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The problem of nonlinear interaction of solitary wave packets with acoustic signals has been inten-
sively studied in recent years. A key goal is to explain the observed transmission loss of shallow-
water propagating signals, which has been found to be strongly time-dependent, anisotropic, and
sometimes exhibited unexpected attenuation vs. frequency. Much of the existing literature con-
siders the problem of signal attenuation in a static environment, without considering additional
effects arising from groups of solitons evolving both in range and time. Hydrographic and acoustic
data from the INTIMATE’96 experiment clearly exhibit the effects of soliton packets. However,
in contrast with reported observations of signal attenuation, the observed transmission loss shows
a pronounced signal enhancement that behaves like a focusing effect. This focusing is correlated
with peaks in current, temperature, and surface tide. That correlation suggests that the nonlin-
ear interaction of solitary wave packets with acoustic signals can lead to a focusing of the signal.
To clarify this issue, hydrographic data was used to generate physically consistent distributions of
“soliton-like” fields of temperature and sound velocity. These distributions were then used as input
for a range-dependent normal-mode model. The results strongly support the hypothesis that the
soliton field causes the observed signal enhancement.

1. Introduction

Naturally generated solitons can often be observed in coastal zones as a result of nonlinear
interaction of the surface tide with the continental shelf. Acoustic propagation through such
Solitary Wave Packets (SWPs) has been intensively studied in recent years (see for instance
Refs. 1 and 2). These SWPs have often been identified as the main cause of abnormal signal
attenuations. Most of the studies analysed the problem of acoustic propagation through
SWPs from a “static” point of view, since they did not consider the effects of SWPs that

347



348 O. C. Rodŕıguez et al.

evolve in both range and time. A detailed analysis of current, thermistor, and acoustic data
from the INTIMATE’96 experiment3 reveals SWPs propagating across the experimental
site. An interesting feature of the acoustic data, is an increase of signal amplitude which
is clearly correlated with peaks in current, temperature, and surface tide. This increase
of amplitude can be seen as a sort of focusing effect. To determine if this effect could be
the result of acoustic propagation through a “dynamic” SWP, the hydrographic data from
the experiment was used to develop physically consistent distributions of range-dependent
“soliton-like” fields of temperature and sound speed. These were then given as input to an
acoustic propagation model. The simulation results strongly support the assumption that a
SWP was responsible for the observed signal focusing.

This paper is organized as follows: Sec. 2 presents a brief theoretical background of
soliton propagation; this background simplifies the analysis of hydrographical data from the
INTIMATE’96 experiment, which is described in Sec. 3. The acoustic data, correlated with
hydrographic data from the previous section, is discussed in Sec. 4 and it is followed by
corresponding acoustic simulations. The main conclusions of the paper are presented in Sec.
5.

2. Theoretical Background

The starting point for the analysis of soliton propagation in a rotationless environment with
complex stratification is the so-called Korteweg-de Vries equation (hereafter simply KdV)
for modal vertical displacement η4,5
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N is the buoyancy frequency, D is the water depth, x corresponds to the axis of propagation,
〈 〉 is an “inner product” defined as

〈 . . . 〉 =

D∫
0

. . . dz , (2.5)

and Ψm and φm are the Hydrostatic Normal Modes (hereafter HNMs) of the corresponding
linear rotationless form of the hydrodynamic equations. In contrast with the corresponding



Nonlinear Soliton Interaction with Acoustic Signals: Focusing Effects 349

equation for a homogeneous fluid6, which admits a single soliton generation, it follows from
Eq.2.1 that by combining both nonlinear and stratification effects it is possible to obtain an
entire set of “modal” solitons with characteristics that depend on HNMs. Whether or not
this explains the observations of propagating SWPs depends on the properties of the HNMs.

2..1 The “Sech” solution

For displacements having large enough amplitudes and steepness, the KdV equation admits
the well-known soliton solution7

ηm = η0
msech2

(
x− Cmt

∆m

)
, (2.6)

where η0
m represents the peak amplitude of the modal soliton, which has a nonlinear charac-

teristic width

∆m =

√
12βm
αmη0

m

, (2.7)

and propagates with a nonlinear phase speed given by

Cm = Cm +
αmη

0
m

3
. (2.8)

As seen from the above equations ∆m is inversely proportional to the amplitude of the modal
soliton, whereas Cm is linearly proportional to η0

m; the implication is that the larger η0
m, the

faster the soliton propagates and the narrower or steeper the soliton is.

2..2 The “Dnoidal” Solution

Another solution to the KdV equation is7

ηm = η0
m

[
2dn2

(m,S)

(
x− Cmt

∆m

)
− (1− S2)

]
, (2.9)

where the index S is a function of the normalized variable τ = x/Cmt and dnS(ϕ) is the
“dnoidal” Jacobi elliptic function. The shapes of the “dnoidal” solution agree well with
the backscattered profiles measured from SAR images5,8 . As S → 1 the above expression
becomes the “sech” profile. From a dynamical point of view there are significant differences
between this and the previous type of solutions: Eq.2.6 describes a SWP with a single modal
soliton, which propagates in time and space without deforming its shape (see Fig. 1(a)). In
contrast, Eq.2.9 describes a perturbation with an evolving profile (see Fig. 1(b)), resembling
the evolution of soliton packets. The number of solitons within a packet depends on the
values of τ and S. The importance of this point will be discussed in Sec. 4 when performing
the acoustic simulations.
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Fig. 1: Spatial and temporal evolution of soliton modal displacement η1, for a “sech” profile (a),
and for a “dnoidal” profile (b). Soliton parameters are η0

1 = 5 m, ∆1 = 196 m and C1 = 54.2 cm/s
(values taken from Ref.7).

2..3 Temperature perturbations

It follows from hydrodynamic coupled equations for horizontal currents and displacement4

that the horizontal components of fluid velocity depend linearly on vertical soliton dis-
placement. Nevertheless, from a tomographic point of view, the system of hydrodynamic
equations does not provide a physical basis for expanding the temperature field, and thus
the sound-speed field. To address the tomographic issue, let us recall the thermodynamic
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equation9

D

Dt
(ρCvT ) = ∇ (kT∇T ) +QT , (2.10)

where Cv denotes the specific heat at constant volume, kT is the thermal conductivity, and
QT represents all sources and sinks of heat. Linearizing and solving this differential equation
(see the appendix) one obtains:

T ≈ T0(z) +
dT0

dz

∑
m

TmηmΨm , (2.11)

which shows that the vertical structure of temperature is related to the HNM Ψm (in contrast
with horizontal currents, which depend only on φm). The horizontal dependence remains
linearly related to the vertical displacement and this approximation becomes linear when
dT0/dz ≈constant.

The theoretical description of soliton propagation will be used in the following section
to understand the current and temperature features found in hydrographic records from the
INTIMATE’96 experiment.

3. Experimental Data

The INTIMATE’96 experiment3,10 performed during June 1996, North of Lisbon (see Fig.
2) involved the collaboration of the following institutions: the Universidade do Algarve
(UALG), Faro, the Instituto Hidrográfico (IH), Lisbon (both from Portugal), and the Centre
Militaire Oceanographique (SHOM), Brest, France. The project team received also support
from the Saclant Undersea Research Centre (SACLANTCEN), La Spezia, Italy, which lent
the Vertical Linear Array (hereafter VLA). The experiment was conceived with the main
goal of applying ocean acoustic tomography to the detection and inversion of the internal
tide. The French oceanographic vessel BO’DENTRECASTEAUX towed an acoustic source
at 90 m depth, which emitted linear frequency-modulated chirps sweeping from 300-800 Hz
with a 2-second duration. The transmissions were repeated every 8 seconds, then received on
the 4-hydrophone VLA and telemetered back to the Portuguese vessel NRP ANDROMEDA.
The hydrophones were located at 35, 70, 105 and 115 m depth. Signal transmissions were
performed from north and west positions (see Fig. 2), along range-independent and range-
dependent acoustic tracks, respectively, with corresponding distances of approximately 5.6
and 6.4 kms. The bottom compressional speed and attenuation were estimated from coring
measurements as 1750 m/s and 0.9 dB/wavelength, respectively. During the experiment
an intensive survey of thermistor, CTD, XBT and ADCP data was performed near the
position of the VLA and at the source location. This allowed for the calculation of Empirical
Orthogonal Functions (hereafter EOFs, see Fig. 3) and HNMs (see Fig. 4), and a high degree
of correlation was found between both sets of functions.10
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Fig. 2: Chosen area of the INTIMATE’96 experiment (a) and bathymetry of the experimental
site (b) (contour depths in m).
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Fig. 3: EOFs for current comp. u (solid line) and v (dot-dash line) (a) and for temp. T (b).

In particular, the mean sound-speed profile exhibits a typical summer shallow-water pro-
file which decreases with depth (see Fig. 5), the corresponding values of the discretized
profile are shown in Table 1. The smooth downward refracting gradient of the profile con-
trasts significantly with usual schematic two-layer representations.
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Fig. 4: Normalized HNMs Ψm (solid line) and φm = dΨm/dz (dot-dash line).
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Fig. 5: Mean velocity profile from CTD-IH.
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Table 1. Discretized values of the mean sound-speed profile.

Depth (m) Sound Velocity (m/s) Depth (m) Sound Velocity (m/s)
3 1520.6 65 1509.4
5 1520.2 70 1508.9
10 1518.9 75 1508.6
15 1517.4 80 1508.4
20 1516.1 85 1508.2
25 1515.3 90 1508.1
30 1514.1 95 1508.0
35 1512.9 100 1507.9
40 1512.1 105 1507.8
45 1511.4 110 1507.7
50 1510.9 115 1507.6
55 1510.4 120 1507.6
60 1509.8 125 1507.7

A preliminary step in the analysis of current and temperature data consisted in calcu-
lating the dependence of ∆m on η0

m for some of the HNMs (see Eq.2.7). Those calculations
revealed that not every pair (Ψm, φm) is “allowed” to generate modal solitons. For m > 1, the
characteristic soliton width ∆m becomes complex, and this implies that the characteristics
of the SWPs depend only on Ψ1 and φ1.

To detect the propagation of SWPs across the experimental site (and on the basis of
the previous result) one can take advantage of the correlation between EOFs and HNMs,
and calculate the empirical “modal” amplitudes of hydrographic data for the first EOF.
Those amplitudes were separated with a Butterworth filter into low-pass and high-pass
components with the cutoff frequency chosen in order to obtain a “tidal” band (with periods
longer than 4h) and a “buoyancy” band (with shorter periods). Due to the low sampling
frequency (∼ 1/10 minutes) the estimation of vertical displacement from thermistor data
did not resolve the structure of SWPs. Nevertheless, it was expected to “capture” some of
the solitons within a packet —if present— in the high-pass component. This data processing
did not provide any physical information about the direction and phase velocity of SWPs
since the measurements were taken at a single location. The results of filtering are shown in
Fig. 6. In all cases —and particularly in the bottom plots of temperature records— there
are significant “peaks” (the position of the first three peaks is denoted with arrows), which
are not distributed randomly, but appear to be repeated at each tidal cycle. Those peaks are
located slightly behind the maxima of the corresponding tidal component, which is shown by
the vertical dashed lines starting at each peak’s position and crossing the low-pass component
of modal amplitude. The position of the second peak is “missing” in the high-pass modal
amplitude of u, which might be due to the low temporal resolution of hydrographic data.
However, its expected position is shown to enhance the general “alignment” between the
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Fig. 6: Modal amplitudes of horizontal current components u (a), v (b) and temperature T (c);
velocity is in cm/s and temperature in Celsius degrees. The second peak is missing in the modal
amplitude of u but its expected position is shown to enhance the general comparison.
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soliton peaks and the corresponding maxima of tidal components. Peaks in the current data
reach amplitudes up to 40 cm/s, which is close to the corresponding maximal value reported
by Apel et al.5.

4. Acoustic Simulations and Comparison with Real Data

Based on the analysis of temperature records the first step consisted of searching for acoustic
perturbations of the received signal, temporally correlated with any of the peaks of the high-
pass component of temperature. To accomplish this task, part of the acoustic transmissions
from the north source position to the VLA was processed, during a time interval of ∆t = 3 h
around the third temperature peak (near 166.75 d, see Fig. 6, on bottom). The processing
consisted in calculating the following quantity:

− 20 log10 |p̂(f)| , (4.1)

where p̂(f) corresponds to the monochromatic component at frequency f , of the Fourier
transform of the received signal p(t). The quantity defined by Eq.4.1 will be called as
“relative transmission loss” (hereafter RTL). The processed acoustic data revealed a sharp
pattern of acoustic perturbations (near 166.765 d, see Fig. 7, on top). The pattern is
complex but it reveals an increase in signal amplitude across a wide band of frequencies.
As observed earlier, this can be seen as a sort of focusing effect. At a single frequency the
perturbation pattern appears to be poorly resolved, due to the superposition of noise on each
frequency component. Therefore, some averaging was applied to different RTL curves over a
temporal window of 200 seconds. The curves were further smoothed in time with a low-pass
filter. The RTL curve at 430 Hz (see Fig. 7, on bottom), shows the focusing effect more
clearly. The overall amplitude excursion of the RTL corresponds approximately to 9 dB.
Besides the propagation of soliton packets across the experimental site it seems unlikely to
find other physical mechanisms that can account for the RTL perturbation described above.
In particular, for the INTIMATE’96 environment, the propagation of the surface tide does
not affect the depth of the thermocline. Therefore, the tide can not lead to significant
interactions of the acoustic signal with the bottom.

Unfortunately, the temporal correlation between the temperature peak commented on
previously and the acoustic data is not evident. This might be due to the significant dif-
ference between the sampling rates of temperature records, one sample every 10 minutes,
and acoustic transmissions, with one emission every 8 seconds. To clarify this issue one can
exploit the theoretical knowledge on soliton propagation and generate “soliton-like” fields
of temperature and sound velocity, which can be used as input for an acoustic propagation
model. The primary goal of the simulations is to obtain a qualitative agreement between
the modeled and the measured dependences of RTL along time.

An important theoretical question of soliton propagation is the choice of initial conditions
that define the starting shape ηm(x, 0) and starting amplitude η0

m of the SWP. A complete
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Fig. 7: Relative transmission loss over frequency (a) and averaged and smoothed relative trans-
mission loss at 430 Hz (b).

discussion of this problem should handle the analysis of the forcing mechanisms of soliton
generation, which is an issue beyond the scope of this paper. For this reason, and also be-
cause SWPs in our environment depend only on Ψ1 and φ1, η0

1 was estimated from direct
measurements, through the analysis of isotherms from thermistor data. To accomplish this
task the mean depth of each isotherm was calculated, and the corresponding isotherm oscil-
lations along time were corrected to the mean depth. This gave a distribution of corrected
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isotherms, from which the one that exhibited the narrowest peak of amplitude was selected.
That one was considered to be representative of the initial soliton amplitude. That gave
η0

1 ≈ 25 m. Furthermore, from Eqs. (2.2),(2.3),(2.4) and (2.7) one can predict that C1 =
44 cm/s, α1 = 0.012 s−1 and β1 = 300.4 m3/s, while from Eq.2.8 one predicts that C1 = 54
cm/s. This value of soliton speed is close to the measured values discussed in Ref.5.

The “solitonized” fields of temperature are calculated from Eq.2.11. Furthermore, each
temperature profile is converted to sound-speed using the well-known Mackenzie’s formula.
Those transformations reflect the fact that the propagation of the SWP across the acoustic
waveguide leads to time-dependent —and range-dependent— perturbations of the sound-
speed profiles. Those perturbations of sound-speed affect dynamically the acoustic signal,
mainly due to the dependence of refraction and surface/bottom interactions, on time and
range. The expected geometry of soliton propagation is shown in Fig. 8, where θ represents
the direction of propagation. Since the thermistor chains were located slightly to the east of
the VLA, and because the temperature perturbation occurs before the acoustic perturbation,
one can assume that the SWP “starts” propagating south-east from the VLA. According to
the previous figure the effective width of the soliton front is ∆e = ∆/ sin θ, where ∆ is the
width of the front along the direction of propagation1. Moreover, the effective velocity of
soliton propagation is Ve = C1 sin θ. In this way, one starts calculating the transmission loss
(hereafter TL) using the mean sound-speed profile, “displaces” the SWP a distance Ve∆t

1Do not confuse this width with the characteristic soliton width ∆m.
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(with ∆t = 2 minutes) towards the north position of the acoustic source, and calculates the
TL again. The displacement is repeated until the SWP covers a temporal window of 3 hours.

A preliminary set of simulations was performed with the acoustic model C-SNAP11, by
calculating the TL at f = 430 Hz, for a “sech” profile, and for a set of four “dnoidal”
SWPs. Each “dnoidal” soliton packet contained an integer number of solitons, up to four.
Those packets were calculated by modifying, through trial and error, the parameters S and
τ . The angle of propagation was considered as θ = 15◦, which corresponds to the estimated
direction of propagation of the internal tide10. The shape of the “dnoidal” packets did not
change over time, which is an assumption based on observations2. The results showed a
complex dependence of TL on time, where one can observe high levels of attenuation, but
also levels of signal focussing. The result that resembles best the curve of RTL was obtained
for the case of a “dnoidal” SWP with four solitons (see Fig. 9). The modeled dependence
of TL on time exhibits the pattern of attenuation, focusing and attenuation again, as the
SWP approaches and passes over the VLA. Further simulations with other values of θ, using
both the “sech” and “dnoidal” soliton profiles, revealed an oscillating-like highly nonlinear
dependence of TL on θ. These simulations gave further consistency to the soliton hypothesis,
since the acoustic model predicted certain degrees of signal focusing at particular positions
of the soliton packets. Nevertheless, none of the simulations reproduced a focusing effect in
qualitative agreement with the one observed.

2 For instance, the soliton packet described in Ref. 12, and observed at a few tens of miles from the
INTIMATE’96 experimental site, propagated shoreward keeping a stable shape during almost 12 h.
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5. Conclusions

On the basis of this analysis the following conclusions can be drawn: 1) nonlinear approxi-
mations to hydrodynamic equations for a rotationless environment admit the generation of
“modal” solitons with characteristics that depend on HNMs; 2) the “sech” and “dnoidal”
modal solutions of the KdV equation correspond to different dynamics of soliton propaga-
tion: the “sech” profile describes a single soliton, which propagates in time and space without
changing its shape, while “dnoidal” profiles evolve both in time and space and for certain
parameter choices can give a better description of SWPs; 3) current and temperature hydro-
dynamic fields depend linearly on vertical modal displacements, which can be obtained as
solutions of the KdV equation; such solutions can be used to generate physically consistent
fields of temperature and sound velocity; 4) separation of current and thermistor records of
the INTIMATE’96 experiment into low-pass and high-pass components shows evidence of
soliton groups propagating across the experimental site; 5) one of these groups is coincident
with a strong perturbation of the acoustic signal which, when analysed in detail, reveals an
increase of signal amplitude, i.e., an effect similar to signal focusing and 6) simulations of
acoustic propagation through “soliton-like” fields of sound velocity show a similar effect of
signal focusing and confirm the assumption that a SWP may be responsible for the observed
acoustic perturbation.

Appendix

It can be shown5 that the dynamic fields of currents (u, v, w) can be expanded in terms of
HNMs Ψm and φm = dΨm/dz as follows:

(u, v) =
∑
m

(um, vm) ηmφm , and w =
∑
m

wmΨm
∂ηm
∂t

, (A.1)

where ηm represents modal displacement, and (um, vm, wm) are coefficients of modal ampli-
tude for the current components u, v and w. For ηm being calculated in meters, and t in
seconds, wm will be a dimensionless parameter while um and vm will have dimensions m/s.
By taking kT = 0 and constant (cv , ρ) Eq.2.10 becomes:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= 0 . (A.2)

In the general case it is not clear which terms can be neglected and which ones can not.
However, by neglecting coupling mechanisms and taking into account that an important
feature of soliton propagation is the significant dynamics of the perturbation along the depth
axis, one can neglect the second and third nonlinear terms, and rewrite Eq.A.2 as follows:

∂T

∂t
+ w

∂T

∂z
= 0 . (A.3)
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Now, recalling the general structure of expansions [Eqs. (A.1)] let us consider that

T (x, y, z, t) ≈ T0(z) + T ′ , and T ′ =
∑
m

TmΨmγm . (A.4)

In the last expression γm is an unknown function, while Tm corresponds to a dimensionless
coefficient of modal amplitude for temperature. Both γm and Tm should be chosen in order
to ensure the consistency of Eq.A.3. Using Eqs. (A.4) it can be obtained that:

∂T

∂t
=
∑
m

TmΨm
∂γm
∂t

. (A.5)

Furthermore, neglecting again coupling mechanisms between modes, and through further
linearization, the second term in Eq.A.3 can be approximated as:

w
∂T

∂z
≈ dT0

dz

∑
m

wmΨm
∂ηm
∂t

. (A.6)

Substituting Eq.A.5 and Eq.A.6 into Eq.A.3 it follows automatically that

Tm = −wm and γm = ηm
dT0

dz
.

The minus sign indicates that the time oscillations of w and T have a phase difference of π
radians. The last pair of equations lead to Eq.2.11.
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