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Abstract 

This paper describes a biologically inspired approach 
to the modeling and control of multi-agent populations 
composed by a large number of agents. Individual agents 
are modeled based on a deterministic Hybrid Automata 
endowed with input events and continuous-valued outputs. 
The complexity of population modeling is avoided by 
assuming a stochastic approach, under which the agents 
distribution over the state space is modeled. This is based 
on a Stochastic Hybrid Automaton, which results from 
inputting a stochastic event sequence to the individual 
model. The dynamics of the state probability density 
functions is determined and the results applied to the 
mission control of a simulated robotic population. 
 

1. Introduction 
Multi-agent systems (MAS), concerning both virtual 

[8] or real (robotic) [9] agent populations, are currently a 
subject of major interest in the literature. One of the most 
relevant topics in MAS is the modeling and control of 
large-size agent populations.  Under the current 
state-of-the-art, it seems that results for small-sized 
populations do not scale necessarily well for large-scale 
ones. Therefore, progresses towards the mathematical 
modeling of large-size agent populations are welcome. 
Such models can be used to predict the evolution of the 
population and subsequently design controllers or 
supervisors capable of changing the population behavior 
by the suitable adjustment of appropriate parameters.  

One approach with large potential for this purpose, 
followed in this paper, is based on recent results on the 
mathematical modeling of biological systems [6, 7]. In 
fact, our work has been originally developed for 
biological experiments modeling. However, we have 

found that such an approach also provides results of 
potential interest for the MAS community. The paper 
starts by motivating a biological approach to the modeling 
and control of large size multi-agent populations in 
Section 2. Individual agents are modeled based on a 
deterministic Hybrid Automata in Section 3. The 
complexity of population modeling is avoided by using a 
Stochastic Hybrid Automata model for the population in 
Section 4. The dynamics of the state probability density 
functions is determined (Section 4) and the results applied 
to the mission control of a simulated robotic population in 
Section 5. 
 

2. Motivation 
The problem that motivated this work is related to the 

modeling of a population of T-Cells[1][2]. Figure 3 
presents a population of T-Cells surrounded by Antigen 
Presenting Cells (APC). The interaction between T-Cells 
and APCs is one of the most important reactions of the 
immune system. This reaction is called T-Cell Receptor 
(TCR) triggering and leads to the production of effector 
cells, which kill antigens. The interaction between 
T-Cells and APC produces changes in the amount of 
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Fig. 1. The T-Cells population surrounded by APCs. qi is 
the discrete state of the ith T-Cell. 



TCR (TCR dynamics) in a T-cell. Before interaction starts, 
the T-Cell should be connected to an APC. However, 
simultaneously some of the T-Cells will disconnect from 
APCs, and others will connect again (Fig. 1).  

The T-Cell population is definitely a complex system. 
To follow the complete dynamics of the population, the 
TCR dynamics and the motion dynamics, which leads to 
the connection or disconnection of each T-Cell to APCs,  
should be followed. If we assume a 3D model of motion 
we need 6 state variables per T-Cell just to describe the 
position and velocity of a T-Cell. We need also at least 
one state for TCR dynamics and at least one discrete state 
variable that contains information on whether the T-Cell 
is connected or disconnected. In total this means, at least, 
8 variables per T-Cell. A population of 1000 T-Cells has a 
state vector of dimension 8000. Although the simulation 
of the population would not be impossible with current 
computational power, the dynamics of the average value 
and the variance of the TCRs in the population are 
typically sought by biologists. These moments are 
particularly important when the population observed data 
is to be matched to the individual TCR dynamics. These 
facts motivated a more general approach to the modeling 
of a multi-agent population, which is described in the 
sequel. 

 

2. Micro Agent Individual Model 
The aim of this section is to introduce the population 

building block, designated as Micro Agent. The prefix 
“Micro” is used because this building block describes the 
population behavior at the micro level i.e. at the level of 
the individual behavior. A Micro Agent is a single-input 
multi-output hybrid system. The input to a Micro Agent is 
a continuous time discrete event sequence. The output of a 
Micro Agent is a continuous time real vector. The output 
of a Micro Agent is a function of the hybrid system state. 
This hybrid system state is a function of the discrete event 
time sequence at the system input. 

Definition 1 [3]. A hybrid automata H is a collection  
H =(Q, X, Init, f, Inv, E, G, R) where: 
- Q is a finite set of discrete states (1) 
- X  is Rn is the continuous state space  (2) 
- Init ⊆ Q × X is the set of initial states (3) 
-  f:X×Q→TX assigns to each q∈Q a vector 
     field f(x,q) 

(4) 
 

- Inv: Q → 2X assigns to each q∈Q an invariant set (5) 
- E ⊆ Q × Q is a collection of discrete transitions (6) 
- G: E → 2X assigns to e∈E a guard set, representing 
the collection of the discrete transitions allowed by 
the state space vector 

(7) 

- R: X × E → 2X assigns to e∈E and x∈X a reset map, 
describing  jumps in the continuous state space due to 
event e. 

(8) 

Definition 2. A Micro Agent µA is a single-input 
multi-output hybrid automaton. It is a collection  

µA=(H,U,τ,Y) where : 

-Y is Rm, is the output state, a µA output y∈Y is a  
  function of the continuous state x, y =g(x) 

(15) 

Remark1. The Micro Agent state, called micro state, is a 
pair (x,q)∈X×Q. This couple consists of continuous x∈X 
and discrete state q∈Q parts. 

Properties (10) and (11) in Definition 2 mean that, for 
hybrid system H, discrete and continuous dynamics could 
evolve in a free manner. However, jumps in the 
continuous state space part are not allowed. It should also 
be underlined that a Micro Agent is a deterministic 
system.  
 

3. Stochastic Micro Agent 
The Micro Agent model is deterministic since it is 

based on a deterministic Hybrid System. Here, a 
Stochastic Micro Agent model will be introduced. 

Definition 3 [5] (Micro Agent Stochastic Execution)  
A stochastic process (x(t),q(t))∈X × Q is called a Micro 
Agent Stochastic Execution iff a Micro Agent stochastic 
input event sequence e(τn),n∈N,  τ0 = 0 ≤ τ1 ≤ τ2 ≤… 
generates transitions such that in each interval [τn,τn+1), 
n∈N, q(t)≡ q(τn). Remark 1. The x(t) of a Stochastic 
Execution is a continuous time function since the 
transition changes only the discrete state of a Micro 
Agent. 

- H is a Hybrid automata  
 H =(Q, X, Init, f, Inv, E, G, R) satisfying properties: 

(9) 

   -Inv: X , ∀Q    (10) 
   -R(e,x)=x, ∀ (e∈ E ∧ x∈ X) (11) 
   -U is a finite set of input discrete events including  
      the nil event ε 

(12) 

   -τ:U×Q→E, assigns to the discrete event u∈U and  
     discrete state q∈Q the transition e=(q,q’)∈E,   
     where τ(ε,q)=(q,q)   

(13) 

   -X is Rn, the state space of the continuous piece  
    of H 

(14) 



Definition 4. (Micro Agent Continuous Time Markov 
Process Execution) A Micro Agent Stochastic Execution 
(x(t),q(t))∈X × Q  is called a Micro Agent Continuous 
Time Markov Process Execution iff the input stochastic 
event sequence e(τn),n∈N,  τ0 = 0 ≤ τ1 ≤ τ2 ≤… generates 
transitions whose conditional probability satisfies:  

P[q(τk+1)=qk+1| q(τk)= qk, q(τk-1)= qk-1,…, q(τ0)= q0]=  
P[q(τk+1)=qk+1| q(τk)= qk] (16) 

Remark 1. The q(t) of a Micro Agents Continuous Markov 
Process Execution is a Continuous Time Markov chain. 

Definition 5. (Stochastic Micro Agent, SµA)  
A Stochastic Micro Agent is a pair SµA=(µA,e(t)) where 
µA is a Micro Agent and e(t) is a Micro Agent stochastic 
input event sequence such that the stochastic process 
(x(t),q(t))∈X × Q is a Micro Agent Stochastic Execution.  

Definition 6.(Continuous Time Markov Process Micro 
Agent, CTMPµA) A Stochastic Micro Agent is called a 
Continuous Time Markov Process Micro Agent iff 
(x(t),q(t))∈X × Q is a Micro Agent Continuous Time 
Markov Process Execution.  

Previous definitions aimed at making clear that a 
Stochastic Micro Agent is a Stochastic Hybrid Automaton 
based on a Micro Agent, which is a deterministic system. 
In the sequel, a Stochastic Micro Agent will be used as a 
model of Micro Agents populations. 
  

4. Mathematical Analysis 
The connection between the individual micro dynamics 

and the population macro dynamics is strongly related to 
the area of statistical physics [10] where behavior and 
properties of mechanical bodies made up of a very large 
number of separate particles are studied. In this 
framework the connection between the micro and macro 
dynamics is established through the pdf of system 
particles over a state space. 

Concerning the Micro Agent population we assume 
that: 
-The  interaction between individuals is modeled as 
a Micro Agent 

(17) 

-The complexity of the interactions among 
individuals in the population produces the Micro 
Agent Stochastic Execution of a Micro Agent in the 
population. 

(18) 

The previous assumptions bring us directly to similar 
problems in statistical physics and the following 
conclusion: The individual Micro Agent dynamics and the 

dynamics of the Micro Agents population measurements 
are connected through the probability density function of 
a Stochastic Micro Agent state which represents the 
population state. 

Different kinds of Stochastic Micro Agents could be 
considered.  In sequel we will interested in CTMPµAs. 
The following theorem concerns the probability density 
function of a CTMCµA over the state space. 

Theorem 1. For a CTMPµA with N discrete states and 
discrete state probability satisfying 

)()( tLt T PP =&  (19) 

where P(t)=[P1(t) P2(t)…PN]T, Pi is the probability of 
discrete state i,L= [λij]

T
N×N, is transition rate matrix and 

λij  is a  transition rate from discrete state i to discrete 
state j, the vector of state probability density functions 
 ρρ(x, t)=[ρ((x,1), t), ρ((x,2), t),…, ρ((x,N), t)]T where 
ρ((x,i), t) is the pdf of state (x,i) at time t, satisfies the 
following equation: 
 
 
 
 
where  f(x,i) is the vector field value at state (x,i). 

Proof. The state space X×Q of the Stochastic Micro 
Agent is presented in Fig. 2. Transition between the 
discrete states is a Continuous Time Markov Chain 
stochastic process and x(t) is a continuous time function 
i.e x(t -)= x(t+)=x(t). The probability pV,i that the Micro 
Agent state (x,q)∈{(x,q) | x∈V, q=i} is given by 
 
 
where ρ(x,i) is the probability density function of the state 
(x,i) and arbitrary chosen volume V in X. The time 
derivative of  pV,i is: 
 
 
Using Fig. 2 the time derivative of pV,i could be written as: 
 
 
where ∆pV  and  ∆p∆S∆x are probability changes in  the 
volumes VI and ∆VB=∆S∆x, respectively, and VB=ΣS,∆S→0 
∆S∆x. Due to the continuity of x(t) 
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since, in the time interval [t,t+∆t), x(t) does not leave  
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volume VI  and probability in VI changes due to the 
Markov Chain transitions. During the same time interval, 
the increase of probability in the volume ∆VB=∆S∆x is  
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where x ∈ ∆VB . Taking into account the Markov Chain 
transitions in the volume ∆VB  and equation (24) we have  
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Replacing (24) and (26) in (23) gives  
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Taking the small volume limit of the equations (22) and 
(29) we have 
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Using ρρ(x, t)=[ρ((x,1), t), ρ((x,2), t),…, ρ((x,N), t)]T the 
equation system (30) becomes 
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Q.E.D

. 
The partial differential equation (20) has the form of 

the Convection-Diffusion equation[4]. This type of 
equation is used for description of incompressible fluids. 
The solution of this equation is the pdf of CTMPµA state 
as a function of time. A numerical method for solving this 
equation is discussed in [4]. 

 

5. Robotic Population Mission Control 
In this section we will introduce a potential application of 
the theory developed in this paper to the mission control 
of a robotic population using stochastic signals. The 
mission scenario could be suitable for planetary system 
exploration or search and rescue missions.  

This scenario assumes a robotic population of small 
robots, initially concentrated on a location over the 
unexplored terrain (e.g., the mission command station)  
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Fig. 2. xi-state of continuous space, q-state of discrete 
space, f(x,i)-vector field for q=i, V-trajectory volume, 
VI  - volume of trajectories not crossing the surface S in the 
time interval [t,t+∆t), VB - volume of trajectories crossing 
surface S in the time interval [t,t+∆t), ∆VB  - element of the 
volume VB, ∆S - element of the surface S, v - projection of
the vector field f(x,i) onto the surface vector s0,
∆x-length v∆t. 
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Fig. 3. a) A robotic population controlled by three aerial 
robots (sources); b) The vector fields created by control 
signal sources.  

With the use of Gauss’ theorem



and controlled by the stochastic signals produced by aerial 
robots (Fig. 3a).  

In this scenario, each robot in the population moves in 
the direction of the active signal source. Under the 
assumptions that aerial robots are far away from the 
population and that the robot velocity is constant (v=1),  
the robotic motion model is  
 
 
 

 
 
 
 
  

  
 
 
 
 
 
 

 
 

 
 
The angles of the vector fields f(x, i)=[vcosθ  vsinθ]T, 
i=1,2,3 in this example, are θ ∈{-π/4, 0, π/4}.  
A stochastic sequence of angles θ acts as an input control 
signals for the population. If the stochastic sequence of 
angles (events) satisfies Equation (19), the population 
could be modeled as CTMPµA, depicted in Fig. 4 (in the 
example, no direct transitions between 1 and 3 exist). 
Using the transition rate matrix 
 
 
 
 
the evolution of the CTMPµA pdf is given by  
Equation (20). The solution contour plots of (20) for two 
different transition rates are presented in Figs.5 and 6. In 
both cases the initial pdf of the continuous state for 
discrete state q=2 is Gaussian with diagonal covariance 
matrix, and zero mean. For states q = 1 and 3 the pdf is 
zero. The figures present the pdf value of each CTMPTµA 
state, ρ((x,q),t), and the pdf of the robot position η(x,t) 

calculated as: 
η(x,t)=ρ((x,1),t)+ρ((x,2),t)+ρ((x,3),t) (34) 

we should notice that since y=x the equation (34) is the 
pdf of the CTMPTµA output. 

In case I most of the µA are in the state q=3 and overall 
population dominantly moves in the direction of the 
vector field f(x,3). The vector field f(x,2) has some initial 
influence on the population at the beginning of the 
observed time interval, but then this influence decreases. 
Since the contour shape of ρ((x,1),t) has little influence on 
the shape of the contour plot of η(x,t) we can conclude 
that influence of f(x,1) is small. Both of these conclusions 
are reasonable and also come from the analysis of the 
transition rates values and initial probabilities of 
CTMPTµA discrete states P2 (0)=1 and P1 (0)= P3 (0)=0. 

In case II the distribution of the CTMCµA states over 
the discrete space Q is more uniform. This explains η(x,t) 
more symmetric shape than in case I.  However, it could 
be seen from the density of the contours that the 
probability of the CTMCµA staying in state q=1 is slightly 
bigger than the others. Analysis of the transition rate 
values shows that it is due to the probability P1(t) being 
slightly larger than P2(t) and P3(t) 

From the previous results we may conclude that, in 
these examples, the dominant direction of the population 
motion is directed by the vector field f(x,q) of the most  
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Fig. 4. The CTMPµA model of the population. Discrete 
states q=1,2,3 and motion between these states corresponds 
to the activation of signal sources 1,2,3, respectively, 
λij – transition rate from state i to state j.  
 

















−
−−

−
=

3223

32232112

2112

0

0

λλ
λλλλ

λλ
TL  (33) 

 

Fig. 5. The pdf of the robots population states ρ((x,q),t), the 
pdf of the robots position η(x,t). Case I: λ12=0.5, λ21=0.1, 
λ23=0.9, λ32=0.1, plots shown at time instants t= 0, 0.39, 
0.79,1.18,1.57, 1.96 (from left to the right in picture) 
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probably discrete state q. However, the population 
spreading shape depends in general on the initial pdf and 
transition matrix L. The latter should be seen as a design 
parameter for the population mission control. 
 

6. Conclusion 
In this paper a biologically inspired approach to the study 
of a robotic population is discussed. The robotic 
individuals were described by a deterministic Micro 
Agent model, which is defined within the Hybrid 
Automata framework. Under a stochastic assumption 
about the Micro Agent input event sequence the 
Stochastic Micro Agent model of robotic population is 
introduced. The relation between the deterministic model 
Continuous Markov Chain stochastic event sequence and  
the pdf of the Stochastic Micro Agent state is derived. 
Using this analytical relation an example of using the 
stochastic control signals to control a robotic population 
was presented. 

Potential future work along this research line includes 
the design of the multivariable feedback mission 
controller of the population spreading shape. This also 
includes problem of trajectory control of the population 
center of the mass or maximum likelihood position. An 

interesting research topic will be the design of a mission 
controller for the population splitting and independent 
control of the resulting subpopulations.  Direct 
applications to biological experiments are also currently 
underway. 
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