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ABSTRACT

Local stationarity of a L2(R) bandpass random process
reflects in specific regions of either the frequency plane of
its 2 dimensional power spectrum or the time-frequency
plane of its Wigner distribution. The paper addresses the
problem of estimating from data a covariance matrix that
satisfies the constraint of being locally stationary. We also
show, with a real-data case study, the improvement in per-
formance achieved by using locally stationary covariance
matrices in the development of low cost quadratic detectors.

1. INTRODUCTION

Local stationarity has been an issue in recent research, as
in [1] where a best basis is chosen from local cosine dic-
tionaries to estimate covariance matrices of locally station-
ary processes. Locally stationary second-order representa-
tions of nonstationary processes are important for several
reasons. For example, in speech processing, 1-D autocorre-
lation functions are commonly used in short time intervals,
although this class of signals is clearly nonstationary in na-
ture.

In real time passive detection, stochastic signal sources
are adequately characterized by their second-order statis-
tics. In this case, the classical (optimal) receiver is the quad-
ratic processor relying on the covariance matrix of the non-
stationary process. In some applications as, for example,
the detection of underwater transients by autonomous un-
derwater vehicles with strong power constraints, the devel-
opment of computationally efficient receivers is mandatory.
This is achieved by sampling the observation process close
to the Nyquist rate and performing the likelihood ratio tests
at even much slower rates [2]. In these situations, local sta-
tionarity ensures robustness to shift errors between the tran-
sient arriving at the receiver and its second-order model.

Under its classical definition, a random process is said
to be locally stationary if the decorrelation length (i.e., the
lag after which the correlation between two time instants
is approximately zero) is smaller than half the size of the
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stationarity interval [1, 3]. In the present paper, we will
restrict ourselves to the study of bandpass L2(R) random
processes, and will use a different definition of local sta-
tionarity. Defining the autocorrelation function (ACF) of a
random process s(t)in terms of a time t and a time-lag τ , we
note that the variations of ks(t, τ) in order to the time vari-
able t correspond to the evolution along time of the second-
order statistics of s(t). In the limit, the process is station-
ary if ks(t, τ) is constant along the time variable t. We say
then that a bandpass process s(t) is locally stationary if the
Fourier transform of ks(t, τ) in order to t is lowpass, ∀t.

In the paper, we present an algorithm to obtain from data
a covariance matrix that satisfies the constraint of being lo-
cally stationary. We also show a case study where we an-
alyze the improvement in robustness achieved by imposing
the property of local stationarity to the covariance matrix
used in the design of the quadratic detector.

2. FRAMEWORK

Let s(t), t ∈ R, be a zero-mean L2(R) nonstationary stochas-
tic process characterized by the autocorrelation function
(ACF)

ks(t1, t2) = E [s(t1)s
∗(t2)] , (1)

where the superscript ∗ stands for the complex conjugate.
Equivalently, the process s(t) can be described either by the
2-dimension power spectrum (2DPS)

Ks(ω1, ω2) = FTt1
[FTt2

[ks(t1, t2)](−ω2)](ω1), (2)

or by the Wigner distribution (WD)

Ss(t, ω) = FTτ

[

ks(t +
τ

2
, t−

τ

2
)
]

(ω), (3)

where FT [·](ω) denotes the Fourier transform. Moreover,
it is straightforward to show that the two alternative repre-
sentations (2) and (3) are related by [4]

Ŝs(Ω, ω) = FTt[Ss(t, ω)](Ω) = Ks(ω +
Ω

2
, ω−

Ω

2
). (4)

The ACF ks(t1, t2) is positive semidefinite by defini-
tion [5]. In [4], we showed that the 2DPS Ks(ω1, ω2) is
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also a positive semidefinite function, and thus satisfies the
Schwarz inequality:

|Ks(ω1, ω2)|
2 ≤ Ks(ω1, ω1)Ks(ω2, ω2). (5)

Let

Ps(ω) =

∫

∞

−∞

Ss(t, ω)dt (6)

denote the marginal along time of the WD, and assume that
s(t) is a nonstationary process such that Ps(ω) ' 0 when
ω /∈ I , where I = [−ωmax;−ωmin] ∪ [ωmin;ωmax]. In
other words, s(t) is a nonstationary bandpass model with
most of its energy lying in the interval I . Since Ŝs(0, ω) =
Ps(ω), and taking into account the Schwarz inequality, we
have that Ŝs(Ω, ω) is approximately zero everywhere in the
plane {Ω, ω} except in the following situations [4]:

1. ω ∈ I , and |Ω| < ∆ω,

2. |ω| < ∆ω/2 and Ω ∈ 2I ,

where 2I = [−2ωmax;−2ωmin] ∪ [2ωmin; 2ωmax]. Thus,
in the general case, for an ACF expressed in terms of the
time t and the time-lag τ , the bandwidth corresponding to t
(frequency variable Ω) may be twice as large than the one
related to τ (frequency variable ω).

For locally stationary processes, the variations of the
ACF function in t are slower than in τ (in the limit, for sta-
tionary signals, the ACF is constant in t). As discussed in
[4], this fact is related with the eigenvectors and eigenvalues
of the process s(t). It corresponds to the situation of having
near zero signal energy lying in the frequency band referred
to in the region 2 of the previous paragraph.

A nonstationary bandpass process is usually character-
ized, in the frequency domain, by its 2DPS, Ks(ω1, ω2).
From (4), regions 1 and 2 referred to above correspond, re-
spectively, to

1. (ω1, ω2) ∈ (I+ × I+) or (ω1, ω2) ∈ (I− × I−) (re-
gions in the first and third quadrants of the (ω1, ω2)
plane),

2. (ω1, ω2) ∈ (I+ × I−) or (ω1, ω2) ∈ (I− × I+)
(regions in the second and fourth quadrants of the
(ω1, ω2) plane),

where I+ = [ωmin;ωmax] and I− = [−ωmax;−ωmin].
Consequently, the process is locally stationary when the en-
ergy lying in the second and fourth quadrants fade.

When the bandpass process s(t) is locally stationary,
i.e., Ŝs(Ω, ω) ' 0, ∀ω /∈ I , we also have, for the Wigner
distribution, S(t, ω) ' 0, ∀ω /∈ I . This fact corresponds
to a basic difference between the Wigner transform for lo-
cally stationary processes and deterministic signals, where
cross-terms at frequency ω = 0 are always present unless
the analytic signal, instead of the original signal itself, is
transformed.

3. ESTIMATION ALGORITHM

The locally stationary covariance matrix estimation prob-
lem is formulated as follows: Let s(t) be a zero-mean, L2(R)
bandpass process with nearly compact support either in the
time and frequency domains, and s a (N ×M) matrix, con-
sisting of M signal experiments of the process s(t), sampled
at every Ts time intervals, such that the reconstruction of the
corresponding original continuous-time experiment of s(t)
is performed with nearly-zero mean-square error. We con-
sider that N is large enough so that there is no particular
alignment between each of the column vectors in s, i.e.,
N Ts is larger than the time-domain support of s(t). In this
context, we want to estimate a covariance matrix based on
data in the s matrix with the two following properties:

1. Most of the energy of the estimated covariance matrix
must lie in the smallest possible time interval.

2. The estimated covariance matrix is locally stationary.

The first step of the estimation algorithm consists in
finding the best alignment of the column vectors in s in or-
der to verify the point 1 of the previous paragraph. This
is easily done by picking up a single column vector in s,
and aligning all the others relatively to this one by the max-
imum of each cross-correlation function. Denoting by s1

the resulting data matrix, an estimate of the covariance ma-
trix that satisfies the point 1 referred to above, is given by
k1 = s1s

′

1/N (remark that we are assuming that the pro-
cess is zero-mean; if not, we would divide the previous ex-
pression by N − 1 instead of N after having subtracted the
estimated mean from s1, in order to obtain an unbiased es-
timate [6]).

The absolute value of a typical 2DPS of (the continuous-
time reconstruction of) a covariance matrix k1 estimated
from a real-data set of 72 vectors is shown in Figure 1 a).
The existence of important terms in the second and fourth
quadrants confirms the fact that this estimate is not locally
stationary.

Obtaining a locally stationary (LS) covariance matrix
estimate k2 from k1 is straightforward, using the results
presented in the previous section. Since there is a one to
one relationship between the ACF and the Wigner distri-
bution or the 2DPS, the common idea using these different
representations is to eliminate the terms that are non zero
only when the process is not LS and invert the correspond-
ing transform in order to obtain a LS estimate of the same
process. This is achieved, for example, by taking the dou-
ble discrete Fourier transform of k1 (obtaining thus a dis-
cretization of Ks(ω1, ω2)), making the second and fourth
quadrants equal to zero and taking the double inverse dis-
crete Fourier transform, see Figure 2 a). Alternatively, it
is possible to calculate the eigenvectors of the covariance
matrix, take their Hilbert transform, and with the resulting
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vectors recalculate a complex-valued covariance matrix. Its
2DPS has only nonzero terms in the first quadrant of the
(ω1, ω2) plane and the corresponding Wigner distribution
has only nonzero terms in the positive frequencies (this is
an extension of the classical method for deterministic sig-
nals to avoid the cross-terms around the zeroth frequency).
The 2DPS of the LS real-valued process is obtained then by
replicating the elements of the first quadrant into the third,
and the corresponding WD by mirroring the positive fre-
quencies into the negative half-plane. By inverting these
transforms, one obtains finally the desired LS representa-
tion of the process.

Figures 1 and 2 show, respectively, the absolute value
of the 2DPS and the 20 most important eigenvalues of the
covariance matrices without and with local stationarity. We
remark that in Figure 1 there is a larger concentration of
energy in a smaller number of eigenvalues than in the case
of Figure 2, where the eigenvalues come by pairs. Looking
at the two corresponding eigenvectors of one pair of eigen-
values in Figure 2 b), we observe that they are much alike,
except that they appear to be slightly misaligned, as if they
were in quadrature. Intuitively, this is the reason why lo-
cal stationarity arises and why the quadratic detectors based
on locally stationary covariance matrices are robust to shift
errors in the observation process.
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Fig. 1. Non-locally stationary covariance matrix: a) Abso-
lute value of the 2DPS and b) 20 most important eigenval-
ues.

−600 −400 −200 0 200 400 600

−600

−400

−200

0

200

400

600

PSfrag replacements

ω1

ω
2

a)

b)
eigenvalue number

eigenvalue 0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

PSfrag replacements

ω1

ω2

a)

b)

eigenvalue number

ei
ge

nv
al

ue

Fig. 2. Locally stationary covariance matrix: a) Absolute
value of the 2DPS and b) 20 most important eigenvalues.

4. CASE STUDY

In this section, we use the algorithm presented in the previ-
ous section to estimate a locally stationary covariance ma-
trix from a set of real data. The data consists in a collection
of 72 samples of compressed air shot sounds recorded in an
underwater media off the Portuguese coast. The final ob-
jective is to develop quadratic processors for real-time de-
tection with a low computational cost [2]. Therefore, the
likelihood ratio tests are preformed at a rate which is lower
than the sampling frequency and it is thus necessary that the
processor is robust to errors due to a mismatch between the
arrival time of the transient sound at the receiver and the
transient second-order model.

The first step of the algorithm consists in aligning the
different samples of the data collection by finding the max-
imum of the cross-correlation between one of the sample
vectors and all the others. The covariance matrix thus ob-
tained, which will be referred to as the NLS - non-locally
stationary - has the advantage of concentrating the max-
imum energy of each signal in the smallest time interval.
However, as can be seen in Figure 3, the resulting Wigner
distribution has a considerable amount of cross-terms at fre-
quency ω = 0 and thus the NLS covariance matrix is not lo-
cally stationary. By removing the nonzero terms from the
second and fourth quadrants of the 2-dimensional power
spectrum, we obtain a new covariance matrix (which will
be referred to as LS) with the WD presented in Figure 4,
which is now clearly locally stationary.
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Fig. 3. Wigner distribution of the non-locally stationary co-
variance matrix.

There are two main frequency components of the sig-
nal that are located around 200 and 350 rad s−1. The
maximum frequency is about 500 rad s−1, and the sam-
pling frequency is 2500 rads−1, which is about 2.5 times
the Nyquist frequency for this signal.

The present experiment focus on the robustness improve-
ment to shift errors of the processor based on the locally
stationary covariance matrix. To highlight this asset, we
conducted several detection simulations, each of which with
50000 Monte-Carlo runs, described as follows: i) For each
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Fig. 4. Wigner distribution of the locally stationary covari-
ance matrix.

Monte-Carlo run, a signal is generated using the NLS co-
variance matrix (corresponding to the WD in Figure 3); ii)
a shift error corresponding to Ne sampling intervals is ap-
plied to the signal, where Ne is an uniform random variable
taking values in the interval [−Nlim;Nlim]; iii) the signal
is corrupted with white noise with variance 0.02; iv) two
different quadratic detectors based on the LS and NLS co-
variance matrices, respectively, are compared (remark that
the NLS covariance matrix is the one originally used to gen-
erate the signal sample to detect).
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Fig. 5. Probability of detection vs. Nlim (pfa = 0.001)
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Fig. 6. Probability of detection vs. Nlim (pfa = 0.1)

The detection results are presented in Figures 5 and 6.
These Figures show how the probability of detection varies
with Nlim, which caracterize the shift error uncertainty on
the received signal. Figures 5 and 6 correspond to a fixed

probability of false alarm of 0.001 and 0.1, respectively.
Unless for negligible shift errors, the LS (covariance ma-
trix based) detector clearly outperforms the NLS processor.
Moreover, we can also see the improvement in robustness
to large shift errors achieved with the LS processor. Only
for small shift errors, the NLS performs better since in this
case there is a near optimal match between the signal and
the second-order model used in the processor.

As a final remark, we note that the results shown in this
section are conservative for two reasons. First, the signals to
detect are generated from the NLS covariance matrix, which
is not the case in real situations. Second, the sampling fre-
quency used here is larger than (about 2.5 times) the Nyquist
frequency. In fact, when the sampling frequency gets closer
to the Nyquist frequency, which is the case in some applica-
tion situations where a low computational cost is mandatory,
the probability of detection in Figures 5 and 6 fades faster
than in the current situation and a shift error of a single time
interval reduces strongly the probability of detection.

5. SUMMARY

In this paper we developed an estimator for locally station-
ary covariance matrices from data, based either on the 2-D
power spectrum or the Wigner distribution. We present a
case study using real data that illustrates the performance
improvement of using locally stationary covariance matri-
ces estimates in quadratic detectors.
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