the inputs {ut} and the model with constraints
described in (3) and assuming a given candidate parameter
Θ[i].

To this effect, we consider the following objective function
defined in the equivalent system (4),

ΦT (x0, {wk}) :=
T−1�

k=0

Lk(wk, vk) + Γ(x0),

where T > 0 is the estimation horizon, vk = yk −
y(k, x0, 0, {wj}), Lk : Wk×Vk → R≥0 ∀k≥0 is the running
cost and Γ : X0 → R≥0 represents a penalty on the initial
condition. It is assumed that some prior information of the
initial state is known, and this one is captured by Γ(·),
that satisfies the following property Γ(x̂0) = 0, Γ(x) >
0 ∀x∈X0\{x̂0}, where x̂0 ∈ X0 is the (a priori) most likely
value of x0. The optimization problem can now be stated
as follows: find the pair (x̂0, {ŵk}T−1

k=0 ) that minimizes
ΦT (x0, {wk}) subjected to (x0, {wk}) ∈ ΩT . The constraint
set ΩT arises from the restrictions Xσk , Wk and Vk.

In general, this optimization cannot be applied online
because the computational complexity grows unbounded
with increasing horizon T . To account for this problem and
enforce a fixed dimension optimal control problem, a possi-
ble strategy is to explore the ideas of dynamic programming
by breaking the summation in ΦT and consider rather the
following optimization (for T > N )

Φ̂T (z, {wk}) = min
z,{wk}T−1

k=T−N

{
T−1�

k=T−N

Lk(wk, vk)

+ ẐT−N (z) : (z, {wk}) ∈ ΩN
T } (5)

where the quantity Ẑτ (z) is an approximation of the so called
arrival cost Zτ (z).

From this optimization, we obtain the pair
(z∗, {ŵk|T−1}T−1

k=T−N ) that allows to compute the sequence

{x̂[i]
T−N |T−1, x̂

[i]
T−N+1|T−1, ..., x̂

[i]
T |T−1}

by using (4a) with initial condition xT−N = z∗.
To compute the estimate of x[i]

t at every instant of time t
we use

k = max{k : σk ≤ t}, x̂[i]
t = Σ

�
φ[i], x̂[i]

k , 0, σk, t
�
. (6)

C. Dynamic Weighting Signal Generator (DWSG)

The underline role of the DWSG system is to basically
update the weights p[i]

t by continuously comparing the output
of the local estimators with the observed measurements. The
idea is to give more relevance (weight) to the observer that
“better” explains the evolution of the observed measure-
ments. Following the approach in [9] but adapted to the
problem of decimated observations, to generate the dynamic
weights p[i] we use the dynamic recursion

p[i]
t+1 =






β[i]
t e−ỹ

[i]
t

PN
j=1 p[j]

t β[j]
t e−ỹ

[j]
t

p[i]
t , if t ∈ M

p[i]
t , otherwise

(7)

where β[i]
t is a positive bounded function and ỹ[i]

t is an
error measuring function that maps the measurable signals



of the process model and the states of the ith local ob-
server to a nonnegative real value. Examples of an error
measuring function and a β[i]

t are β[i]
t = 1q

|S[i]
t |

and ỹ[i]
t =

1
2�yt − ŷ[i]

t �2(S[i]
t )−1

, where the S[i]
t are weighted positive

definite matrices and | · | denotes the determinant. In (7),
we have to impose that the initial conditions p[i]

0 are such
that p[i]

0 ∈ (0, 1) and
�N

i=1 p[i]
0 = 1. In that case, it can

be proved (using similar arguments as in [9]) that due to
the particular structure of equation (7), the weights p[i]

t are
positive, bounded, and the overall sum

�N
i=1 p[i]

t is always
one for all t ≥ 0, independently of the input signals of the
DWSG.

IV. STABILITY AND CONVERGENCE RESULTS

In this section we provide conditions under which the state
estimate x̂t converges to a small neighborhood of the true
values in the presence of bounded disturbances, noise, and
model parametric uncertainty. To this end, we first analyze
the stability properties of the individual local estimator.

A. Convergence of the local estimator

This section summarizes the results described in [14] for
the DMHE. We were able to relax the linear growth condition
in the vector field φ(·) (Assumption A0 of [14], [18]) by
instead imposing a much less restrictive Hölder condition.
Due to space limitations, we omit the proofs but these ones
are very similar to the ones in [14]. In the sequel, the
following definitions will be used.

Definition 1: A function α : R+
0 → R+

0 is a K∞-function

if it is continuous, strictly monotone increasing, α(x) > 0
for all x �= 0, α(0) = 0 and lim

x→∞
α(x) = ∞.

Definition 2: System (3) is uniformly observable if there
exist a positive integer No and a K∞ function ϕ(·) such that
for any two states x1 and x2,

ϕ(�x1 − x2�) ≤
No−1�

j=0

�y(σk+j ;x1, σk)− y(σk+j ;x2, σk)� ,

where y(σk; z, σl) = hk(x(σk, z,σl)) with x(σk, z,σl) de-
noting the solution of (3) without disturbances at time σk

when the state starts at time σl with value z .
We denote by B̄ε the closed ball with radius ε centered

in 0. The stability results presented in this section make use
of the following assumptions:

A0) The vector field φt(·) in (3) satisfies the following
Hölder condition: �φt(z1, uk, ω1; Θ)− φt(z2, uk, ω2; Θ)� ≤
cφ �(z1, ω1)− (z2, ω2)�α for any z1, z2 ∈ Xi, uk ∈ Uk,
w1, w2 ∈ Wk and some positive numbers cφ and α. The
observation function hk is Lipschitz continuous.

A1) Lk(·) and Γ(·) are left continuous in their arguments
for all k ≥ 0. Also, there are K∞-functions η(·) and
γ(·) such that η(�(w, v)�) ≤ Lk(w, v) ≤ γ(�(w, v)�)
η(�x− x̂0�) ≤ Γ(x) ≤ γ(�x− x̂0�), for all (w, v) ∈
(Wk × Vk), x, x0 ∈ X0, and k ≥ 0.

A2) There exists an initial condition x0 and a disturbance
sequence {wk}∞k=0 such that, for all k ≥ 0, (x0, {wk}∞k=0) ∈
Ωk.

A3) The interval of time between two consecutive mea-
surements is finite, i.e. σk − σk−1 < nmax for some nmax.

A4) There exists a K∞-function γ̄(·) such that 0 ≤
Ẑk(z)− Φ̂k ≤ γ̄(�z − x̂k�) for all z ∈ Xk.

A5) Let RN
τ = {x(τ ; z, τ −N, {wk}) : (z, {wk}) ∈ ΩN

τ }
where RN

τ = Rτ for τ ≤ N . For a horizon length N, any
time τ > N , and any p ∈ RN

τ , the approximate arrival cost
Ẑτ (·) satisfies the inequality

Ẑτ (p) ≤ min
z,{wk}τ−1

k=τ−N

{
τ−1�

k=τ−N

Lk(wk, vk) + Ẑτ−N (z) :

(z, {wk}) ∈ ΩN
τ , x(τ ; z, τ −N, {wj} = p}

subject to initial condition Ẑ0(·) = Γ(·). For τ ≤ N , the
approximate arrival cost Ẑτ (·) satisfies instead the inequality
Ẑτ (·) ≤ Zτ (·).

A6) There exists positive constants δw and δv such that
Wt ⊆ B̄δω and Vk ⊆ B̄δv for all k, where B̄ε = {x : �x� ≤
ε}.

Assumption A3) was added to the ones considered in [18]
to cope with decimated observations and A0) was weakened
to a Hölder condition. Assumption A5) loosely speaking
means that the approximate arrival cost should not add
“information” that is not present in the data.

The following results share the same reasoning as the
results in [18] but replacing the Lipschitz continuity of φ
by the Hölder condition. Using [14], we can now state the
following results, which essentially says that if there are no
disturbances or noise, then the estimation error converges to
zero. If they are nonzero but bounded, then the estimation
error converges to a neighborhood of the true value.

Proposition 1: If assumptions A1-A6 hold, system (3) is
uniformly observable, N ≥ No and wk, vk = 0, then for all
x̂0 ∈ X0, �x̂t − xt� → 0 as t →∞.

Proposition 2: Suppose that A0), A4) and A6) hold, a
solution exists to (5) for all x̂0 ∈ X0, N ≥ No, and
system (3) is uniformly observable. Then the estimation error
�x̂t − xt� for t ≥ σNo are bounded by α(�δω + δv�) where
α(·) is a K∞ function.

B. Convergence of the MMAE

We now show that the overall MMAE with a bank of
DMHE under reasonable conditions is robust to model para-
metric uncertainty and that the estimation error converges to
a small neighborhood of zero. In what follows, we consider
that the process model (3) is bounded-input-bounded-state
(BIBS).

Definition 3 (BIBS): System (3) is said to be bounded-
input-bounded-state (BIBS) with input (ut, wt) if there exist
γ1, γ2 ∈ K such that, for any x0 ∈ X0, ut ∈ Ut, wt ∈ Wt

�xt� ≤ γ1(�x0�) + γ2(�(ut, wt)�).
The next theorem provides conditions for the convergence of
the dynamic weights p[i]

t . Roughly speaking, it says that the
“model” identified is the one that exhibits least output error
energy. The proof of this result can be found in [9].



Proposition 3: Let i� ∈ {1, . . . , N} be an index of a
parameter vector to estimate Θ and let I = {1, . . . , N} \ i�

be an index set. Suppose that there exist positive constants
n� and k� such that for all k ≥ k� and n ≥ n� the following
condition holds for all j ∈ I

1
n

k+n−1�

τ=k

(wi�

t − lnβi�) <
1
n

k+n−1�

τ=k

(wj
t − lnβj) (8)

Then p[i�]
t → 1 as t → +∞.

Condition (8) can be viewed as a distinguishability crite-
rion. The following result establishes the convergence of the
state estimate x̂t.

Theorem 1: Consider the process model with decimated
observations (3) and assume that it is BIBS. Suppose that
assumptions A0-A6 and the distinguishability criterion (8)
hold. Then, the state estimation error x̃t := xt−x̂t converges
to a small neighborhood of zero.

V. SIMULATION RESULTS

In this section we illustrate the robustness and performance
of the proposed MMAE algorithm through simulations of
artificial patients infected with the HIV-1 infection using
model (2).

The first simulation shows the performance of the pro-
posed algorithm for the estimation problem of the state and
the unknown parameter κ in 10 sets of data with a fixed
MMAE setup with 5 MHE banks. In each simulation, the
data is generated from the HIV-1 model with added Gaussian
noise and with κ being randomly selected in the interval
[60, 140]. The κ nominal value for each i-th estimator in the
bank is 60 + 20i, for i = 0, . . . , 4. Fig. 2 shows for each
simulation, the mean squared error (MSE) of the difference
between the estimated state and the state of the process
model. From the figure it can be seen that for κ ∈ [60, 90]
and κ ∈ [120, 130] the MSE is roughly constant along those
intervals. However, for κ ∈ [90, 120] there is a significant
different behavior. This might be due to the model’s sensi-
tivity to the κ parameter, and also to the MMAE’s internal
parameters, which might be tuned to perform better with
lower κ values. Concerning the parameter κ estimation, in
Fig. 3 a grid is presented, in which it is shown for each of
the 10 simulations the real κ parameter and the estimated
parameter. The black circles are the κ parameters of the
internal estimators in the MMAE. The results suggest that
the algorithm is able to make reasonable estimations for the
parameter value.

In order to make a thorough analysis of this results, one
needs to compare them with other estimation methods. A
new simulation was run but instead of DMHE’s, we used
decimated EKF ([14]) for the estimators in the bank. The
same initial conditions were applied and both filters in the
bank have the following parameters: Σx̄0 = diag(10002, 3)
and Σi

ω = diag(9, 3), Rσk = 1502, the initial condition is
x0 = (1000, 0, 5) and the estimated initial condition is x̄0 =
(500, 0, 0), where diag(s, n) stands for the n×n matrix with
value s in the diagonal. Although very similar in terms of
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Fig. 2. MSE of the state estimation for each simulation. Each simulation
was run with a random κ parameter indicated by the markers in the figure.
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black circles represent the internal estimators κ parameters.
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Fig. 4. Comparison between the absolute error of the MMAE using a bank
of DMHEs and using a bank of decimated EKFs.

performance for the observable variable, ν, the MMAE with
the MHEs performs much better for the variables T and T ∗

(see Fig. 4).
In the second simulation set (see Figs. 5-6), we consider

the case that both β and the production rate of virus by



0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

Time [Days]

T 
[c

el
ls

/m
m

3 ]

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

Time [Days]

T*  [c
el

ls
/m

m
3 ]

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2
x 104

Time [Days]

 [v
iru

s/
m

m
3 ]

 

 

HIV model
MHE 1
MHE 2
MHE 3
MHE 4

Fig. 5. Evolution of the state of the system and the estimates given by the
banks of MHE’s.
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Fig. 6. Evolution of the state of the system and the estimate modeled by
the MMAE. We observe that the MMAE is much closer to the model than
any of the MHE’s in the bank.

infected cells, κ, were not exactly known. In this case, we
evaluated the proposed MMAE with a bank of 4 estimators,
which parameters are as follows: estimators 1 and 2 have
κ = 105 and estimators 3 and 4 have κ = 120. Concerning
the β value, estimators 1 and 3 have β = 2 × 10−5 while
estimators 2 and 4 have β = 2.5×10−5. The real values for
β and κ are β = 2.4× 10−5 and κ = 100. The algorithm is
able to converge to the DMHE in the bank with the closest
parameters to the real values. In Fig. 6 it can also be observed
that the state estimate produced by the MMAE is much
smoother than any of the ones from the MHEs in the bank.

VI. CONCLUDING REMARKS

This paper addressed the common problem when dealing
with dynamics associated with biomedical phenomena: state
estimation with non-periodic measurements and parameter

uncertainty. We proposed an algorithm to address this prob-
lem based on the MMAE algorithm with banks of DMHEs.
A comparison with a MMAE algorithm with banks of
decimated EKFs was made, where the MMAE with DMHEs
performs better. We also observe that the algorithm, if ran
with a large number of estimators in the bank, will be
very expensive in computational terms. Despite of that, in
view of its application to biomedical phenomena, since the
interval between two measurements could be days (or even
weeks) this problem is not stringent. However, in the general
case, some sort of bank design should be considered. Future
work would follow this direction, as well as comparing the
obtained results in an artificial patient with real data from
HIV-1 patients.
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