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tIn this paper, a method for robot self-lo
alizationbased on a 
atadioptri
 omni-dire
tional sensor is in-trodu
ed. The method uses natural geometri
 land-marks of the environment. It is assumed that the robotmoves on 
at surfa
es and straight lines 
an be identi-�ed in the sorrounding environment image a
quired bythe 
atadioptri
 system. This omni-dire
tional visionsystem is based on a 
amera plus a 
onvex mirror de-signed to obtain (by hardware) the ground plane bird'seye view. Results from the appli
ation to a real robotmoving on RoboCup so

er �eld and 
on
erning themethod's a

ura
y are presented.1 Introdu
tion and MotivationThe navigation system is perhaps the most impor-tant sub-system of a mobile robot. In many appli
a-tions, espe
ially those 
on
erning indoors well-stru
tu-red environments, one important feature of the navi-gation system 
on
erns the ability of the robot to self-lo
alize, i.e., to autonomously determine its positionand orientation (posture). On
e a robot knows itsposture, it is 
apable of following a pre-planned vir-tual path or to stabilize its posture smoothly[8℄. Ifthe robot is part of a 
ooperative multi-robot team,it 
an also ex
hange the posture information with itsteammates so that appropriate relational and organi-zational behaviors are established[9℄. In roboti
 so
-
er, these are 
ru
ial issues. If a robot knows its pos-ture, it 
an move towards a desired posture (e.g., fa
-�This work was supported by grant PRAXIS XXI /BM/21091 /99 of the Portuguese Foundation for S
ien
e andTe
hnology

ing the goal with the ball in between). It 
an alsoknow its teammate postures and prepare a pass, orevaluate the game state from the team lo
ations.An in
reasing number of teams parti
ipating in Ro-boCup's middle-size league is approa
hing the self-lo
alization problem [5℄. The proposed solutions aremainly distinguished by the type of sensors used: LaserRange Finders (LRFs), vision-based omni-dire
tionalsensors and single frontal 
amera. The CS-Freiburgand Stuttgart-Cops teams 
an determine their posi-tion with an a

ura
y of 1 and 5 
m, respe
tively, usingLRFs. However, LRFs require walls surrounding theso

er �eld to a
quire the �eld border lines and, in asense, 
orrelate them with the �eld re
tangular shapeto determine the team postures. Should the walls beremoved, the method be
omes not appli
able.In this paper, an omni-dire
tional 
atadioptri
 (vi-sion + mirror) system is used to determine the robotposture, with respe
t to (w.r.t.) a given 
oordinatesystem, from the observation of natural environmentlandmarks su
h as straight lines resulting from the in-terse
tion between the walls and the ground, as wellas from a priori knowledge of the environment geom-etry. RoboCup's Agilo team proposes a vision-basedapproa
h to the self-lo
alization problem too. A sin-gle frontal 
amera is used to mat
h a 3-D geomet-ri
 model of the �eld with the border lines and goalsline segments in the a
quired image. Only a partial�eld view is used in this method. Io

hi and Nardi[6℄ also use a single frontal 
amera and mat
h thelines with a �eld model using the Hough Transform.Their approa
h 
onsiders lines dete
ted lo
ally, ratherthan a global �eld view, and uses odometry to re-move ambiguities. Several teams use a vision-basedomni-dire
tional hardware system similar to the onedes
ribed here, but only for ball, marking and oppos-



ing robots tra
king. The robots of the Tuebingen team[5℄ use omni-dire
tional vision for self-lo
alization, butonly the distan
e to the walls is used.The paper is organized as follows: in Se
tion 2,the proposed self-lo
alization method is des
ribed ingeneral terms, and its appli
ation to roboti
 so

er isdetailed in Se
tion 3. Results 
on
erning a

ura
y ofthe postures obtained in this 
ase study are presentedin Se
tion 4, together with a study of its dependen
eon robot �eld lo
ations. Finally, some 
on
lusions anda des
ription of envisaged future work are drawn inSe
tion 5.2 The Self-Lo
alization Method2.1 Omni-Dire
tional Catadioptri
 SystemMost omni-dire
tional 
atadioptri
 systems are ba-sed on one of two types of re
e
ting surfa
es: spheri
al[3℄ or 
oni
[1, 2℄. Those systems require a perspe
-tive unwarping made by software, a time-
onsumingpro
ess that may prevent real-time robot guidan
e, inappli
ations where fast motion is required. The solu-tion used here, although developed independently, issimilar to the one des
ribed in [4℄, whose 
atadioptri
system preserves the geometry of a plane orthogonalto its symmetry axis, in parti
ular providing a bird'seye view of the ground plane.2.2 Method Des
riptionEven though the self-lo
alization algorithm was de-signed motivated by its appli
ation to roboti
 so

er,it 
an be des
ribed in general terms and applied toother well-stru
tured environments, with the assump-tion that the robot moves on 
at surfa
es and straightlines 
an be identi�ed and used as des
riptive featuresof those environments. An important requirement isthat the algorithm should be robust to image noise.Given an image a
quired from the 
atadioptri
 sys-tem, the basi
 steps of the algorithm are:1. Build a set T of transition pixels, 
orrespondingto image pixel representatives of environmentstraight lines (e.g., interse
tion between 
orridorwalls and ground, obtained by an edge dete
tor).2. For all transition pixels pt 2 T , 
ompute theHough Transform using the normal representa-tion of a line[7℄� = xti � 
os (�) + yti � sin (�) ; (1)

where (xti; yti) are the image 
oordinates of ptand �; � the line parameters.3. Pi
k the q straight lines (�1; �1); : : : ; (�q ; �q) 
or-responding to the top q a

umulator 
ells result-ing from the Hough transform des
ribed in theprevious step.4. For all pairs f(�j ; �j); (�k ; �k); j; k = 1; : : : ; q; j 6=kg made out of the q straight lines in the previ-ous step, 
ompute�� = j�j � �kj (2)�� = j�j � �kj: (3)Note that a small �� denotes almost parallelstraight lines, while �� is the distan
e between2 parallel lines.5. Classify, in the [0; 100℄ range, the ��s and ��sdetermined in the previous step, for its relevan
e(fun
tion Rel(:)) using a priori knowledge of thegeometri
 
hara
teristi
s of the environment (e.g.,in a building 
orridor of width d, only �� ' 0,�� ' 180 and �� ' d should get high grades).For ea
h pair of straight lines, assign a gradein the [0; 200℄ range to the pair, by adding upRel(��) and Rel(��).6. Pi
k up the most relevant pair of straight lines(i.e., the pair of largest Rel(��) + Rel(��) inthe previous step), and use it to extra
t somerelevant feature regarding environment lo
aliza-tion (e.g., the orientation � of the robot w.r.t.the 
orridor walls, represented by the most rele-vant pair of parallel straight lines, in the exampleabove).7. Use the relevant feature from the previous stepto pro
eed. For instan
e, assuming � in the 
or-ridor example is su
h a feature, it is used tosele
t 
olumns from the a

umulator 
ells ma-trix referred in Step 3. The idea is to 
orrelatea number of a
tual straight lines, found in theimage, sharing the same des
riptive parameter(e.g., the angle � 
orresponding to �) with theexpe
ted straight lines obtained from an envi-ronment model (e.g., the building layout). Toattain this, up to n � values from the a

umula-tor matrix 
olumn 
orresponding to � are pi
kedup, 
orresponding to up to n straight lines foundin the image. To handle un
ertainty in �, aneven better solution is to pi
k up not only one
olumn but a few 
olumns surrounding the a
-
umulator matrix 
olumn 
orresponding to �,



using the top n � values from those 
olumns.Con
atenate all these Hough spa
e points in anarray and 
all it �̂�.8. Create an array �� similar to �̂�, but obtainedfrom a geometri
 model of the environment. A
-tually, �� measures distan
es of environmentstraight lines to the origin of the world referen
eframe. Correlate �� and �̂� by shifting one ar-ray over the other, and in
rementing a 
ounterfor ea
h mat
hing (��; �̂�) pair. The maximumof the 
orrelation 
orresponds to the best mat
hbetween up to n straight lines in the image andthe n known environment straight lines. Fromthis result and similar results obtained for otherstraight lines non-parallel to them (determinedby the same pro
edure for di�erent �s), the im-age 
oordinates of environment feature points,whose lo
ation in the world referen
e frame isknown, are determined and used to determinethe robot position w.r.t. that frame, by a suit-able transformation from image to world 
oordi-nates.

Figure 1: Catadioptri
 system assembled on the robot.
3 Appli
ation to Roboti
 So

erThe self-lo
alization of a middle-size league so

errobot, using the method des
ribed in the previous se
-tion, takes advantage of the so

er �eld geometry andof the di�erent 
olors used for the �eld (green), the

Figure 2: So

er �eld model (
oordinates in pixels).surrounding walls and the �eld lines (white). The �eldis a 9 � 4:5 m 
at re
tangle that 
an be almost fullyobserved by the robot 
atadioptri
 system from most�eld lo
ations. To elliminate o

lusion due to the useof mirror supports, the 
atadioptri
 system 
onsistsof an a
ryli
 
ylinder with a small 
olor CCD 
am-era inside and the mirror on the top. The 
amera isassembled in a 5 degree of freedom (3 of translationand 2 of rotation) support allowing the user to 
or-re
tly position the 
amera with respe
t to the mirror.A
quired images are pro
essed using the HSV 
olormodel[7℄.Sin
e all four robots in the team require the 
ata-dioptri
 system, the tradeo� between 
ost and �nalmirror ma
hining quality had to be seriously 
onsid-ered. While it is true that image distortion due topoor mirror ma
hining quality re
e
ts in posture a
-
ura
y, the method here des
ribed was developed tobe robust to 
onsiderable image distortion and to im-age noise due to irregular and poor illumination. Assu
h, a non-expensive (' 150 Euros) mirror was used.Image distortion is severe on the external mirror zone,hen
e pro
essing is only made within a 
ir
le with a220 pixel radius, 
entered with the 
amera (see Fig. 3).Figure 1 shows the 
atadioptri
 system assembled ona Nomadi
 SuperS
out II.3.1 A Priori KnowledgeThe bird's eye view of the so

er �eld, shown s
hemat-i
ally in Fig. 2, shows 6 horizontal and 7 verti
al straightlines (
onsidering interrupted lines as only one line).In this work, all horizontal lines and 5 of the verti
allines (ex
luding those 
orresponding to the ba
k ofthe goals) were 
onsidered. Ex
luded lines were 
ho-sen be
ause they are often o

luded by the goalkeeperrobots. All the distan
es between lines are known fromRoboCup rules. Changes in the dimensions are pa-rameterized in a table. The model referen
e frame islo
ated at the bottom left of this �eld model.



3.2 Orientation DeterminationSteps 1-6 of the algorithm des
ribed in Se
tion 2 arefollowed to determine the initial robot orientation esti-mate (with a�90Æ or 0Æ/180Æ un
ertainty, to be solvedlater). The set T of transition pixels is obtained bydetermining the white-to-green and green-to-white im-age transitions over 36 
ir
les 
entered with the robot,shown in Fig. 3. The number of 
ir
les was determinedbased on a tradeo� between a

ura
y and CPU time.

Figure 3: Image obtained by the 
atadioptri
 systemwith the 36 
ir
les used to determine transition pixels.The Hough transform is then applied to the pixelsin T { a variable number from image to image, de-pending on the number and length of observed lines.In Step 3, q = 6 is used, based on experimental anal-ysis of the tradeo� between CPU time and a

ura
y.The relevan
e fun
tions for �� and ��, used in Steps5-6, are plotted in Figure 4. The latter re
e
ts a pri-ori knowledge of the environment, by its use of theknown distan
e between relevant �eld lines that 
anbe observed by the 
atadioptri
 system in one image.
Figure 4: Relevan
e fun
tions for �� and ��.The a

umulator 
ells of the Hough transform inStep 2 are obtained by in
rementing � from 0 to 180Æin 0.5Æ steps, leading to an image line slope resolutionof tan 0:5Æ. � is in
remented from 125 to 968 in steps of1 pixel, 
orresponding to an a
tual �eld resolution of

6.95 mm. The �90o or 180o ambiguity referred aboveresults from the absen
e of information on whi
h �eldlines lead to the most relevant pair. This informationis obtained in Steps 7-8.3.3 Position DeterminationThe �nal step in the self-lo
alization pro
ess 
on-sists of determining the robot position 
oordinates inthe so

er �eld. This is done together with the dis-ambiguation of the relevant feature � determined inSteps 1-6 of the self-lo
alization method, by 
reatingnot only the �� and �̂� arrays referred in Steps 7-8,but also their \orthogonal" arrays ��+90 and �̂�+90.The 
orrelation in Step 8 is made between all 4 pos-sible pairs (��+90; �̂�+90), (��+90; �̂�), (��; �̂�+90) and(��; �̂�) with n = 6 (the maximum number of �eldlines that 
an be found in the image). The maximumof the 4 
orrelation maxima o

urs for the array pairrepresenting the best mat
h between image and a
tual�eld lines. The array immediately identi�es whether��90Æ or � = 0Æ_� = 180Æ is the robot orientation. A
ompanion array pair exists for ea
h best pair. The 2pairs uniquely identify 2 (approximately) orthogonal�eld lines, by 
he
king the array positions where themaximum o

urred (verti
al �eld lines are numbered1; : : : ; 5 from left to right and horizontal lines are num-bered 1; : : : ; 6 from top to bottom). The interse
tionof the two lines is a referen
e point, whose 
oordinatesare known in the world referen
e frame, from the �eldmodel.The explanation above is summarized in the follow-ing table (the best and 
ompanion pairs positions 
anbe ex
hanged):Best Pair Companion Pair �(��; �̂�) (��+90; �̂�+90) � = �� 90Æ(��; �̂�+90) (��+90; �̂�) � = � _ �+ 180ÆThe robot position is 
omputed from a rotation of� (one of the possible values is used, with no spe
ial
riterion), followed by a translation that expresses the
enter of the image (i.e., the robot position in image
oordinates) in the model referen
e frame, and an-other translation plus a s
ale fa
tor f to express itin world 
oordinates. The world referen
e frame islo
ated in the middle of the so

er �eld, with the xaxis pointing towards the blue goal and the y axis issu
h that a 3-D 
oordinate frame would have z point-ing upwards. The orientation � is measured from x toa pre-de�ned straight line passing through the robot
enter. The s
ale fa
tor f depends on the geometry ofthe 
atadioptri
 system and 
an be 
allibrated experi-mentally. This transformation 
an be expressed by the



following equation, using homogeneous 
oordinates:" xrfyrf1 # = 24 
os � sin � xrefi + xrefm� sin � 
os � yrefi + yrefm0 0 1 35 � " xriyri1 #��" 4502250 # � f (4)where the subs
ripts i;m; f stand for the image, �eldmodel and a
tual �eld referen
e frames, and the su-pers
ripts ref and r stand for the referen
e point andthe robot, respe
tively.A further validation and disambiguation of the robotposture is required, sin
e, when only two parallel linesare used to determine the position, and due to �eldsymmetry, the robot side of the �eld is unknown, aswell as its orientation. To solve this problem, twotests are made. First, the algorithm 
he
ks whetherthe robot position is not outside de �eld. The se
ondtest 
onsists of using the 
urrent estimated posture toseek the nearest goal in the image.This is a
hieved by sele
tingm points lo
ated insideone of the goals (blue or yellow) in the a
tual �eld andapplying to ea
h of those points of 
oordinates (xgf ; ygf )the inverse transform of (4):" xgiygi1 # = 24 
os � sin � xrefi + xrefm� sin � 
os � yrefi + yrefm0 0 1 35�1 ��0�24 xgfygf1 35+ " 4502250 #1A � f (5)where the supers
ript g stands for goal.Should the majority of the 
orresponding pixels inthe image have the same 
olor of the �eld pixels, � =0Æ and the estimated position is validated. Shouldthey have the 
olor of the opposing goal, � = 180Æand the symmetri
al 
oordinates of the 
urrent po-sition estimate must be used for the robot position.When the majority of image pixels is green, the topmaximum of the 
orrelation pro
ess is removed andthe whole pro
ess re-started using the se
ond maxi-mum, and if needed, the third one and so on until thea
tual posture is determined.4 Experimental ResultsThe des
ribed self-lo
alization algorithm has beenimplemented in C and used to self-lo
alize a robot.The method was applied to a set of 90 images obtained

� �2 �� �x +3.2 (mm) 0.0099 (m2) 10 (
m)y -18.0 (mm) 0.0084 (m2) 9.18 (
m)� 0.22 Æ 3.14 Æ2 1.77 ÆTable 1: Posture a

ura
y statisti
s (mean and stan-dard deviation).by a 
atadioptri
 system mounted on a Super S
outII robot. Images were pro
essed in less than 1 se
ondea
h, in a Pentium 233MHz with 64Mb of RAM, theSuper S
out II on board 
omputer. Table 1 shows theresults of the 90 experiments. The �rst 
olumn givesthe average a

ura
y � in x, y and �, the se
ond thevarian
e of the a

ura
y �2 and the third 
olumn thea

ura
y for one standard deviation. In Fig. 5, the his-togram of the a

ura
y, in x and y, is shown as well asan adjusted Gaussian fun
tion. The represented re
t-angle 
ontains all the a

ura
ies within one standarddeviation from �, i.e., 68,2% of the postures obtainedhave an a

ura
y of, e.g., 10 
m in X.
Figure 5: Distribution of the error.

Figure 6: Test image results.Figure 6 shows an example of an image to be pro-
essed. The lines represented are the possible lines ofthe �eld. In this 
ase, the (��; �̂�+90) pair a
hievedthe top 
orrelation value and position with an error of



Figure 7: Bad test image results.�x=+1 
m, �y= +1 
m and ��= +1Æ. Note that,in this test, the robot is 
lose to one of the �eld walls,making harder the posture determination pro
ess, as,due to the limited image used, the other wall is notseen, and a relevant parallel line 
an not be found bythe algorithm.One example of a bad image, is shown in Fig. 7.In this 
ase, the position was 
omputed with an errorof �x=+10 
m, �y= +1 
m and ��= +21Æ. Eventhough the results shown in Fig. 7 are 
onsiderablyworse, they are a

eptable for the due purposes (ex-
ept the orientation), 
onsidering the large image dis-tortion. The method robustness meets the problemspe
i�
ations.5 Con
lusions and Future WorkA vision-based algorithm for robot self-lo
alizationwas tested on images taken from a low-
ost 
atadiotri
system mounted on a Super S
out II so

er robot.The algorithm was designed for well stru
tured en-vironments, where a priori knowledge about the wordmodel is available, and straight lines 
an be used todes
ribe environment features.In the roboti
 so

er appli
ation, promising resultswere obtained 
on
erning posture a

ura
y and methodrobustness to image noise and distortion. The teamrobots proje
tion on the �eld is a 
ir
le of roughly40
m, and typi
al position errors ranged from 0 to10
m. One way to redu
e the position error range is touse sensor fusion methodologies. The Tuebingen teamfuses three di�erent self-lo
alization methods for thelo
alization of their goalkeeper, using three sensors: anomni-dire
tional 
amera, a Laser Range Finder anda 
ompass [5℄. The method 
an be used only in re-gions near the �eld goals. However, we rely only onan omni-dire
tional vision system for self-lo
alizationwhi
h 
an be used everywhere in the �eld. Futurework will in
lude the method usage to periodi
ally re-

set odometry and keep the whole team knowledgeableof the teammate postures. The main goal of our 
ur-rent work is to use the integrated odometry + vision-based system as feedba
k for guidan
e 
ontrol of theISo
Rob team so

er robots. The guidan
e 
ontrollerswill use 
ontrol laws for smooth posture stabilizationand path following.A
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