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Ricardo Santos, Ricardo Ferreira, Ângelo Cardoso, Alexandre Bernardino
Institute for Systems and Robotics

Instituto Superior Técnico,
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Abstract—This paper focuses on a recently developed special
type of biologically inspired architecture, which we denote
as a sensori-motor network, able to co-develop sensori-motor
structures directly from the data acquired by a robot interacting
with its environment. Such networks learn efficient internal
models of the sensori-motor system, developing simultaneously
sensor and motor representations (receptive fields) adapted
to the robot and surrounding environment. In this paper we
compare this sensori-motor network with a conventional neural
network in the ability to create efficient predictors of visuo-
motor relationships. We confirm that the sensori-motor network
is significantly more efficient in terms of required computations
and is more precise (less prediction error) than the linear neural
network in predicting self induced visual stimuli.

Index Terms—Stimulus prediction, visual and motor receptive
fields, neural networks, sensori-motor maps.

I. INTRODUCTION

Nature shows that evolution tends to improve the efficiency
of organisms. Solutions found in nature are an important
source of inspiration for the design of autonomous systems
and bio-mimetic solutions are gaining increasing interest in
the development of embedded applications where resource
constraints and computational bottlenecks are the rule rather
than the exception.

In terms of visual capabilities, that require a significant
amount of computation, it is important to understand both
the role motor actions have in visual perception and visual
stimulus prediction, and its relationship with the neural
circuits organization. Living organisms’ visual systems are
continuously trained and improved while relationships be-
tween motor actions and sensory feedback are learned by the
agent during the interaction with its habitat or environment.

Without perception one is left with little criteria to decide
which actions to take, while at the same time there is no
purpose in having perception if you cannot act on the world.
An ideal rational agent [1] always takes the actions which
maximizes its performance measure based on its percepts
and built-in knowledge. This definition frames perception as
a component used to choose the right action, and not as a goal
by itself. Under this light a broad goal is to develop sensori-
motor structures which support choosing the right action. To
be able to do so one crucial ability that organisms developed
is the ability to discern the origin of sensory input between
changes in the environment (exafference) and the result of

the animal’s own movements (reafference) [2]. The ability to
discern between these two origins of sensory input requires
a forward model [3] to predict the effect a given movement
(action) has on its sensory input.

The presented adaptive model [4] learns to predict visual
stimulus based on motor information resulting from self-
inducing actions. This model maps motor input in a structure
also processing visual stimulus, creating direct relationship
between the robot’s actions and its perceived visual stimuli.
Following a specific learning process it was possible to
minimize the prediction error evaluated by the mean square
error between the predicted image and the expected image
after a specific motor action. In spite of starting from
an unknown topology, the proposed structure developed a
topology covering the recording visual sensor and organized
itself leading to a less costly prediction model.

In the sensory layer through the same developmental
process an organization also emerges. Each sensory neuron’s
receptive field, RF, is composed of a set of retina cells
which cover nearby parts of the visual field and together
represent a continuous portion of it. The motor layer in the
same developmental process also organizes itself. In this
layer, each neuron’s RF reacts to actions which produce
similar results. This simultaneous development promotes a
coherent representation for similar stimuli (sensory) and
actions (motor), which greatly improves the effectiveness of
structure by taking advantage of these organizations.

In this paper, we compare the model proposed in [4]
with an artificial neural network with a standard architecture
(fully-connected). For sensori-motor prediction, we show that
a network with a specific structure can attain significant
advantages over fully connected networks. We claim that co-
developed structures yield better sensory predictions for the
effects of actions, relatively to a more naive and straight-
forward approach which lacks a sensori-motor structure and
development supporting the importance of coupling sensor
and motor information.

II. RELATED WORK

Considering a limited amount of resources an organism
needs to choose which actions to represent in its motor
system. A criteria which fits well with the stimulus predic-
tion rationale is to represent actions which have predictable



effects [5]. Assuming a particular sensory structure for the
simultaneous development of a motor system and a forward
model (which predicts the sensory input for a given action) a
topology emerges in motor system to support the predictabil-
ity of the actions [6].

It has been shown that, while maximizing the sensor’s
self-similarity under a given set of transformations, highly
regular structures emerge which resemble some biological
visual systems [7]. Still, for these structures to emerge, we
require apriori knowledge about the sensor spatial layout.
The retinotopic structure of an unknown visual sensor has
been reconstructed using an information measure, as well as
the optical flow induced by motor actions [8]. A robot with
the goal of estimating the distance to objects using motion
parallax developed a morphology for the position of movable
light sensors which was fit for the task [9].

Guiding the development of a sensori-motor system to
maximize the ability of predicting the effect an action has
on its sensory input (see Methods), allows for the emergence
of highly regular sensory structures without any prior knowl-
edge. To develop such ability we follow two main principles:
the sensory system should capture stimuli which are relevant
to motor capabilities and the actions of the motor system
should have predictable effects on the sensory system [4].

These principles are related to idea of ”morphological
computation” in robotics and artificial intelligence, which
aims at reducing the computational complexity of a problem
by using a specifically designed body to solve it (e.g. [10]).
The human visual system representation of the visual world is
progressively differentiated from what is captured through the
retina to support complex tasks, e.g. cells which are selective
to objects. Also, in machine learning it is known that for
recognition tasks there are huge advantages in using specific
architectures [11] (e.g. convolutional) relatively to a fully-
connected network.

III. METHODS

We consider an agent capable of observing its environment
by sensing a light field i which falls on a two dimensional
sensory surface. Similarly this agent is able to interact with its
environment by activating a particular motor primitive q on
its action space. For implementation purposes, in this paper
we represent the light field as a vector i of Ns pixels, and the
action space is represented as a vector q with Nm elements,
where a single non-zero entry represents the activated motor
primitive. If the nth index of q is 1, then the nth physical
action is performed (e.g. shift left by a certain amount). Note
that no topological assumptions exist on the spatial locations
of either the incident light field or the motor primitives.

During the learning phase, the agent interacts with the
environment by randomly choosing a motor primitive q while
collecting before and after sensor stimuli (i0 and i1). These
triplets are collected for several iterations and the full batch
is used as training data.

Here we consider two possible architectures for an agent,
capable of predicting its interaction with the environment,

and compare 1) its predicting capabilities, i.e. how well it can
predict i1 given i0 and q; 2) its simplicity, i.e. the number
of parameters learned which contribute to prediction.

A. Neural Network Architecture

In this case we consider a feed-forward linear network with
ns elements in a hidden layer emulating receptive fields. The
sensor input i0 is concatenated with the activated action q
(working as an action identifier) and used as input to the
network predicting i1. The optimization problem solved is
thus

(W∗
1,W

∗
2) = argmin

∑
k

∥∥∥ i′
k
1 − ik1

∥∥∥2 ,
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[
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which is represented in Fig. 1b. Here, W1 is an
(Nm +Ns + 1)× ns matrix, and W2 is (ns + 1)×Ns,
where each matrix includes a constant bias term. Although
the network is linear, the two matrices are required to
force the dimensionality reduction emulating the existence
of receptive fields.

B. Sensori-motor Network Architecture

We consider a second prediction network as described
in [4], explicitly modeling the existence of light sensitive
receptors represented as an Ns×ns matrix S which integrate
the light field i falling on the two dimensional sensory
surface. The sensor observation is then a vector o = Si. On
the motor side a dual structure exists, where a set of discrete
motor movement fields modeled as a Nm × nm matrix M
cover the available motor primitive space q, providing a nm
dimensional motor action representation space a = MTq.
These are then fed to a predictive layer, where a predictor
Pk, for each action, is composed as a linear combination
of nm basis predictors Pj with linear weights given by the
motor movement field activations,

Pk =

nm∑
j

(
mT
j q

k
)
Pj (2)

where mT
j represents transposed of the jth column of M and

the corresponding motor receptive field.
The full model description is provided in [4], resulting in

the optimization problem
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which is represented in Fig. 1a. Unlike in the neural net-
work architecture, you’ll notice that the sensor reconstruction
model is simplified to be ST (instead of independent projec-
tion and reconstruction matrices). In [4] the authors argue
that this simplification is justified by the particular solutions
obtained from the model, particularly the fact that the matrix
S will be nearly orthogonal.

(a) Scheme of used Sensori-motor Network.

(b) Scheme of used Neural Network.

Fig. 1: Diagram representation of (a) the sensori-motor
organization method and (b) a simple neural network with
a linear hidden layer. For both methods blue is used to
represent the input data (set of images and action triplets)
while orange represents the parameters to be trained together
with the predictions (Best seen in color).

IV. EXPERIMENTAL SETUP

To compare the proposed biologically inspired sensor-
imotor network architecture, here on called SNet, with the
simpler linear layer neural network, NNet, we design two
experiments. In the first experiment the motor space spans
actions leading to translations in the image plane, whereas
in the second experiment we use actions leading to centered
rotations and zooms in the image. The first set of movements
either mimics an agent that moves its sensor parallel to the
environment surface or an agent that performs small pan-
tilt rotations of the sensor when observing far objects. The
second set of movements can either be seen to approximate
the observations of an agent moving in a tubular structure
translating and rotating along its optical axis, or the obser-
vations of an agent while actively tracking an object that
rotates and changes its distance from the observer. For each
case, we perform 10 runs of the training algorithms. Each run

is composed of a batch of 8100 triplets, uniformly sampled
from a discrete set of Nm = 81 canonical actions (100
triplets of each canonical action). For the first experiment
the set of actions is composed of pixel translations u =
{−4 : 1 : 4} × {−4 : 1 : 4} and for the second experiment
the set of actions combine rotations and zoom scale factors
transformations u = {−100◦ : 25◦ : 100◦} × {0.80 : 0.05 :
1.20}. These experiments will be referred from here on as
Experiment XY and Experiment RZ, respectively.

The agent is equipped with a square retina of 15 by 15
pixels (Ns = 225) which is used to acquire the images.
Triplets (i0,i1,q) are obtained using a 2448 by 2448 pixels
image as environment for the agent. First the agent is
positioned in a random place in the environment and image
i0 is sampled. Then action u is performed and the new image
i1 is sampled. This process is illustrated in Fig.2.

Fig. 2: Triplet acquisition process. In the left we show the
full environment image. In the right we show a portion of
the environment where the agent is placed to acquire the pre-
action 15×15 pixel image, i0, then transformed by action u,
and acquire the post-action image, i1 (Best seen in color).

After acquiring its exploration data in the given environ-
ment, the agent processes the data in order to obtain the
network parameters for the SNet (S,M,P) and for the NNet
(W1,W2). The optimization criteria is the average squared
error in image prediction given an action as in equations (1)
and (3). In both experiments, the SNet model is formed by a
motor structure composed by 9 movement fields (nm = 9) and
a sensor structure composed by 9 receptive fields (ns = 9),
which is compared with a linear hidden layer of 9 neurons
for the NNet model. The number of RFs (hidden units)
can be chosen taking into account the resources available in
the particular hardware used to deploy the system. In these
experiments we use an identical number of sensor and motor
RFs but these numbers may be different.

The optimization problem for the SNet showed in Eq. (3)
is iteratively improved using a projected gradient descent
method [12] within the sequential optimization of P, M, S,
and the input triplets are considered in batches as in [4].

For SNet and NNet, while performing the optimization,
the RMSE between the predicted and the expected images
is computed using the training set and a validation set with
half the samples,



RMSE =

√√√√ 1

Ns × Nm × l

Ns∑
1

Nm∑
1

‖ı̂1 − i1‖2 (4)

where l stands for the number of samples per action.
The RMSE on the validation set is used as a stopping

criterion: the optimization stops when the training error
becomes almost constant and the validation error starts to
grow.

After training both networks, they are compared in terms
of efficiency (number of parameters used) and precision
(RMSE). A relative comparison regarding loss of information
(information criteria) is also computed using Akaike infor-
mation criterion (AIC) and Bayesian information criterion
(BIC) with,

AIC = 2k− 2 log(L) (5)

BIC = k log(n)− 2 log(L) (6)

where log is the natural logarithm and L is the considered
likelihood function:

L = exp−λRMSE2

(7)

with λ = 0.9, k the number of parameters to be estimated
and n the number of data samples (triplets) used for training.

V. RESULTS

In this section we show the results obtained from the
optimization of the two models under comparison (sensori-
motor network vs neural network), using the methods and
experimental setup described in the previous sections.

A. Sensori-motor Topology

Initially we revisit the emergent properties [4] with respect
to SNet organization (optimization problem in Eq. (3)).
These results illustrate some interesting outcomes of the
optimization process in terms of the shape and distribution of
the sensor and motor receptive fields. The sensor RFs (rows
of S) organize into a regular structure (after 300 iterations)
starting from a random initialization (see Fig. 3). Notice that
these organize more uniformly for translation actions then
for rotations and zooms. With rotations and zooms the sensor
fields tend to create a group of smaller receptors in the middle
of the retina and bigger fields near the boundaries (a rotation
produces higher movement far from its center).

In Fig. 4 we can observe the evolution of the motor fields
(columns of M) for both experiments. Experiment XY has
its action space uniformly sampled by pixels, producing a
near uniform organization of the motor fields. The performed
zooms in Experiment RZ had low impact on their images in
comparison with the rotations, which caused the motor fields
to organize in a way that each one represents an angular
range. Exception for the middle ones where no rotation is
performed and zooms have weight in motor RFs organization.

Fig. 3: Sensor RFs initialization and final organization after
300 iterations in one of the runs of Experiment XY (Top)
and Experiment RZ (Bottom) (Best seen in color).

Fig. 4: Motor RFs initialization and final organization after
300 iterations in a run of Experiment XY (Top) and Experi-
ment RZ (Bottom) (Best seen in color).

B. Quantitative Evaluation

After convergence of training on the 10 runs for each
of both networks we computed several statistics in order to
evaluate and compare their performance. We could observe
that the SNet has significantly less RMSE (about 5 to 15%
lower) and uses a much lower number of non-null parameters
(about 4-6×) that the neural network, in both experiences,
mainly because of its sparse solution. Different local minima



in the SNet optimization leads to some structure’s variations,
but yet with very similar results. The results are quantitatively
expressed in Table I, where the information criteria, AIC and
BIC, are also shown. As expected, being the error lower and
having lower number of parameters, the SNet also has better
scores in the information criteria.

In Fig. 5 we breakdown the reconstruction RMSE at
each pixel of the retina, computed over all images of the
test set. We can observe the localization of pixels which
lead to higher error and also compare the effectiveness of
reconstruction between both methods. For both experiments,
the reconstruction error is higher near the retinas boundaries.
Both in translations and zoom-out actions there are image
regions that are not possible to reliably predict since they
are out of the pre-action image. Thus it is natural to have
higher reconstruction errors close to the boundaries. Anyway,
this fact is exacerbated in the neural network on Experiment
RZ showing its limitations on predicting this type of motions,
since its prediction is a mean radial distribution of intensities
showing no patterns of the expected images.

C. Stimulus Predictions

After training the sensori-motor network, we can use
it for making stimulus prediction of the agent’s actions.
Given a certain planned motor action q we can compute
(i) the activation of the motor fields, a = MTq; (ii) the
prediction matrix P by Eq. (2); (iii) the predicted stimulus
by o1 = PSi0; and finally (iv) obtain the predicted image
by î1 = STo1. In Fig. 6 we illustrate graphically steps (i),
(ii) and (iii) for the translational action u = (4, 4) and the
rotation/zoom action u = (50, 1.0). In the left figures we can
observe the location of the motor RFs and their activation (the
shade of gray) for that specific action. In the right we can
observe the sensor RFs location with arrows representing the
main directions of flow of the prediction. Remember that each
entry of the prediction matrix pmn indicates the contribution
of receptive field n before action to the value of receptive
field m in the post action. The arrows thus indicate the
contribution of the source RFs in the formation of the target
RFs, with weights proportional to the arrows gray level. The
formation of the predicted image, step (iv), is illustrated in
Fig. 7. This can be interpreted as the imagination of what will
appear in the agent’s field of view after its action is executed.
Comparing the predicted image with the actual post-action
image, we can see that the former is a low pass version of the
latter, i.e. the best encoding of the reality in a least squares
sense, with the available computational resources (RFs).

VI. CONCLUSIONS AND FUTURE WORK

In robotics, as in many other engineering fields, there
are numerous problems where Nature is often the best
role model to solve them. In this work, it was possible to
successfully apply the proposed method [4] for post-action
images reconstruction and significantly reduce the number
of parameters needed to predict visual stimuli caused by
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Fig. 5: Comparison between both methods regarding RMSE
per pixel for reconstruction in a test set. (Top) Experiment
XY run. (Bottom) Experiment RZ run (Best seen in color).

EXP. XY Sensori-motor Neural Network NNet/SNet
All Parameters 3483 5013 1,44
Parameters 6= 0 1140 5013 4,40

Parameters ≥ 10−3 803 4910 6,11
RMSE 0.1004 0.1087 1,08

AIC 2.654 10.457 3,94
BIC 10.628 45.546 4,29

EXP. RZ Sensori-motor Neural Network NNet/SNet
All Parameters 3483 5013 1,44
Parameters 6= 0 1053 5013 4,76

Parameters ≥ 10−3 743 4925 6,63
RMSE 0.0955 0.1100 1,15

AIC 2.442 10.467 4,29
BIC 9.817 45.556 4,64

TABLE I: Comparison between SNet and NNet in both
translation and rotation experiments. The presented values
result from the average from all 10 runs. As observed sensori-
motor approach uses less parameters, produces a bit less
reconstruction error and has less loss of information. The
differences are higher between the models in Experiment RZ.

self-induced actions by drawing inspiration from biological
systems.

The development of visual receptive fields taking into
account the changes induced by motor actions allows a good
adaptability of the organism to the environment and thus
a cheaper way for an agent to process and predict visual
stimuli. A specialized network architecture like the SNet
described in this work is advantageous for predicting the
interactions between a sensorial and a motor system, as
well as obtaining more reliable predictions of what agent
is expecting to see after moving.

This tight relationship between perception and actions
is key for guiding the development of sensory and motor
systems which will support acting upon the environment. The
comparison performed in this work between standard artifi-
cial neural networks and sensori-motor networks, suggests
that the latter might prove useful in bringing us a step closer
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Fig. 6: (Left) Motor RF activations corresponding to partic-
ular actions. (Right) Induced prediction field in the sensory
space. (Top) Action u = (4, 4) on the translation network
(Bottom) Action u = (50◦, 1.0) in the rotation/zoom net-
work. The sensor RFs connections are represented by arrows
intensity proportional to the corresponding prediction matrix
entry (see details in text). Only prediction links with weights
over 0.25 are shown. Voronoi diagrams are used to split the
motor and sensor spaces into RFs.
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Fig. 7: Real and predicted image examples for the respective
actions: (Top) Translation action example: u = (4,−4)
and (Bottom) Rotation and zoom action example: u =
(−75◦, 1.20), using both SNet and NNet methods. As shown,
reconstructions obtained by SNet optimization show a more
coherent prediction of visual stimuli regarding the expected
images.

to biological performance.
We plan to compare this sensori-motor network with more

complex neural networks in other tasks to understand in
what extent SNets can surpass the common NNet approaches.
Mimicking the Human’s visual and motor system, SNet can
also be extended to include more layers, allowing more richer
representations for complex tasks. Another component which
would increase the applicability of the presented work is
the notion of state to support planning tasks. An online
development algorithm would simplify the application of this
model to robots in different and dynamical environments.
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