Vision-Based Self-Localization for Soccer Robots
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Abstract

In this paper, a method for robot self-localization
based on a catadioptric omni-directional sensor is in-
troduced. The method uses natural geometric land-
marks of the environment. It is assumed that the robot
mowves on flat surfaces and straight lines can be identi-
fied in the sorrounding environment image acquired by
the catadioptric system. This ommni-directional vision
system is based on a camera plus a convexr mirror de-
signed to obtain (by hardware) the ground plane bird’s
eye view. Results from the application to a real robot
moving on RoboCup soccer field and concerning the
method’s accuracy are presented.

1 Introduction and Motivation

The navigation system is perhaps the most impor-
tant sub-system of a mobile robot. In many applica-
tions, especially those concerning indoors well-structu-
red environments, one important feature of the navi-
gation system concerns the ability of the robot to self-
localize, i.e., to autonomously determine its position
and orientation (posture). Once a robot knows its
posture, it is capable of following a pre-planned vir-
tual path or to stabilize its posture smoothly[8]. If
the robot is part of a cooperative multi-robot team,
it can also exchange the posture information with its
teammates so that appropriate relational and organi-
zational behaviors are established[9]. In robotic soc-
cer, these are crucial issues. If a robot knows its pos-
ture, it can move towards a desired posture (e.g., fac-
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ing the goal with the ball in between). It can also
know its teammate postures and prepare a pass, or
evaluate the game state from the team locations.

An increasing number of teams participating in Ro-
boCup’s middle-size league is approaching the self-
localization problem [5]. The proposed solutions are
mainly distinguished by the type of sensors used: Laser
Range Finders (LRF's), vision-based omni-directional
sensors and single frontal camera. The CS-Freiburg
and Stuttgart-Cops teams can determine their posi-
tion with an accuracy of 1 and 5 cm, respectively, using
LRFs. However, LRFs require walls surrounding the
soccer field to acquire the field border lines and, in a
sense, correlate them with the field rectangular shape
to determine the team postures. Should the walls be
removed, the method becomes not applicable.

In this paper, an omni-directional catadioptric (vi-
sion + mirror) system is used to determine the robot
posture, with respect to (w.r.t.) a given coordinate
system, from the observation of natural environment
landmarks such as straight lines resulting from the in-
tersection between the walls and the ground, as well
as from a priori knowledge of the environment geom-
etry. RoboCup’s Agilo team proposes a vision-based
approach to the self-localization problem too. A sin-
gle frontal camera is used to match a 3-D geomet-
ric model of the field with the border lines and goals
line segments in the acquired image. Only a partial
field view is used in this method. Iocchi and Nardi
[6] also use a single frontal camera and match the
lines with a field model using the Hough Transform.
Their approach considers lines detected locally, rather
than a global field view, and uses odometry to re-
move ambiguities. Several teams use a vision-based
omni-directional hardware system similar to the one
described here, but only for ball, marking and oppos-



ing robots tracking. The robots of the Tuebingen team
[5] use omni-directional vision for self-localization, but
only the distance to the walls is used.

The paper is organized as follows: in Section 2,
the proposed self-localization method is described in
general terms, and its application to robotic soccer is
detailed in Section 3. Results concerning accuracy of
the postures obtained in this case study are presented
in Section 4, together with a study of its dependence
on robot field locations. Finally, some conclusions and
a description of envisaged future work are drawn in
Section 5.

2 The Self-Localization Method
2.1 Omni-Directional Catadioptric System

Most omni-directional catadioptric systems are ba-
sed on one of two types of reflecting surfaces: spherical
[3] or conic[l, 2]. Those systems require a perspec-
tive unwarping made by software, a time-consuming
process that may prevent real-time robot guidance, in
applications where fast motion is required. The solu-
tion used here, although developed independently, is
similar to the one described in [4], whose catadioptric
system preserves the geometry of a plane orthogonal
to its symmetry axis, in particular providing a bird’s
eye view of the ground plane.

2.2 Method Description

Even though the self-localization algorithm was de-
signed motivated by its application to robotic soccer,
it can be described in general terms and applied to
other well-structured environments, with the assump-
tion that the robot moves on flat surfaces and straight
lines can be identified and used as descriptive features
of those environments. An important requirement is
that the algorithm should be robust to image noise.
Given an image acquired from the catadioptric sys-
tem, the basic steps of the algorithm are:

1. Build a set T of transition pizels, corresponding
to image pixel representatives of environment
straight lines (e.g., intersection between corridor
walls and ground, obtained by an edge detector).

2. For all transition pixels p! € 7T, compute the
Hough Transform using the normal representa-
tion of a line[7]

p=al-cos(¢) +yl-sin(@), (1)

where (x!,y!) are the image coordinates of p’
and p, ¢ the line parameters.

. Pick the ¢ straight lines (p1, ¢1), ..., (pg, ¢q) cor-

responding to the top g accumulator cells result-
ing from the Hough transform described in the
previous step.

. For all pairs {(p;, #;), (px. &), Jok=1,...,q, j #

k} made out of the ¢ straight lines in the previ-
ous step, compute
Ap = |dj— ¢ul (2)
Ap = |pj—pkl (3)
Note that a small A¢ denotes almost parallel

straight lines, while Ap is the distance between
2 parallel lines.

. Classify, in the [0,100] range, the A¢s and Aps

determined in the previous step, for its relevance
(function Rel(.)) using a priori knowledge of the
geometric characteristics of the environment (e.g.,
in a building corridor of width d, only A¢ ~ 0,
A¢ ~ 180 and Ap ~ d should get high grades).
For each pair of straight lines, assign a grade
in the [0,200] range to the pair, by adding up
Rel(A¢) and Rel(Ap).

. Pick up the most relevant pair of straight lines

(i.e., the pair of largest Rel(A¢) + Rel(Ap) in
the previous step), and use it to extract some
relevant feature regarding environment localiza-
tion (e.g., the orientation # of the robot w.r.t.
the corridor walls, represented by the most rele-
vant pair of parallel straight lines, in the example
above).

. Use the relevant feature from the previous step

to proceed. For instance, assuming € in the cor-
ridor example is such a feature, it is used to
select columns from the accumulator cells ma-
trix referred in Step 3. The idea is to correlate
a number of actual straight lines, found in the
image, sharing the same descriptive parameter
(e.g., the angle ¢ corresponding to #) with the
expected straight lines obtained from an envi-
ronment model (e.g., the building layout). To
attain this, up to n p values from the accumula-
tor matrix column corresponding to ¢ are picked
up, corresponding to up to n straight lines found
in the image. To handle uncertainty in ¢, an
even better solution is to pick up not only one
column but a few columns surrounding the ac-
cumulator matrix column corresponding to ¢,



using the top n p values from those columns.
Concatenate all these Hough space points in an
array and call it pg.

8. Create an array pgy similar to pg, but obtained
from a geometric model of the environment. Ac-
tually, py measures distances of environment
straight lines to the origin of the world reference
frame. Correlate py and py by shifting one ar-
ray over the other, and incrementing a counter
for each matching (pg, pp) pair. The maximum
of the correlation corresponds to the best match
between up to n straight lines in the image and
the n known environment straight lines. From
this result and similar results obtained for other
straight lines non-parallel to them (determined
by the same procedure for different 6s), the im-
age coordinates of environment feature points,
whose location in the world reference frame is
known, are determined and used to determine
the robot position w.r.t. that frame, by a suit-
able transformation from image to world coordi-
nates.

Figure 1: Catadioptric system assembled on the robot.

3 Application to Robotic Soccer

The self-localization of a middle-size league soccer
robot, using the method described in the previous sec-
tion, takes advantage of the soccer field geometry and
of the different colors used for the field (green), the
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Figure 2: Soccer field model (coordinates in pixels).

surrounding walls and the field lines (white). The field
is a 9 x 4.5 m flat rectangle that can be almost fully
observed by the robot catadioptric system from most
field locations. To elliminate occlusion due to the use
of mirror supports, the catadioptric system consists
of an acrylic cylinder with a small color CCD cam-
era inside and the mirror on the top. The camera is
assembled in a 5 degree of freedom (3 of translation
and 2 of rotation) support allowing the user to cor-
rectly position the camera with respect to the mirror.
Acquired images are processed using the HSV color
model[7].

Since all four robots in the team require the cata-
dioptric system, the tradeoff between cost and final
mirror machining quality had to be seriously consid-
ered. While it is true that image distortion due to
poor mirror machining quality reflects in posture ac-
curacy, the method here described was developed to
be robust to considerable image distortion and to im-
age noise due to irregular and poor illumination. As
such, a non-expensive (~ 150 Euros) mirror was used.
Image distortion is severe on the external mirror zone,
hence processing is only made within a circle with a
220 pixel radius, centered with the camera (see Fig. 3).
Figure 1 shows the catadioptric system assembled on
a Nomadic SuperScout II.

3.1 A Priori Knowledge

The bird’s eye view of the soccer field, shown schemat-
ically in Fig. 2, shows 6 horizontal and 7 vertical straight
lines (considering interrupted lines as only one line).
In this work, all horizontal lines and 5 of the vertical
lines (excluding those corresponding to the back of
the goals) were considered. Excluded lines were cho-
sen because they are often occluded by the goalkeeper
robots. All the distances between lines are known from
RoboCup rules. Changes in the dimensions are pa-
rameterized in a table. The model reference frame is
located at the bottom left of this field model.



3.2 Orientation Determination

Steps 1-6 of the algorithm described in Section 2 are
followed to determine the initial robot orientation esti-
mate (with a £90° or 0°/180° uncertainty, to be solved
later). The set T of transition pixels is obtained by
determining the white-to-green and green-to-white im-
age transitions over 36 circles centered with the robot,
shown in Fig. 3. The number of circles was determined
based on a tradeoff between accuracy and CPU time.

Figure 3: Image obtained by the catadioptric system
with the 36 circles used to determine transition pixels.

The Hough transform is then applied to the pixels
in 7 — a variable number from image to image, de-
pending on the number and length of observed lines.
In Step 3, ¢ = 6 is used, based on experimental anal-
ysis of the tradeoff between CPU time and accuracy.
The relevance functions for A¢ and Ap, used in Steps
5-6, are plotted in Figure 4. The latter reflects a pri-
ori knowledge of the environment, by its use of the
known distance between relevant field lines that can
be observed by the catadioptric system in one image.
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Figure 4: Relevance functions for A¢ and Ap.

The accumulator cells of the Hough transform in
Step 2 are obtained by incrementing ¢ from 0 to 180°
in 0.5° steps, leading to an image line slope resolution
of tan 0.5°. pisincremented from 125 to 968 in steps of
1 pixel, corresponding to an actual field resolution of

6.95 mm. The £90° or 180° ambiguity referred above
results from the absence of information on which field
lines lead to the most relevant pair. This information
is obtained in Steps 7-8.

3.3 Position Determination

The final step in the self-localization process con-
sists of determining the robot position coordinates in
the soccer field. This is done together with the dis-
ambiguation of the relevant feature 6 determined in
Steps 1-6 of the self-localization method, by creating
not only the py and pg arrays referred in Steps 7-8,
but also their “orthogonal” arrays pgyoo and pPe+90-
The correlation in Step 8 is made between all 4 pos-
sible pairs (pg+90, Ps+90): (Po+90, Pg)s (Pg: Ps+o0) and
(pgs Pp) with n = 6 (the maximum number of field
lines that can be found in the image). The maximum
of the 4 correlation maxima occurs for the array pair
representing the best match between image and actual
field lines. The array immediately identifies whether
0+90° or 8 = 0°VvH = 180° is the robot orientation. A
companion array pair exists for each best pair. The 2
pairs uniquely identify 2 (approximately) orthogonal
field lines, by checking the array positions where the
maximum occurred (vertical field lines are numbered
1,...,5 from left to right and horizontal lines are num-
bered 1,...,6 from top to bottom). The intersection
of the two lines is a reference point, whose coordinates
are known in the world reference frame, from the field
model.

The explanation above is summarized in the follow-
ing table (the best and companion pairs positions can
be exchanged):

Best Pair | Companion Pair 0
(Ps: Po) (Py+905 Ps+90) 6 =¢+90°
(pgs Po+90) (Ps+90: Po) 0=9¢V¢+180°

The robot position is computed from a rotation of
6 (one of the possible values is used, with no special
criterion), followed by a translation that expresses the
center of the image (i.e., the robot position in image
coordinates) in the model reference frame, and an-
other translation plus a scale factor f to express it
in world coordinates. The world reference frame is
located in the middle of the soccer field, with the z
axis pointing towards the blue goal and the y axis is
such that a 3-D coordinate frame would have z point-
ing upwards. The orientation € is measured from z to
a pre-defined straight line passing through the robot
center. The scale factor f depends on the geometry of
the catadioptric system and can be callibrated experi-
mentally. This transformation can be expressed by the



following equation, using homogeneous coordinates:

Y cosf sinf a:]fef + a:fff x;
yf | = | —sinf cosh yfef + yfff yi | —
1 0 0 1 1

450
- [ 225 ] f
0
(4)

where the subscripts i, m, f stand for the image, field

model and actual field reference frames, and the su-
perscripts ref and r stand for the reference point and
the robot, respectively.

A further validation and disambiguation of the robot
posture is required, since, when only two parallel lines
are used to determine the position, and due to field
symmetry, the robot side of the field is unknown, as
well as its orientation. To solve this problem, two
tests are made. First, the algorithm checks whether
the robot position is not outside de field. The second
test consists of using the current estimated posture to
seek the nearest goal in the image.

This is achieved by selecting m points located inside
one of the goals (blue or yellow) in the actual field and
applying to each of those points of coordinates (mfc, y:i)
the inverse transform of (4):

z? cosfl  sinf x]fef + xﬁff
¥} | =| —sinf cosh ylref + yfnef
1 0 0 1 (5)
x4 450
y; |+ | 225 - f
1 0

where the superscript g stands for goal.

Should the majority of the corresponding pixels in
the image have the same color of the field pixels, § =
0° and the estimated position is validated. Should
they have the color of the opposing goal, § = 180°
and the symmetrical coordinates of the current po-
sition estimate must be used for the robot position.
When the majority of image pixels is green, the top
maximum of the correlation process is removed and
the whole process re-started using the second maxi-
mum, and if needed, the third one and so on until the
actual posture is determined.

4 Experimental Results
The described self-localization algorithm has been

implemented in C and used to self-localize a robot.
The method was applied to a set of 90 images obtained

2

u o w—o
x | +3.2 (mm) | 0.0099 (m?) | 10 (cm)
y | -18.0 (mm) | 0.0084 (m?) | 9.18 (cm)
9| 022° 3.14 °° 1.77 °©

Table 1: Posture accuracy statistics (mean and stan-
dard deviation).

by a catadioptric system mounted on a Super Scout
IT robot. Images were processed in less than 1 second
each, in a Pentium 233MHz with 64Mb of RAM, the
Super Scout IT on board computer. Table 1 shows the
results of the 90 experiments. The first column gives
the average accuracy p in x, y and 6, the second the
variance of the accuracy o2 and the third column the
accuracy for one standard deviation. In Fig. 5, the his-
togram of the accuracy, in x and y, is shown as well as
an adjusted Gaussian function. The represented rect-
angle contains all the accuracies within one standard
deviation from p, i.e., 68,2% of the postures obtained
have an accuracy of, e.g., 10 cm in X.
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Figure 6: Test image results.

Figure 6 shows an example of an image to be pro-
cessed. The lines represented are the possible lines of
the field. In this case, the (pg, fg+90) pair achieved
the top correlation value and position with an error of



200
400500 500 B 00 J O J 0 F00 N 500 BSVA00)

Figure 7: Bad test image results.

Az=+1 cm, Ay= +1 cm and Af= +1°. Note that,
in this test, the robot is close to one of the field walls,
making harder the posture determination process, as,
due to the limited image used, the other wall is not
seen, and a relevant parallel line can not be found by
the algorithm.

One example of a bad image, is shown in Fig. 7.
In this case, the position was computed with an error
of Ax=+10 cm, Ay= +1 cm and Af= +21°. Even
though the results shown in Fig. 7 are considerably
worse, they are acceptable for the due purposes (ex-
cept the orientation), considering the large image dis-
tortion. The method robustness meets the problem
specifications.

5 Conclusions and Future Work

A vision-based algorithm for robot self-localization
was tested on images taken from a low-cost catadiotric
system mounted on a Super Scout II soccer robot.
The algorithm was designed for well structured en-
vironments, where a priori knowledge about the word
model is available, and straight lines can be used to
describe environment features.

In the robotic soccer application, promising results
were obtained concerning posture accuracy and method
robustness to image noise and distortion. The team
robots projection on the field is a circle of roughly
40cm, and typical position errors ranged from 0 to
10cm. One way to reduce the position error range is to
use sensor fusion methodologies. The Tuebingen team
fuses three different self-localization methods for the
localization of their goalkeeper, using three sensors: an
omni-directional camera, a Laser Range Finder and
a compass [5]. The method can be used only in re-
gions near the field goals. However, we rely only on
an omni-directional vision system for self-localization
which can be used everywhere in the field. Future
work will include the method usage to periodically re-

set odometry and keep the whole team knowledgeable
of the teammate postures. The main goal of our cur-
rent work is to use the integrated odometry + vision-
based system as feedback for guidance control of the
ISocRob team soccer robots. The guidance controllers
will use control laws for smooth posture stabilization
and path following.
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