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a b s t r a c t

The problemof attitude and rate gyro bias estimation is addressed by resorting tomeasurements acquired
from rate gyros and vector observations. A Set-Valued Observer (SVO) is proposed that has no singulari-
ties and that, for any initial conditions, provides a bounding set with guarantees of containing the actual
(unknown) rotation matrix. The sensor readings are assumed to be corrupted by bounded measurement
noise and constant gyro bias. Conditions for the boundedness of the estimated sets are established and
implementation details are discussed. The feasibility of the technique is demonstrated in simulation.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Attitude estimation is an essential element in many modern
platforms such as aircrafts, satellites, unmanned air vehicles, and
underwater autonomous robots. Usually, solutions for this prob-
lem require either noise-free sensor measurements or a stochas-
tic description of the exogenous disturbances and measurement
noise. However, if this information is not available a priori and
only norm-bounds on the disturbances are known, it is desir-
able to compute explicit bounds on the attitude of the vehicle.
Such bounds are suitable, for instance, to be used in robust con-
trol designs techniques, whereworst-case guarantees are provided
regarding the performance of the closed-loop system—see, for
instance, [1].

There exists a wide variety of attitude estimation techniques in
the literature [2]. While some of them, like nonlinear observers,
have a deterministic nature [3–7], others take advantage of the
stochastic description of the exogenous disturbances and mea-
surement noise to provide (sub-)optimal estimates of the attitude
[8–10]. In the latter case, the uncertainty in the measurements
is typically modeled as additive Gaussian noise. However, the
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stochastic characterization of the sensor noise and system dis-
turbances may not be available in some cases, while magni-
tude bounds are typically known. In these circumstances, optimal
stochastic state estimation is not achievable, and, thus, the objec-
tive of the estimator is rather to obtain a set of possible state val-
ues, given the sensor information. The work in [11] discusses the
state estimation problem for systems with bounded inputs, while
in [12,13] a similar problem, but using a set-membership descrip-
tion for model uncertainty, is addressed. Recent advances in the
framework of these estimators, referred to as Set-ValuedObservers
(SVOs) [14], are presented in [15–18]. The work in [19] exploits a
different approach and proposes an attitude estimator where un-
certainty ellipsoids bound the sensor measurements and the filter
state. This observer has the advantage of considering also the rigid
body dynamics in the filter, which may render it more accurate.
However, it has the disadvantage of constraining the moments
acting on the rigid body to be generated by an attitude depen-
dent potential, while relying on the linearization of the system to
propagate the uncertainty ellipsoids.

Themain contribution of thework presented in this paper is the
development of an attitude estimator based on SVOs, which relies
on vector observations and rate gyros measurements and where
these measurements are assumed to be corrupted by bounded
noise. A solution is proposed that considers uncertainties defined
bypolytopes and that guarantees the true state of the system inside
the estimated set, as long as the assumptions on the bounds on
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the measurements are satisfied. No linearization is required and
discretization errors are directly taken into account in the SVO
framework. Preliminary versions of these results were presented
in [20,21].

The remainder of this article is organized as follows. In Sec-
tion 2, the attitude estimation problem is introduced, the available
sensor information is described, and a discretization of the system
dynamics is proposed. The SVO for attitude estimation with noisy
angular velocity measurements is derived in Section 3. Several im-
plementation issues are discussed in Section 4. In Section 5, the
performance of the proposed solution is illustrated in simulation
for a typical trajectory. Finally, Section 6 presents some conclud-
ing remarks.

2. Problem formulation

In this section, we introduce the attitude estimation problem
using vector observations and biased angular velocity measure-
ments. The vector observations provide instantaneous information
about attitude, while the angular velocity characterizes its time-
evolution.

The objective of the present work is to estimate the smallest
set that contains the attitude of a rigid body and the bias of the
rate gyros, by using the available sensor suite, i.e., to obtain the
set-valued attitude and bias estimates with the smallest possible
uncertainty.

2.1. System description

The rotation matrix is adopted for attitude representation as it
does not suffer from the problems associated with the many other
alternatives, namely, unwinding phenomena and singularities
[22,23]. The right-invariant description on the special orthogonal
group SO(3) is considered so that the rotation matrix kinematics is
given by

Ṙ = (ω)×R, (1)

where R ∈ SO(3) denotes the rotation matrix from the reference
frame {I} – which is assumed to be inertial – to the body-fixed
reference frame {B}, ω ∈ R3 denotes the angular velocity of {I}
with respect to {B}, measured in {B}, and (·)× denotes the skew-
symmetric operator, which maps R3 into so(3) – the Lie algebra
associatedwith SO(3) – and satisfies (v)×w = v×w, {v, w} ∈ R3.
Note that, to ease the notation, the definition of angular velocity is
symmetrical to the one usually adopted in the literature on iner-
tial systems (see, for instance, [2]). A triad of rate gyros, installed
in reference frame {B}, measures ωr(k) ∈ R3, which denotes the
angular velocity corrupted by the bias term b ∈ R3 and bounded
noise n(k) ∈ R3 so that

ωr(k) = ω(k) + b + n(k), ∥n(k)∥∞ ≤ n̄ (2)

where ∥n(k)∥∞ denotes the maximum absolute value of each ele-
ment of n(k). The unknown rate gyro bias is modeled by a constant
vector, i.e.,

ḃ = 0. (3)

2.2. Discretization of the system

The continuous-time model described by (1) is not suitable to
be implemented in a digital system. Consequently, we are rather
interested in computing R and ω at discrete time instants kT , k ∈

N+, where T > 0 denotes the sampling period. For the sake of clar-
ity, the time dependence of the variables will be simply denoted by
k, rather than kT .

The solution of the differential equation (1) at k + 1 is given by

R(k + 1) = Φ(k + 1, k)R(k), (4)
where Φ(k + 1, k) is the state transition matrix [24] from kT to
(k + 1)T . The state transition matrix can be computed by the
Peano–Baker series [24], although it requires the sum of an infinite
series and the knowledge of the angular velocity between sampling
times. Thus, an alternative approach is herein pursued. For the
discretization errors to remain bounded, the time-rate-of-change
of the angular velocity must be bounded.

Assumption 1. The magnitude of the angular acceleration is
bounded by a known (but possibly conservative) positive scalar ᾱ,
i.e., ∥ω̇∥∞ ≤ ᾱ, ᾱ ∈ R+.

In the following lemma, the discretization of Φ(k + 1, k) and the
associated errors are characterized.

Lemma 1. Under Assumption 1, the state transition matrix Φ(k +

1, k) satisfies

Φ(k + 1, k) = Φ0(k + 1, k) + Φ∆(k + 1, k)

where Φ0(k + 1, k) = eT (ω(k))× , ∥Φ∆(k + 1, k)∥max ≤ e2T
2ᾱ/2

− 1,
and where ∥.∥max denotes the maximum norm of matrices.
Proof. See Appendix A.
The function e(·) stands for the (scalar) exponential function, as
well as, the exponential map of matrices, which in the SO(3)
manifold can be obtained in closed form from the Rodrigues’ for-
mula [22].

Since the bias is assumed to be constant, the discretization of
(3) is simply given by
b(k + 1) = b(k).

2.3. Measurements

On-board sensors such as magnetometers, star trackers, among
others, provide vector measurements expressed in body frame
coordinates, i.e., Bvi = RIvi, where i = {1, . . . ,Nv} and Nv is the
number of vector measurements, or in the matrix form,
BV = RIV , (5)
where BV = [

Bv1 · · ·
BvNv ] and IV = [

Iv1 · · ·
IvNv ]. The time-

dependence of the variables was omitted for the sake of simplicity.
Notice that if the linear acceleration can be considered negligible
when compared to gravity, the accelerometers’ measurements can
also be suitable to be used as vector observations. It is assumed that
the measurements are corrupted by noise contained inside com-
pact polytopes. Thus, the measurements Bvi ∈ R3, i = {1, . . . ,Nv}

belong to the convex polytope defined by some real matrix M̃vi ∈

Rm×3 and some vector m̃vi ∈ Rm, i.e., Bvi ∈ Set(M̃vi , m̃vi), where
Set(M,m) := {α ∈ Rn

: Mα ≤ m}. The measurements are thus
provided by means of a set, rather than a singleton.

A set containing the value of the rate gyro bias, b, is obtained
from the sensors by resorting to (2). Vector ωr(k) is given by the
rate gyros, the noise is known to be upper bounded by n̄, and a set
containingω(k) is obtained by inverting the attitude kinematics (1)
ω(k) = usk(logm(R(k + 1)RT (k))),
where logm(·) : SO(3) → so(3) is the inverse of the exponen-
tial map in the special orthogonal group and usk(·) denotes the
unskew operator such that for any a ∈ R3 one has usk((a)×) = a.
The set containing the rate gyro bias, i.e., b ∈ Set(M̃b(k), m̃b(k)),
can be finally obtained from (2) by resorting to the so-called
Fourier–Motzkin projection operator [25] or Minkowski addi-
tion [26].

Remark 1. The logarithmic map logm(·) can be computed by
inverting Rodrigues’ formula [22]

logm(R) =

0 if θ = 0
θ

2 sin(θ)
(R − RT ) if θ ∈ (0, π),

(6)
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where R ∈ SO(3) and θ = arccos ((tr(R) − 1)/2) ∈ [0π). If θ = π ,
the result is not unique. However, as long as the trace of R is differ-
ent from −1, this formula can be used to obtain upper and lower
bounds on logm(R). A set containing the rotationmatrixR(k) is ob-
tained directly from the state as vec(R(k)) = xR , while a set con-
tainingR(k+1) is obtained from the vectormeasurements,R(k+

1) =
BV (k+1)(IV (k+1))Ď, where (·)Ď denotes the pseudo-inverse

operator, IV (k + 1) is known and vec(BV (k + 1)) ∈ Set(M̃v(k +

1), m̃v(k+1)). By resorting to the Minkowski difference [26], a set
containing R = R(k + 1)R(k)T is obtained. Then, using (6) and
interval analysis computations, one can obtain a bounding set for
ω(k). As the quotient θ

sin(θ)
is a monotonically increasing function

in the domain θ ∈ [0, π), the corresponding bounds can be easily
computed by evaluating its value at the extremes of the interval of
θ . The vector η = usk(logm(R)) represents the so-called exponen-
tial coordinates of the rotation matrix R.

Let us define the state vector and the measurement vector,
respectively, as

x = [xTR bT ]T , y = [yTv bT ]T ,

where xR = vec(R), yv = vec(BV ) and where the operator vec(Z)
stacks the columns of them× nmatrix Z into amn× 1 vector. The
complete measurement model is then given by

y(k) = C(k)x(k), C(k) = diag((IV (k) ⊗ I3)T , I3),

where ⊗ denotes the Kronecker product of matrices [1, p. 25].
The measurement vector satisfies yv ∈ Set(M̃v, m̃v), where m̃v =

[m̃T
v1

· · · m̃T
vNb

]
T and M̃v = diag(M̃v1 , . . . , M̃vNb

), which denotes

the block matrix whose diagonal blocks are M̃v1 , . . . , M̃vNb
and the

off-diagonal blocks are zero matrices.

Definition 1. Given IV , x is said to be compatible with the set of ob-
servations, S = Set([M̃T

v M̃T
b ]

T , [m̃T
v m̃T

b ]
T ), if there exists y ∈ S such

that (2)–(5) are satisfied.

Remark 2. Definition 1 states that a given rotation matrix, R, and
rate gyro bias, b, are compatible with the uncertainmeasurements,
if the set of vectormeasurements contain the inertial vector obser-
vations, IV , rotated by R, and the angular velocity measurements
contain the angular velocity plus the vector b.

In the next lemma, it is shown how the output of the system
relates to the state, i.e., the time-varying rotation matrix.

Lemma 2. Assume that the measurement vector y(k), at each time k
satisfies y(k) ∈ Set([M̃T

v (k) M̃T
b (k)]T , [m̃T

v(k) m̃T
b (k)]

T ). Then, R(k)
and b are compatible with the measurements if and only if x(k) ∈

Set(M̃(k), m̃(k)), where M̃(k) = [(M̃v(k)(IV ⊗ I3)T )T M̃T
b (k)]T and

m̃ = [m̃T
v(k) m̃

T
b (k)]

T .

Proof. By resorting to the property vec(AXB) = vec(BT
⊗A)vec(X),

it is concluded that

yv = (IV ⊗ I3)T xR. (7)

Then, we have that M̃v(k)yv(k) ≤ m̃v(k) is equivalent to M̃v(k)
(IV ⊗ I3)T xR ≤ m̃v(k). Thus, M̃(k)x(k) ≤ m̃(k). �

3. Attitude and rate gyro bias estimation using SVOs

In this section, a methodology is proposed for the attitude es-
timation problem with bounded sensor noise and biased angular
velocity measurements.

At each time k, the proposed estimator provides a set containing
the current state of the system described by (1)–(3). Our goal is to
minimize the volume of the set containing the rotation matrix and
the rate gyro bias.

Let X(k) be a polytope containing x at time k, and denote by
B(k) the polytope obtained by projecting X(k) into the rate gyro
bias coordinates. Define b0(k) as the geometric center of B and
δb(k) as a measure of the uncertainty on the bias so that δb(k) =

b− b0(k). The geometric center can be obtained by solving a linear
programming (LP) problem (see [27, Section 8.5.1]). The so-called
Chebyshev center of a convex polyhedron is the furthest point from
the limits of the polytope.

The system dynamics in (4) can be rewritten as

xR(k + 1) = A(k)xR(k), (8)

where A(k) = I3 ⊗Φ(k+1, k). Due to the sensor uncertainty, A(k)
cannot be determined exactly. However, it can be decomposed into
the sum of a known component, A0(k), and unknown components,
Ai(k), i = 1, . . . , 9, which encode the uncertainty in each element
of A(k). Thus, A(k) satisfies

A(k) = A0(k) +

9
i=1

Ai(k)∆i(k),

for some |∆i(k)| ≤ 1, where A0(k) = I3 ⊗ eT (ωr (k)−b0(k))× , Ai(k) =

I3 ⊗ ϵE(m, n), and E(m, n) denotes the 3 × 3 matrices whose
elements are zeros except for the element m, n which is unitary,
m, n = {1, 2, 3}, i = 3(n − 1) + m, and ϵ =

1
2


e2Tϵ1 − e2Tϵ2


+

e
T2 ᾱ
2 − 1, ϵ1 = ω̄0 + b̄δ + n̄, ϵ2 = ω̄0, where ω̄0 = ∥ωr −

b0∥∞, b̄δ = ∥bδ∥∞. The value of ϵ is obtained by exploiting the
results in Lemma 1 and Appendix B.

The full state dynamics is then given by

x(k + 1) = A(k)x(k),

where for some |∆i(k)| ≤ 1, A(k) satisfies

A(k) = A0(k) +

9
i=1

Ai(k)∆i(k), (9)

with A0(k) = diag(A0(k), I3), Ai(k) = diag(Ai(k), 03).
Let us defineΨ0(k+n, k) = A0(k+n−1)A0(k+n−2) · · · A0(k),

and

W (k, k + N) =


C(k)

C(k + 1)A0(k)
C(k + 2)Ψ0(k + 2, k)

...
C(k + N)Ψ0(k + N, k)

 .

To ensure the existence of a non-divergent observer the following
observability-like assumption is required—see [15, Propositions
3.1 and 3.2].

Assumption 2. Matrices A(k) and C(k) are uniformly bounded
and there exist constants µ1, µ2 > 0 and N ∈ N such that for all k

µ1I ≤ W T (k, k + N − 1)W (k, k + N − 1) ≤ µ2I. (10)

Note that this assumption is always satisfied if span{
Iv1, . . . ,

IvNv }

= R3.
Let the state x(k) be contained inside the compact convex poly-

tope defined by the knownmatrixM(k) and vectorm(k), i.e., x(k) ∈

X(k), where X(k) = Set(M(k),m(k)). Due to the presence of noise
in the angular velocitymeasurements, which is reflected in the un-
certainty∆i, i = {1, . . . , 9}, the set of feasible states at time k+1 is
in general non-convex. Nevertheless, wewill see next that, by con-
sidering specific realizations of (9) and by using an SVO to obtain
the polytope that contains the state for each particular realization,
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a set containing the state x(k + 1) can be derived. As such, con-
sider now a realization of (9) where ∆i(k) = ∆∗

i , |∆
∗

i | ≤ 1, i =

{1, . . . , 9} and denote by A∆∗ the corresponding uncertainty ma-
trix, i.e., A∆∗ = A∗

1∆
∗

1 + · · · + A∗

9∆
∗

9 . For each A∆∗ , the tech-
nique described in [16] can be used to design an SVO that provides
a set-valued estimate of the state of the system. Indeed, if matrix
A0(k)+A∆∗ is non-singular, one canwrite the following inequality
as a constraint on the state x(k + 1):

M(k)(A0(k) + A∆∗)−1  
M∗(k+1)

x(k + 1) ≤ m(k)
m∗(k+1)

. (11)

In other words, for ∆i(k) = ∆∗

i , i = {1, . . . , 9}, x(k + 1) ∈ Set
(M∗(k + 1),m∗(k + 1)).

Let νi, i = {1, . . . , 29
} denote a vertex of the hyper-cube H :=

{δ ∈ R9
: |δ| ≤ 1}, where νi = νj ⇔ i = j. Moreover, denote

by X̂νi(k + 1) the set of points x(k + 1) that satisfies (11) where
A∆∗ = Aνi andwith x(k) ∈ Set (M(k),m(k)). Notice that X̂νi(k+1)
can be obtained from (11). Further define

X̂(k + 1) := co

X̂ν1(k + 1), . . . , X̂ν29

(k + 1)


, (12)

where co{p1, . . . , pm} is the smallest convex set containing the
points p1, . . . , pm, also known as the convex hull of p1, . . . , pm.
Since the set of all possible states at time k + 1 is, in general, non-
convex, we are going to use X̂(k + 1) to overbound it. As X̂(k + 1)
is the convex hull of a finite number of polytopes, it can be writ-
ten in the form Set(M̂(k + 1), m̂(k + 1)). By intersecting this set
with the set of points compatible with themeasurements, it can be
concluded that x(k) ∈ X(k + 1), where X(k + 1) = Set(M(k + 1),
m(k+1)), andM(k+1) = [M̂T (k+1) M̃T (k+1)]T andm(k+1) =

[m̂T (k+ 1) m̃T (k+ 1)]T . The following theorem describes the pro-
posed attitude SVO.

Theorem 1. Assume that there exist matrix M(k) and vector m(k),
such that

x(k) ∈ Set(M(k),m(k)) ∩ vec(SO(3)) × R3,

where Set(M(k),m(k)) is a compact set. Then, under Assumptions 1
and 2, the set Set(M(k + 1),m(k + 1)) ∩ vec(SO(3)) × R3, as
defined previously, is compact and contains all the states x(k + 1)
(i.e., R(k + 1) and b) that satisfy (1)–(3) and that are compatible
with the observations at time k + 1.

Proof. Define X̆(k + 1) as the set of all possible states of the sys-
tem at time k + 1. Under Assumption 1, one can compute the ma-
trices Ai(k) in (9). In addition, (11) defines the set of states at time
k+1 that satisfy (9) and are compatiblewith themeasurements. By
evaluating (11) for ∆ = [∆1 · · · ∆9] in the vertices of H , one ob-
tains X̂ν1(k+1), . . . , X̂ν29

(k+1). Uniform boundedness of the sets

X̂ν1(k+1), . . . , X̂ν29
(k+1) is ensured by the observability-like con-

dition in Assumption 2. It was shown in [18] that, since ∆(k) can
be obtained by convex combinations of the vertices of H , the state
of the system, x(k + 1), is inside the set generated by the convex
hull in (12), which is compact since it is the convex hull of compact
sets. Thus, X(k+ 1) is an overbound of X̆(k+ 1) and an overbound
of the space of possible solutions of R(k+ 1) and b and is given by
Set(M(k + 1),m(k + 1)) ∩ vec(SO(3)) × R3. �

Remark 3. If A(k)+A∆∗(k) is singular or ill-conditioned, one can
write the inequality I −A0(k) − A∆∗(k)
−I A0(k) + A∆∗(k)
0 M(k)


  

Λ


x(k + 1)
x(k)


≤

 0
0

m(k)


  

λ

,

and then use the Fourier–Motzkin projection operator [25] to
computeM∗(k + 1) andm∗(k + 1) such thatM∗(k + 1)x(k + 1) ≤

m∗(k + 1), i.e.,

(M∗(k + 1),m∗(k + 1)) = FM(Λ, λ, 12),

where for any x ∈ Rnx , x ∈ Set(A, b), (Ā, b̄) := FM(A, b, n) stands
for the Fourier–Motzkin projection operator, where n = nx − n̄x >
0, and Ā and b̄ satisfy, for all x̄ ∈ Rn̄x , Āx̄ ≤ b̄ ⇔ ∃x̃∈Rn : A[x̄T x̃T ]T
≤ b.

Remark 4. As C(k) fulfills (10), the estimate of the SVO proposed
in this section converges to a bounded set and the observer is global
as it converges for any initial conditions.

Remark 5. Assumption 2 clearly holds if C(k) is invertible, that is,
if span{

Iv1, . . . ,
IvNv } = R3. However, the attitude system (7)–(8)

is also observable when only a single time-varying vector observa-
tion is available if the system is sufficiently excited, i.e., if there is
N > 0 such that, for any k, span{

Iv1(k), . . . , Iv1(k + N)} = R3.

4. Implementation issues

In this section, several details on the implementation of the
proposed solution are discussed, namely, memory consumption,
computational complexity, and strategies to increase performance.

In the proposed methodology, the sizes of M(k) and m(k) may
be increasingwith time, which can be problematic from the imple-
mentation point-of-view. To reduce the number of rows of M(k)
and the length of m(k), one should eliminate the linearly depen-
dent constraints. Algorithms to identify redundant constraints can
be found in [28,29] and references therein. Even if the linearly de-
pendent constraints are removed, the number of constraints may,
theoretically, grow linearly with the number of iterations. The
number of constraints can be limited by enclosing the estimated
polytope within a polyhedron with a fixed number of vertices. On
the other hand, we need not to perform this operation in every it-
eration. One can decide to carry out the enclosing only every fixed
number of iterations, or when the number of linearly independent
constraints exceeds a pre-specified limit.

The computational complexity and the accuracy of the esti-
mates depend on the algorithms that perform the operations over
the set-valued estimates, namely, the LP problems, the polyhe-
dron enclosure, and the convex hull. The selection of algorithms
depends on the available computational resources.

To increase the convergence rate, the uncertainty set of the rate
gyro bias can be split, and each sub-set can be used to initialize a
different SVO. Since only one SVO contains the true value of the
bias, all other SVOs may degenerate into empty sets for the esti-
mates, as time goes by. At that point, the uncertainty space of the
bias is again divided. This approach has the additional advantage
of being easily implemented in parallel computer systems.

5. Simulation results

In this section, we present simulation results illustrating the
performance of the proposed solution. The results of the SVO
are compared with the multiplicative extended Kalman filter
(MEKF) [8]. Using the strategy proposed in Section 4, the uncer-
tainty set of the rate gyro bias was split into 27 sub-sets.

The trajectory generated is characterized by an angular velocity
with the following oscillatory profile:

ω(t) =

 4.01 sin(2π0.05kT )
−2.86 sin(2π0.04kT )
3.44 sin(2π0.02kT )


deg /s.

The sampling period, T , and the maximum rate gyros’ noise,
∥n∥∞ = n̄, are set to 0.1 s, and 0.115 deg/s, respectively. The initial
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Table 1
RMS of the estimation errors of the SVO and of theMEKF (deg).

xRMS yRMS zRMS

SVO 0.0414 0.0318 0.0494
MEKF 0.0346 0.0350 0.0456

a b

Fig. 1. Error of the central point of the rotation vector set and uncertainty limits
along the main axis.

Fig. 2. Bias estimation errors.

uncertainty on the rate gyro bias is ±5.73 deg/s in each channel,
while the true rate gyro bias is b = [0.03 −0.01 0.02]T deg/s. The
directions for the vector observations in the inertial frameare given
by Iv1 = [1 4 0]T , Iv2 = [3 0 0]T , Iv3 = [0 0 6]T , and each channel
of measurements is corrupted by noise bounded by ±0.01. The
MEKF was initialized with the true initial attitude and the initial
state covariance matrix was set to P0 = 6 × 10−7I6. The system
covariance matrix was set to Q =

1
4σ

2
ωI6, and the measurements

covariance matrix was set to R = σ 2
v I9, where σ 2

ω and σ 2
v are the

variance of each axis of the angular velocity measurements and of
the vector measurements, respectively.

The estimation errors of the central point of the obtained us-
ing the SVO and the MEKF are shown in Fig. 1(a). The estimates
are expressed in exponential coordinates, computed by using (6).
Both strategies have similar accuracies in terms of the root-mean-
square (RMS) errors (Table 1).

Fig. 1(b) depicts the maximum uncertainty of the set-valued
state estimates, as well as the 3σ bound of the MEKF state (based
on the state covariance matrix). In this example, specially for the x
and y axes, the bounds provided by the SVO are less conservative
than the 3σ bounds of the MEKF. The estimates and the state
covariance matrix of the MEKF are expressed in quaternions [8].
Thus, a transformation to exponential coordinates was necessary.
The bias estimates provided by the SVO converged faster than
those of the MEKF, as shown in Fig. 2.

When compared with the MEKF, the proposed technique
presents some advantages: (i) it is global, (ii) it has faster conver-
gence rates (at least in the simulations performed), (iii) it is robust
against different sensor noise characteristics as no other informa-
tion exceptworst-case bounds on sensor noise and external distur-
bances is required, and, finally, (iv) it provides a set-valued state
estimate that is guaranteed to contain the true attitude. The com-
putational load of the operations over the set-valued estimates can,
however, hinder its implementation in real-time systemswith low
computational power. The MEKF is less computational expensive,
although it may lead to degraded performance and, ultimately, to
divergent solutions, due to the approximation of the dynamics of
the system by a linear model.

6. Conclusions

This paper proposed a solution for the problem of attitude and
rate gyro bias estimation, based on vector observations and angu-
lar velocitymeasurements, corrupted by bounded noise.We devel-
oped an SVO that considers uncertainties defined by polytopes and
that, for any initial conditions, guarantees that the actual state of
the system is inside the set-valued estimate. Conditions for bound-
edness of the estimated set were established. No linearization is
required and the attitude of the rigid body is parameterized by
a rotation matrix yielding estimates that are free of singularities.
Several implementation details were discussed. Simulation results
attested the applicability of the proposed technique.
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Appendix A. Proof of Lemma 1

Let ω(t) = ω(t0) + ω∆(t) and, as in [30], define ϕ(t, t0) =

e−t(ω0)
×

Φ(t, t0) et0(ω0)
×

, ω0 = ω(t0), which fulfills ϕ̇(t, t0) =

e−t(ω0)
×

ω∆(t) et(ω0)
×

ϕ(t, t0). Then, a solution for ϕ(t, t0) can be
obtained by resorting to the Peano–Baker series ϕ(t, t0) =


∞

i=0

ϕi(t, t0), ϕ0(t, t0) = I3, ϕi(t, t0) =
 t
t0

e−τ(ω0)
×

ω∆(τ )eτ(ω0)
×

ϕi−1

(τ , t0) dτ . Define Φi(t, t0) = et(ω0)
×

ϕi(t, t0) e−t0(ω0)
×

. Then, the
state transition matrix satisfies Φ(t, t0) = Φ0(t, t0) + Φ∆(t, t0),
where

Φ0(t, t0) = e(t−t0)(ω0)
×

, Φ∆(t, t0) =

∞
i=1

Φi(t, t0),

Φi(t, t0) =

 t

t0
e(t−τ)(ω0)

×

ω∆(τ )Φi−1(τ , t0) dτ .

Algebraicmanipulations allowus to obtain the relation∥Φi(t, t0)∥2

≤
 t
t0
(t − t0)∥ᾱ∥2∥Φi−1(τ , t0)∥2 dτ ≤ ᾱi(t − t0)2i/(2ii!). Thus,

∥Φ∆(t, t0)∥2 ≤ eᾱ(t−t0)2/2 − 1. To conclude the proof, let t0 =

kT , t = (k + 1)T and recall the relation between matrix norms,
∥A∥max ≤ ∥A∥2.

Appendix B. Bound on the exponential map of the sum of two
skew-symmetric matrices

Let k1 ∈ R3 and k2 ∈ R3 be two generic vectors and define the
skew-symmetric matrices K1 = (k1)×, K2 = (k2)×. From the def-
inition of matrix multiplication, we have that [C]ij =

p
k=1[K1]ik

[K2]kj, where C = K1K2 ∈ R3×3, and [X]ij denotes the element
of row i and column j of matrix X ∈ Rm×n. Using the fact that,
for skew-symmetric matrices, at least one of the elements of each
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row and each column is zero, we obtain the following inequalities
∥K k

1∥max ≤ (2k̄1)k/2, ∥K k
1K

l
2∥max ≤ (2k̄1)k(2k̄2)l/2, where k̄1 =

∥k1∥∞ and k̄2 = ∥k2∥∞. From these inequalities, we derive an
upper bound for each element of the power of the sum of two
matrices


(K1 + K2)

k

ij ≤


K k
1 +

1
213((k̄1 + k̄2)k − k̄k1)


ij, where 13

denotes a 3 × 3 matrix of ones. Consequently, the exponential
map of the sum of matrices K1 and K2 satisfies


eK1+K2


ij =


∞

k=0
(K1 + K2)

k

ij /k! ≤


eK1


ij +

1
2 (e

2k̄1+2k̄2 − e2k̄1).
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