
LOGIC BASED DISTRIBUTED DECISION
SYSTEM FOR A MULTI-ROBOT TEAM 1

Miguel Arroz, Vasco Pires, Luis Custódio

Instituto de Sistemas e Robótica
Instituto Superior Técnico

Av. Rovisco Pais, 1049-001 Lisboa, Portugal
{mbsa,vmicp}@rnl.ist.utl.pt, lmmc@isr.ist.utl.pt

Abstract: In this paper a decision system for a team, constituted by several robots
is described. The system is distributed and uses logic to choose the most suitable
action in order to accomplish a pre-determined goal. It also supports cooperation
and machine learning.

Keywords: Logic-Based Decision System, Prolog, Golog, Hybrid Architecture,
RoboCup Middle-Size League.

1. INTRODUCTION

Nowadays, we can see an increasing amount of
robotic systems for an also increasing number
of purposes. From robots assembling automobiles
in a production line, to robots guiding visitors
through out a museum, the possibilities are end-
less. Some of these applications require, not just
a single robot, but a group or team of robots that
must work together to accomplish the goal.

Robotics has improved in many ways. Mechanics
are becoming faster, more precise, reliable and
durable. Electronics provides greater autonomy,
reliable sensors, and faster processing. Artificial
vision endows robots with the ability to detect
objects in the world by just looking at them with
video cameras, with no special extra sensors. But,
even with all this great new technology, a big
problem remains: how to decide what the robot
should do? A robotic arm can pick up a glass of
water without spilling it, but when should it do
that? Why should it do that? Will picking up the
glass help to accomplish the goal?

1 Work supported by the FCT “Programa Operacional

Sociedade de Informação (POSI)” in the frame of QCA III.

This is why the link between Robotics and Arti-
ficial Intelligence (AI) is becoming more relevant
every day. Robotics provides the means to interact
with the real world. AI allows a robot to decide
over that world. Most robots rely mainly on re-
active decision systems. Those systems are based
on simple reactions to external or internal events,
and implemented by inflexible tools, like state
machines or decision trees. Robots using this kind
of tools usually show very primitive behaviors,
and are not able to accomplish non-trivial goals
on complex, dynamic, and incomplete domains.
On the other side, we have deliberative systems,
which are able to make decisions based on more
sophisticated tools, like a logic engine. These sys-
tems have many advantages over reactive ones.
They have more expressive power, in the sense
that they allow us to model the world using a
set of facts and rules, instead of modelling rigid
behaviours, like in a state machine. Those rules
are then used by the system to make a decision
based on the current world status and previously
stored information. The system may even act and
decide in a way that was not predicted by the pro-
grammers, but that is actually valid and efficient
in order to achieve the goal.

Actas do Encontro Científico
3º Festival Nacional de Robótica - ROBOTICA2003
Lisboa, 9 de Maio de 2003.

Another advantage is that the deliberative system
is not event driven, as a reactive system is. This
means that a reactive system changes its state
only when some pre-determined event happens. A
deliberative system may be always analysing the
world, and making decisions. It does not need an
event to happen in order to change its behaviour.
Or, it may behave in different ways when facing
the same world status. So, a deliberative system
allows more flexibility in the behaviour modelling.

Of course, this advantage does not come for free.
Deliberative systems are computationally heavy.
A logic engine may need hours to make a single
decision. The CPU and memory usage cannot be
underestimated for this kind of decision systems,
even more in real-time domains. A robot cannot
be stopped for hours (or even minutes, and, some-
times, not even seconds) to think what to do next.
It must be permanently making decisions, and
acting according to them.

How can we take advantage of both kinds of
systems? How can we make intelligent decisions,
and, at the same time, guarantee that the robot
will act in real time? A possible solution is an
hybrid architecture (Coelho and Paiva n.d.). A
typical hybrid architecture is illustrated in Fig.
1. With this architecture, we have both systems
working in parallel, independently. The system
uses, normally, the decisions made by the delib-
erative component. But, when the deliberative
component takes too long to decide, it uses the
decision made by the reactive component. That
decision is not as good as the one provided by
the deliberative component, but it is better than
doing nothing.

World Model

Deliberative

Component

Decision Selection

Final decision

Reactive

Component

Fig. 1. Hybrid Architecture

The paper structure is as follows: in section 2 the
RoboCup domain is described; section 3 presents
the proposed architecture and a detailed descrip-
tion of its components, and in section 4 we present
some results and conclusions.

2. ROBOCUP DOMAIN

Our domain is the middle-size RoboCup soccer
league 2 . A middle-size league team is constituted
by four robots (generally, three field players and
one goal-keeper). The robots diameter is about
40 cm, and the game is played on an (approxi-
mately) 10x5 meters field. The robots may com-
municate via Wireless Ethernet, and may also
send information to a computer (external to the
game) for monitoring and debugging purposes.
According to the RoboCup rules, the external
computer may send data or commands to robots,
but the fundamental law of our team is that robots
should be completely autonomous. So, our robotic
team only relies on information gathered from on-
board sensors.

The domain is very incomplete: it is really hard
for a robot to have a complete representation of
the world, because sensors are not perfect. For
example, images acquired by the cameras usually
have noise, so the data robots get from them have
errors. The domain is also very dynamic: all robots
are moving, the ball keeps moving around the
field, so there are a lot of things happening at
the same time.

All these characteristics make the middle-size
RoboCup league a very interesting and challeng-
ing domain for AI. In the next section we shall de-
scribe a software architecture developed for han-
dling some of these problems. It is being imple-
mented on the ISocRob 3 team, the team from
the Instituto de Sistemas e Robótica (ISR), at
Instituto Superior Técnico, Lisbon.

3. ARCHITECTURE

The hybrid architecture developed for our team,
that enables us to use deliberation and reactive-
ness, is presented in Fig. 2.

This architecture is composed by several compo-
nents, from which the most important ones are:
World Representation, Reactive Component, De-
liberative Component and Behavior Selection.

3.1 World Representation

The World Representation Component (WRC) is
responsible to build a world model using sensorial
data. From the sensory inputs and the static infor-
mation about the game, the WRC builds the game
model, that consists of basic information, like
ball position and players postures, and advanced
information such as cooperation decisions. The

2 http://www.robocup.org
3 http://socrob.isr.ist.utl.pt

Sensors

World Representation

Reactive Component

State Machine

Deliberative Component

Basic Logic

Decision Unit

Advanced Logic

Decision Unit

Behavior Selection

Control

Actuators

BlackBoard

High-Level

Cooperation Decisions

...

...

Low-Level

Cooperation

Decisions

Communications agent

Fig. 2. Hybrid Architecture.

variables used to define the world model are stored
in a Blackboard. The Blackboard is a data pool
accessible by several components, used to share
data and exchange messages among them. Tra-
ditional blackboards are implemented by shared
memories and daemons that awake in response
to events such as the update of some particular
data slot, so as to inform the components requir-
ing that data updated. In our implementation,
the Blackboard consists, within each individual
robot, of a shared memory among the different
components, organised in data slots corresponding
to relevant information (e.g. ball position, goal
position), accessible through data-keys. Some vari-
ables of the blackboard are local, meaning that
the associated information is only relevant for that
robot, but others are global, so their updates must
be broadcasted to the other teammates (e.g., the
ball position) (Lima 2002).

The cooperation is divided in a high-level coop-
eration and a low-level cooperation. The former
one is stored in the Blackboard, and consists of
Group-Level and Team-Level Tactics, that can
be viewed as analogues of the coach’s directives
in real soccer. The Group Level Tactics defines
tactical parameters for the different player groups:
defense, mid-field and attack. For instance, a good
defensive tactic is to form a defensive line with
the goalkeeper to block all paths to our goal. The

Team-Level Tactics set general tactical conditions
of the whole team. Parameters as basic formation,
e.g. 2 defenders - 1 attacker, if we are in a defensive
play, or 1 defender - 2 attackers, if we are in an
offensive play. The low-level cooperation is outside
the blackboard because it is a commitment be-
tween the robots that are involved in a cooperative
action, e.g. when a robot tells another teammate
to move to a certain position, in order to be
able to receive a pass. It’s necessary to have a
communication method between all the robots, so
they can exchange messages among them. We pre-
tend to use an Agent Communication Language
(ACL)(FIPA 2002), allowing us to use a standard
and highly flexible message format.

3.2 Reactive Component

The purpose of having a reactive component is to
quickly settle the next basic behavior to execute.
If the deliberative component takes too long to de-
cide a behavior, the reactive component can take
its place and define the next action to execute.
This idea is inspired on the way humans make
decisions when there is no time to think rationally,
e.g. when a glass of water is falling, we don’t think,
we react and try to catch it (Sadio et al. 2001) .

Many different reactive systems have been devel-
oped, e.g. state machines (Lima 2002), decisions
trees (see the reactive system from (Dylla et al.
n.d.)), and neural networks , but all of them are
hard to modify or limited. These limitations are
due to the weak expressiveness inherent to reac-
tive components, e.g. a state machine is a static
tool, where it is hard to modify some behavior
during the game. For example, if the goalkeeper
is at the middle of the goal, and catches the ball
when it was kicked to the right side of the goal,
then next time the robot probably should kick
it to the left. With state machines we cannot
easily implement this kind of dynamic behavior
switching. Our aim is not to develop a new re-
active component, but to build an architecture
that integrates the speed of a reactive system with
the expressiveness of a deliberative system. For
the ISocRob team the reactive component is for
the time being a finite state machine, illustrated
in Fig. 3, because it’s already implemented and
working well.

3.3 Deliberative Component

The deliberative part is the main component in
this work, where all logical decisions are made.
This component is divided in two decisions units,
a basic decision unit and an advanced decision
unit. The basic decision unit tries to quickly settle

Fig. 3. The current state machine.

the next behavior to execute, using a basic log-
ical reasoning. The difference between this unit
and the reactive one is that decisions took by
this component are based on a simple and ex-
pectedly fast deliberative system, based on situ-
ational calculus. Furthermore we intend to add
basic machine learning to this unit that will make
it less reactive. One reason for its existence comes
from the fact that a logical approximation gives
us expressiveness (we can make a more abstract
decision systems, where we do not have a pre-
defined sequence of states or behaviors), flexibility
(this comes from abstraction) and easier evolu-
tion. Besides that we expect it to take the role
of the reactive component in a near future, if it
proves to be fast enough to make its decisions
in real time. The advance decision unit is com-
putationally more heavy. It generates sequences
of behaviors (plans) that can be executed by the
robot. Besides that it can be used to plan certain
non-tactical strategies, e.g. attack from the left
side, if the left defender is not working properly.
Due to its complexity this unit can take some time
to compute a result. An initial implementation of
the basic decision unit was done using the Pro-
log programming language whereas the advanced
decision unit will be implemented using an action
programming language called Golog (Levesque et
al. 1997). Golog is based on the Situation Calculus
(McCarthy 1963), allows to easily create high level
behaviors, and express them as logical sentences,
with pre-conditions and post-conditions.

The basic logic component unit uses simple rules
written in prolog in order to select the right
behavior. Each rule has a set of predicates, that
ought to be true for the corresponding behavior
to be executed. Rules may have priority one over
another, this priority defined by the order they
appear on the input file. Rules that come first
have priority over the ones that come later. In
Fig. 4 we can see an example of those rules. In
this rule we can see the robot assumes the score

behavior when the game is running, the robot can
see the ball, it has the ball, and finally the robot is
near the opposite goal. The complete set of rules
currently implemented in the basic logic decision
unit is presented in Fig. 10 (at the end of the
document).

basicBehaviour(score, 0) :-
 gameRunning(1),
 \+ state_finished(score),
 vision_seeball,
 has_ball,
 near_goal.

Fig. 4. Score rule.

The predicates are also rules programmed in pro-
log (although some of them call C functions) and
are very easy to write. As an example, we show in
the Fig. 5 the predicate used to decide if the robot
has or hasn’t the ball with him. This predicate
is true when the ball is at most at a predefined
distance (0.38 meters in this case) and between
an inside a predefined angle. These values are cur-
rently static, but in the future they may become
dynamic, based on machine learning.

has_ball :-
 vision_ball_dist(Dist),
 Dist < 0.38,
 vision_ball_angle(Angle),
 Angle > -20,
 Angle < 20.

Fig. 5. has ball predicate.

The behaviors selected by these components are
executed by the control component.

3.4 Behavior Selection

Behaviour Selection (BS) is the component that
makes the final decision. It chooses among the
decisions produced by the reactive component,
the basic logic decision unit, the advanced logic
decision unit and requests from other robots, what
behaviour will be executed. The choice is based
on heuristic functions attached to each of the
possible decisions produced by each unit. The BS
component simply executes the heuristic functions
on the decisions themselves.

Why do the heuristic functions come attached
to decisions? Why don’t we just calculate an
heuristic value when the decision is made, and
act according to the decision with the highest
heuristic value? Although some decisions are to

be executed immediately (like the decisions the
RC takes), there are others (like the plans the DC
generates) that are executed during some time. As
the world evolves, the plan may remain valid and
useful, or become outdated or pointless. This is
why the heuristic function is important: it must
be executed at regular time intervals, to make
sure the heuristic value of that decision is still the
higher one.

At the end, the BS selects the most suitable
behavior using the heuristic functions, and com-
mands the control unit to assume the behavior.
This component uses several very small state ma-
chines (about two or three states each) to im-
plement the behaviors. It might happen that in
the future the state machines are replaced by a
more flexible implementation, that allows high
level components to have a more direct and precise
control over the robot.

4. RESULTS AND CONCLUSIONS

In order to work in a more efficient way, we have
been adapting the robots software to a real robot
simulator(Kleiner and Buchheim 2003). This sim-
ulator was specially developed to reproduce the
main characteristics of some real robot models
(as the Super Scout - Nomadic robots which con-
stitute the ISocRob Team), and their usage in a
RoboCup middle-size game environment. It works
in a server/client fashion (the server is the simu-
lator itself, the clients are the simulated robots).
Also, the simulator has a graphical user interface
that allows users to follow the game, and manually
move objects on the field. A screenshot of the
simulator is presented on the Fig. 6.

Fig. 6. Simulator screenshot.

Currently, we have developed a prototype of the
basic logic decision unit. In order to compare this
basic logic decision unit with the reactive system
currently used (the statement shown in Fig. 3),
we have tested both using the simulator. To do
that we used the following test: the robots starts
facing the opposite goal, as illustrated on Fig. 7.

O
w

n
 G

oal

O
th

er
 G

oa
l

Fig. 7. Initial object positions.

The robot must go back to the middle of the field,
get the ball, return to the opposite goal and score.

We applied this test ten times to each system
(logic based decision system and the original
state-machine decision system). The results are
on the tables 1 and 2. We illustrate also the best
sample of both systems, in Fig. 8 and 9. The
graphics show the path followed by the robot, and
the positions occupied by the ball during the test,
at regular time intervals.

Table 1. Results for the logic based
decision system.

Sample Ball Path Time Ball

Losses Length Out

1 2 10.95 50 0

2 1 9.08 26 0

3 0 7.62 22 0
4 0 9.15 22 0

5 2 11.41 38 1

6 1 9.64 37 1
7 1 10.45 37 0

8 1 8.95 32 0

9 0 7.41 18 0
10 0 8.12 23 0

Average 0.8 9.28 30.5 0.2

Table 2. Results for the state machine
based decision system.

Sample Ball Path Time Ball

Losses Length Out

1 1 12.17 34 0
2 0 7.16 23 0

3 1 10.00 35 0

4 1 9.70 32 0
5 1 10.71 43 0

6 1 9.91 33 0

7 0 6.87 20 0
8 1 10.14 41 0

9 0 7.00 19 0
10 1 10.29 50 1

Average 0.7 9.40 33 0.1

Not surprisingly the results obtained are similar
for both systems, since the low-level control is the
same. For the robot performance on this test, the
low-level control is much more important than
which tool is used for behavior switching. How-
ever, from the results we observe a tendency: the
logic based robot was able to score in less time
than the state-machine one. This is related to
the fact that the deliberative system is not event

Fig. 8. Logic based robot path.

Fig. 9. State-machine based robot path.

driven. On the reactive system, the state machine
must wait for an event (usually, a signal from
the control level announcing that the previously
selected behaviour has finished) in order to change
its state. This does not happen on the deliberative
system, as it permanently analyses the world and
chooses the best thing to do. It does not have
to wait for anything to decide the execution of a
new behaviour. Due to this, the logic based robot
may switch behaviors with a better timing, and be
globally faster than the reactive robot. However,
more tests involving more complex game situa-
tions should be performed in order to confirm this
tendency. For instance, situations with more than
one robot, with an adversary team or involving
some simple cooperative actions would be useful
to compare than two behaviors switching tools.

Also, it seems that processing time is not a prob-
lem, at least for now. The logic unit works really
fast, and the decisions are made with no delay or
relevant processing time. We believe that we are
able to write more complex rules, while keeping
enough speed for real-time decisions. Although we
intend to keep the state machine as the reactive
component for the reasons stated above, the basic
logic decision unit will probably be fast enough to
replace it completely.

This work has also revealed how fast and simple
is to model the robot high-level behaviour using
a logic based system. With a few lines of code

(no more than a printed page), we could make
the robot behave as if it was being controlled
by the state machine, even a little better, as
the results show. This logic-based approach will
allow us to design more complex behaviors and
use more information (e.g., field zone where the
robotics, other robots postures, etc) with much
less effort than if the same is to be done with
state-machines. Moreover the code remains easy
to read and modify, contrariwise to what happens
with the state machine.

basicBehaviour(goHome, Home) :-
 gameRunning(1),
 inside_goal,
 home(Home).

basicBehaviour(goHome, Home) :-
 gameRunning(1),
 get_state(St),
 St = goHome,
 \+ state_finished(goHome),
 home(Home).

basicBehaviour(goEmptySpot, EmptySpot) :-
 gameRunning(1),
 \+ state_finished(goEmptySpot),
 \+ vision_seeball,
 emptySpot(EmptySpot).

basicBehaviour(score, 0) :-
 gameRunning(1),
 \+ state_finished(score),
 vision_seeball,
 has_ball,
 near_goal.

basicBehaviour(takeBall2Goal, 0) :-
 gameRunning(1),
 \+ state_finished(takeBall2Goal),
 vision_seeball,
 has_ball.

basicBehaviour(getClose2Ball, 0) :-
 gameRunning(1),
 \+ state_failure(getClose2Ball),
 vision_seeball,
 \+ has_ball.

basicBehaviour(standBy, 0) :-
 gameRunning(0).

basicBehaviour(standBy, 0).

Fig. 10. Current Basic Logic Unit code.

ACKNOWLEDGMENTS

This work was produced with the support of
Prof. Pedro Lima whose help and guidance was
a valuable contribution.

REFERENCES

Coelho, H. and A. Paiva (n.d.). A mente e o
mundo lá fora.

Dylla, F., A. Ferrein and G. Lakemeyer (n.d.).
Acting and deliberating using golog in robotic
soccer - a hybrid architecture.

FIPA (2002). Fipa acl message structure specifi-
cation. Technical report. Foundation for In-
telligent Physical Agents.

Kleiner, A. and T. Buchheim (2003). Simsrv, a
robocup simulator.

Levesque, H., R. Reiter, Y. Lesprance, F. Lin and
R. Scherl (1997). Golog: A logic programming
language for dynamic domains. Journal of
Logic Programming.

Lima, P. (2002). Current status of the socrob
project. Technical report. Instituto de Sis-
temas e Robótica.

McCarthy, J. (1963). Situations, actions and
causal laws. Technical report. Standford Uni-
versity.

Sadio, R., G. Tavares, R. Ventura and L. Custódio
(2001). An emotion-based agent architecture
application with real robots. AAAI Fall Sym-
posium.

