
Vision-Based Self-Loalization for Soer RobotsCarlos F. Marques� Pedro U. LimaInstituto de Sistemas e Rob�otia Instituto de Sistemas e Rob�otiaInstituto Superior T�enio Instituto Superior T�enioAv. Roviso Pais, 1 Av. Roviso Pais, 11049-001 Lisboa 1049-001 LisboaPORTUGAL PORTUGALmarques�isr.ist.utl.pt pal�isr.ist.utl.ptAbstratIn this paper, a method for robot self-loalizationbased on a atadioptri omni-diretional sensor is in-trodued. The method uses natural geometri land-marks of the environment. It is assumed that the robotmoves on at surfaes and straight lines an be identi-�ed in the sorrounding environment image aquired bythe atadioptri system. This omni-diretional visionsystem is based on a amera plus a onvex mirror de-signed to obtain (by hardware) the ground plane bird'seye view. Results from the appliation to a real robotmoving on RoboCup soer �eld and onerning themethod's auray are presented.1 Introdution and MotivationThe navigation system is perhaps the most impor-tant sub-system of a mobile robot. In many applia-tions, espeially those onerning indoors well-strutu-red environments, one important feature of the navi-gation system onerns the ability of the robot to self-loalize, i.e., to autonomously determine its positionand orientation (posture). One a robot knows itsposture, it is apable of following a pre-planned vir-tual path or to stabilize its posture smoothly[8℄. Ifthe robot is part of a ooperative multi-robot team,it an also exhange the posture information with itsteammates so that appropriate relational and organi-zational behaviors are established[9℄. In roboti so-er, these are ruial issues. If a robot knows its pos-ture, it an move towards a desired posture (e.g., fa-�This work was supported by grant PRAXIS XXI /BM/21091 /99 of the Portuguese Foundation for Siene andTehnology

ing the goal with the ball in between). It an alsoknow its teammate postures and prepare a pass, orevaluate the game state from the team loations.An inreasing number of teams partiipating in Ro-boCup's middle-size league is approahing the self-loalization problem [5℄. The proposed solutions aremainly distinguished by the type of sensors used: LaserRange Finders (LRFs), vision-based omni-diretionalsensors and single frontal amera. The CS-Freiburgand Stuttgart-Cops teams an determine their posi-tion with an auray of 1 and 5 m, respetively, usingLRFs. However, LRFs require walls surrounding thesoer �eld to aquire the �eld border lines and, in asense, orrelate them with the �eld retangular shapeto determine the team postures. Should the walls beremoved, the method beomes not appliable.In this paper, an omni-diretional atadioptri (vi-sion + mirror) system is used to determine the robotposture, with respet to (w.r.t.) a given oordinatesystem, from the observation of natural environmentlandmarks suh as straight lines resulting from the in-tersetion between the walls and the ground, as wellas from a priori knowledge of the environment geom-etry. RoboCup's Agilo team proposes a vision-basedapproah to the self-loalization problem too. A sin-gle frontal amera is used to math a 3-D geomet-ri model of the �eld with the border lines and goalsline segments in the aquired image. Only a partial�eld view is used in this method. Iohi and Nardi[6℄ also use a single frontal amera and math thelines with a �eld model using the Hough Transform.Their approah onsiders lines deteted loally, ratherthan a global �eld view, and uses odometry to re-move ambiguities. Several teams use a vision-basedomni-diretional hardware system similar to the onedesribed here, but only for ball, marking and oppos-



ing robots traking. The robots of the Tuebingen team[5℄ use omni-diretional vision for self-loalization, butonly the distane to the walls is used.The paper is organized as follows: in Setion 2,the proposed self-loalization method is desribed ingeneral terms, and its appliation to roboti soer isdetailed in Setion 3. Results onerning auray ofthe postures obtained in this ase study are presentedin Setion 4, together with a study of its dependeneon robot �eld loations. Finally, some onlusions anda desription of envisaged future work are drawn inSetion 5.2 The Self-Loalization Method2.1 Omni-Diretional Catadioptri SystemMost omni-diretional atadioptri systems are ba-sed on one of two types of reeting surfaes: spherial[3℄ or oni[1, 2℄. Those systems require a perspe-tive unwarping made by software, a time-onsumingproess that may prevent real-time robot guidane, inappliations where fast motion is required. The solu-tion used here, although developed independently, issimilar to the one desribed in [4℄, whose atadioptrisystem preserves the geometry of a plane orthogonalto its symmetry axis, in partiular providing a bird'seye view of the ground plane.2.2 Method DesriptionEven though the self-loalization algorithm was de-signed motivated by its appliation to roboti soer,it an be desribed in general terms and applied toother well-strutured environments, with the assump-tion that the robot moves on at surfaes and straightlines an be identi�ed and used as desriptive featuresof those environments. An important requirement isthat the algorithm should be robust to image noise.Given an image aquired from the atadioptri sys-tem, the basi steps of the algorithm are:1. Build a set T of transition pixels, orrespondingto image pixel representatives of environmentstraight lines (e.g., intersetion between orridorwalls and ground, obtained by an edge detetor).2. For all transition pixels pt 2 T , ompute theHough Transform using the normal representa-tion of a line[7℄� = xti � os (�) + yti � sin (�) ; (1)

where (xti; yti) are the image oordinates of ptand �; � the line parameters.3. Pik the q straight lines (�1; �1); : : : ; (�q ; �q) or-responding to the top q aumulator ells result-ing from the Hough transform desribed in theprevious step.4. For all pairs f(�j ; �j); (�k ; �k); j; k = 1; : : : ; q; j 6=kg made out of the q straight lines in the previ-ous step, ompute�� = j�j � �kj (2)�� = j�j � �kj: (3)Note that a small �� denotes almost parallelstraight lines, while �� is the distane between2 parallel lines.5. Classify, in the [0; 100℄ range, the ��s and ��sdetermined in the previous step, for its relevane(funtion Rel(:)) using a priori knowledge of thegeometri harateristis of the environment (e.g.,in a building orridor of width d, only �� ' 0,�� ' 180 and �� ' d should get high grades).For eah pair of straight lines, assign a gradein the [0; 200℄ range to the pair, by adding upRel(��) and Rel(��).6. Pik up the most relevant pair of straight lines(i.e., the pair of largest Rel(��) + Rel(��) inthe previous step), and use it to extrat somerelevant feature regarding environment loaliza-tion (e.g., the orientation � of the robot w.r.t.the orridor walls, represented by the most rele-vant pair of parallel straight lines, in the exampleabove).7. Use the relevant feature from the previous stepto proeed. For instane, assuming � in the or-ridor example is suh a feature, it is used toselet olumns from the aumulator ells ma-trix referred in Step 3. The idea is to orrelatea number of atual straight lines, found in theimage, sharing the same desriptive parameter(e.g., the angle � orresponding to �) with theexpeted straight lines obtained from an envi-ronment model (e.g., the building layout). Toattain this, up to n � values from the aumula-tor matrix olumn orresponding to � are pikedup, orresponding to up to n straight lines foundin the image. To handle unertainty in �, aneven better solution is to pik up not only oneolumn but a few olumns surrounding the a-umulator matrix olumn orresponding to �,



using the top n � values from those olumns.Conatenate all these Hough spae points in anarray and all it �̂�.8. Create an array �� similar to �̂�, but obtainedfrom a geometri model of the environment. A-tually, �� measures distanes of environmentstraight lines to the origin of the world refereneframe. Correlate �� and �̂� by shifting one ar-ray over the other, and inrementing a ounterfor eah mathing (��; �̂�) pair. The maximumof the orrelation orresponds to the best mathbetween up to n straight lines in the image andthe n known environment straight lines. Fromthis result and similar results obtained for otherstraight lines non-parallel to them (determinedby the same proedure for di�erent �s), the im-age oordinates of environment feature points,whose loation in the world referene frame isknown, are determined and used to determinethe robot position w.r.t. that frame, by a suit-able transformation from image to world oordi-nates.

Figure 1: Catadioptri system assembled on the robot.
3 Appliation to Roboti SoerThe self-loalization of a middle-size league soerrobot, using the method desribed in the previous se-tion, takes advantage of the soer �eld geometry andof the di�erent olors used for the �eld (green), the

Figure 2: Soer �eld model (oordinates in pixels).surrounding walls and the �eld lines (white). The �eldis a 9 � 4:5 m at retangle that an be almost fullyobserved by the robot atadioptri system from most�eld loations. To elliminate olusion due to the useof mirror supports, the atadioptri system onsistsof an aryli ylinder with a small olor CCD am-era inside and the mirror on the top. The amera isassembled in a 5 degree of freedom (3 of translationand 2 of rotation) support allowing the user to or-retly position the amera with respet to the mirror.Aquired images are proessed using the HSV olormodel[7℄.Sine all four robots in the team require the ata-dioptri system, the tradeo� between ost and �nalmirror mahining quality had to be seriously onsid-ered. While it is true that image distortion due topoor mirror mahining quality reets in posture a-uray, the method here desribed was developed tobe robust to onsiderable image distortion and to im-age noise due to irregular and poor illumination. Assuh, a non-expensive (' 150 Euros) mirror was used.Image distortion is severe on the external mirror zone,hene proessing is only made within a irle with a220 pixel radius, entered with the amera (see Fig. 3).Figure 1 shows the atadioptri system assembled ona Nomadi SuperSout II.3.1 A Priori KnowledgeThe bird's eye view of the soer �eld, shown shemat-ially in Fig. 2, shows 6 horizontal and 7 vertial straightlines (onsidering interrupted lines as only one line).In this work, all horizontal lines and 5 of the vertiallines (exluding those orresponding to the bak ofthe goals) were onsidered. Exluded lines were ho-sen beause they are often oluded by the goalkeeperrobots. All the distanes between lines are known fromRoboCup rules. Changes in the dimensions are pa-rameterized in a table. The model referene frame isloated at the bottom left of this �eld model.



3.2 Orientation DeterminationSteps 1-6 of the algorithm desribed in Setion 2 arefollowed to determine the initial robot orientation esti-mate (with a�90Æ or 0Æ/180Æ unertainty, to be solvedlater). The set T of transition pixels is obtained bydetermining the white-to-green and green-to-white im-age transitions over 36 irles entered with the robot,shown in Fig. 3. The number of irles was determinedbased on a tradeo� between auray and CPU time.

Figure 3: Image obtained by the atadioptri systemwith the 36 irles used to determine transition pixels.The Hough transform is then applied to the pixelsin T { a variable number from image to image, de-pending on the number and length of observed lines.In Step 3, q = 6 is used, based on experimental anal-ysis of the tradeo� between CPU time and auray.The relevane funtions for �� and ��, used in Steps5-6, are plotted in Figure 4. The latter reets a pri-ori knowledge of the environment, by its use of theknown distane between relevant �eld lines that anbe observed by the atadioptri system in one image.
Figure 4: Relevane funtions for �� and ��.The aumulator ells of the Hough transform inStep 2 are obtained by inrementing � from 0 to 180Æin 0.5Æ steps, leading to an image line slope resolutionof tan 0:5Æ. � is inremented from 125 to 968 in steps of1 pixel, orresponding to an atual �eld resolution of

6.95 mm. The �90o or 180o ambiguity referred aboveresults from the absene of information on whih �eldlines lead to the most relevant pair. This informationis obtained in Steps 7-8.3.3 Position DeterminationThe �nal step in the self-loalization proess on-sists of determining the robot position oordinates inthe soer �eld. This is done together with the dis-ambiguation of the relevant feature � determined inSteps 1-6 of the self-loalization method, by reatingnot only the �� and �̂� arrays referred in Steps 7-8,but also their \orthogonal" arrays ��+90 and �̂�+90.The orrelation in Step 8 is made between all 4 pos-sible pairs (��+90; �̂�+90), (��+90; �̂�), (��; �̂�+90) and(��; �̂�) with n = 6 (the maximum number of �eldlines that an be found in the image). The maximumof the 4 orrelation maxima ours for the array pairrepresenting the best math between image and atual�eld lines. The array immediately identi�es whether��90Æ or � = 0Æ_� = 180Æ is the robot orientation. Aompanion array pair exists for eah best pair. The 2pairs uniquely identify 2 (approximately) orthogonal�eld lines, by heking the array positions where themaximum ourred (vertial �eld lines are numbered1; : : : ; 5 from left to right and horizontal lines are num-bered 1; : : : ; 6 from top to bottom). The intersetionof the two lines is a referene point, whose oordinatesare known in the world referene frame, from the �eldmodel.The explanation above is summarized in the follow-ing table (the best and ompanion pairs positions anbe exhanged):Best Pair Companion Pair �(��; �̂�) (��+90; �̂�+90) � = �� 90Æ(��; �̂�+90) (��+90; �̂�) � = � _ �+ 180ÆThe robot position is omputed from a rotation of� (one of the possible values is used, with no speialriterion), followed by a translation that expresses theenter of the image (i.e., the robot position in imageoordinates) in the model referene frame, and an-other translation plus a sale fator f to express itin world oordinates. The world referene frame isloated in the middle of the soer �eld, with the xaxis pointing towards the blue goal and the y axis issuh that a 3-D oordinate frame would have z point-ing upwards. The orientation � is measured from x toa pre-de�ned straight line passing through the robotenter. The sale fator f depends on the geometry ofthe atadioptri system and an be allibrated experi-mentally. This transformation an be expressed by the



following equation, using homogeneous oordinates:" xrfyrf1 # = 24 os � sin � xrefi + xrefm� sin � os � yrefi + yrefm0 0 1 35 � " xriyri1 #��" 4502250 # � f (4)where the subsripts i;m; f stand for the image, �eldmodel and atual �eld referene frames, and the su-persripts ref and r stand for the referene point andthe robot, respetively.A further validation and disambiguation of the robotposture is required, sine, when only two parallel linesare used to determine the position, and due to �eldsymmetry, the robot side of the �eld is unknown, aswell as its orientation. To solve this problem, twotests are made. First, the algorithm heks whetherthe robot position is not outside de �eld. The seondtest onsists of using the urrent estimated posture toseek the nearest goal in the image.This is ahieved by seletingm points loated insideone of the goals (blue or yellow) in the atual �eld andapplying to eah of those points of oordinates (xgf ; ygf )the inverse transform of (4):" xgiygi1 # = 24 os � sin � xrefi + xrefm� sin � os � yrefi + yrefm0 0 1 35�1 ��0�24 xgfygf1 35+ " 4502250 #1A � f (5)where the supersript g stands for goal.Should the majority of the orresponding pixels inthe image have the same olor of the �eld pixels, � =0Æ and the estimated position is validated. Shouldthey have the olor of the opposing goal, � = 180Æand the symmetrial oordinates of the urrent po-sition estimate must be used for the robot position.When the majority of image pixels is green, the topmaximum of the orrelation proess is removed andthe whole proess re-started using the seond maxi-mum, and if needed, the third one and so on until theatual posture is determined.4 Experimental ResultsThe desribed self-loalization algorithm has beenimplemented in C and used to self-loalize a robot.The method was applied to a set of 90 images obtained

� �2 �� �x +3.2 (mm) 0.0099 (m2) 10 (m)y -18.0 (mm) 0.0084 (m2) 9.18 (m)� 0.22 Æ 3.14 Æ2 1.77 ÆTable 1: Posture auray statistis (mean and stan-dard deviation).by a atadioptri system mounted on a Super SoutII robot. Images were proessed in less than 1 seondeah, in a Pentium 233MHz with 64Mb of RAM, theSuper Sout II on board omputer. Table 1 shows theresults of the 90 experiments. The �rst olumn givesthe average auray � in x, y and �, the seond thevariane of the auray �2 and the third olumn theauray for one standard deviation. In Fig. 5, the his-togram of the auray, in x and y, is shown as well asan adjusted Gaussian funtion. The represented ret-angle ontains all the auraies within one standarddeviation from �, i.e., 68,2% of the postures obtainedhave an auray of, e.g., 10 m in X.
Figure 5: Distribution of the error.

Figure 6: Test image results.Figure 6 shows an example of an image to be pro-essed. The lines represented are the possible lines ofthe �eld. In this ase, the (��; �̂�+90) pair ahievedthe top orrelation value and position with an error of



Figure 7: Bad test image results.�x=+1 m, �y= +1 m and ��= +1Æ. Note that,in this test, the robot is lose to one of the �eld walls,making harder the posture determination proess, as,due to the limited image used, the other wall is notseen, and a relevant parallel line an not be found bythe algorithm.One example of a bad image, is shown in Fig. 7.In this ase, the position was omputed with an errorof �x=+10 m, �y= +1 m and ��= +21Æ. Eventhough the results shown in Fig. 7 are onsiderablyworse, they are aeptable for the due purposes (ex-ept the orientation), onsidering the large image dis-tortion. The method robustness meets the problemspei�ations.5 Conlusions and Future WorkA vision-based algorithm for robot self-loalizationwas tested on images taken from a low-ost atadiotrisystem mounted on a Super Sout II soer robot.The algorithm was designed for well strutured en-vironments, where a priori knowledge about the wordmodel is available, and straight lines an be used todesribe environment features.In the roboti soer appliation, promising resultswere obtained onerning posture auray and methodrobustness to image noise and distortion. The teamrobots projetion on the �eld is a irle of roughly40m, and typial position errors ranged from 0 to10m. One way to redue the position error range is touse sensor fusion methodologies. The Tuebingen teamfuses three di�erent self-loalization methods for theloalization of their goalkeeper, using three sensors: anomni-diretional amera, a Laser Range Finder anda ompass [5℄. The method an be used only in re-gions near the �eld goals. However, we rely only onan omni-diretional vision system for self-loalizationwhih an be used everywhere in the �eld. Futurework will inlude the method usage to periodially re-
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