
Hybrid abstrationsthat preserve timed languagesPaulo Tabuada1 and George J. Pappas21 Instituto de Sistemas e Rob�otia, Instituto Superior T�enio1049-001 Lisboa - Portugal, tabuada�isr.ist.utl.pt2 Department of Eletrial Engineering, University of PennsylvaniaPhiladelphia, PA 19104, pappasg�ee.upenn.eduAbstrat. In this paper we onsider the problem of extrating an ab-stration from a hybrid ontrol system while preserving timed languages.Suh onsistent abstrations are learly useful as the abstrated, higherlevel model ould be used for ontroller synthesis or veri�ation of themore ompliated lower level model. The lass of abstrating maps weonsider in this paper ompress only the ontinuous states without aggre-gating any disrete states. Given suh an abstrating map, we determinenatural onditions that determine when trajetories of the original hybridsystem an be generated by the abstrated hybrid system. Conversely,we determine onditions under whih the two hybrid systems generateexatly the same timed language.1 IntrodutionThe analysis and synthesis of hybrid ontrol systems has reeived tremendousattention reently. The sale of the motivating appliations, suh as air traf-� management systems [15℄ or automotive engine ontrol systems [4℄, requirethat the resulting analysis and ontrol methodologies sale up eÆiently, in or-der to failitate the realisti appliation of omputational methods to real-saleexamples.One of the fundamental approahes to reduing the omplexity of large salesystem analysis and design is the proess of abstration. From an analysis per-spetive, given a model and a property of interest, one tries to extrat a simplermodel, an abstration, that preserves the property of interest while ignoring ir-relevant details. This approah has been used suessfully in extrating disreteabstrations of hybrid systems while preserving many properties that an beexpressed in various temporal logis [3℄.From a design perspetive, given a hybrid ontrol system, one would liketo extrat an abstrated hybrid system, perform the design at the higher levelabstration, and then re�ne the design at the lower level. In this hierarhialsetting, a methodology whih extrats a hierarhy of hybrid system models atvarious levels of abstration is ritial.Due to the omplexity of ombinatorial problems, the notion of abstration ismore mature in theoretial omputer siene than ontrol theory. For purely dis-rete systems, the notions of language equivalene, simulation, and bisimulation



are established [10℄. For purely ontinuous systems, however, these onepts areonly reently beginning to emerge. In partiular, in [12℄, a notion of abstrationfor ontinuous systems was formalized. In [11℄ reahability preserving abstra-tions of ontinuous linear systems were haraterized, leading to hierarhialreahability algorithms for linear ontrol systems. In [13℄, these results wheregeneralized for nonlinear analyti systems. A general theory of abstration forhybrid systems will learly merge the ontinuous and disrete approahes.In this paper, we address the problem of extrating a hybrid abstration froma hybrid ontrol model while preserving timed languages. Given a hybrid system,the timed language is simply the timed trajetory of the disrete states. There-fore, the timed language maintains the disrete state the system is in as well asrelevant timing information.This problem is important for a variety for reasons. For sheduling multiplephysial proesses (suh as air traÆ management systems), the higher level maybe simply interested in whih disrete mode eah proess is in (landing, holding,et.) and when. Therefore the higher level (air traÆ ontrol) would like then touse the simplest possible model of an airraft that is ompatible with the originalairraft dynamis but also with the sheduling operation. Furthermore, the re-sults of this paper an be easily adapted to properly extrat hybrid abstrationsfrom purely ontinuous systems [14℄. Finally, the results of the paper are the �ststeps towards a more general abstration methodology for hybrid systems.In order for the abstrated model to generate the same disrete symbols,we onsider aggregating only the ontinuous dynamis. Abstrating the on-tinuous dynamis while preserving the timed language requires the abstrationproess to be done in manner that allows us to detet all the disrete transi-tions. This plaes a natural ondition between the abstrating maps, guards andinvariants of the disrete transitions. Assuming that our aggregating maps sat-isfy these onditions, we show that hybrid trajetories of the original model anbe simulated by the abstrated model. Consequently, the abstrated model alsogenerates the same timed language. In general, the abstrated system is not atimed automaton [2℄, as we may need to preserve riher ontinuous dynamis inorder to properly detet the disrete transitions.In order to ensure that timed trajetories of the abstrated model are feasibleby the original hybrid model, we rely heavily on the abstration results for on-tinuous systems [13℄. These results give us onstrutive methods for extratinghierarhies of nonlinear ontrol systems while preserving exat time ontrollabil-ity. Exat time ontrollability allows us to preserve a form of timed reahability.Using these results, we an plae additional onditions on our abstrating mapsin order to ensure that in eah disrete loation, the ability to reah a ertainguard at the same time an be done at both levels of abstration. This allows usto show that the timed language generated at the high level an be implementedat the lower level.This paper is organized as follows : In Setion 2, we review the ontinuousabstration methodology as presented in [11, 13℄. In Setion 3, we de�ne hybridsystems, and determine onditions under whih the hybrid abstration and the



original hybrid system model an generate the same timed language. Our on-strutions are briey illustrated by a simple example in Setion 4, but the readeris referred to a more detailed appliation in [14℄. Setion 5 ontains interestingissues for further researh.2 Abstrations of Continuous SystemsContrary to di�erential equations whose abstrations are haraterized by verystrit onditions, abstrations of ontrol systems involve only moderate on-ditions due to the nondeterministi nature of ontrol systems. In subsequentdisussion, we assume the reader is familiar with di�erential geometri oneptsat the level presented in [1℄.2.1 Abstrations of Control SystemsWe begin with an abstrat de�nition of a ontrol system:De�nition 1 (Control System). A ontrol system S = (U; F ) onsists of a�ber bundle � : U �! M alled the ontrol bundle and a smooth map F : U�! TM whih is �ber preserving, that is �0 Æ F = � where �0 : TM �! M isthe tangent bundle projetion. Given a ontrol system S = (U; F ), the ontroldistribution D of ontrol system S, is naturally de�ned pointwise by D(x) =F (��1(x)) for all x 2M .The ontrol spae U is modeled as a �ber bundle sine in general the on-trol inputs available may depend on the urrent state of the system. On a loaloordinate hart, De�nition 1 an be read as ddtx = f(x; u) with u 2 ��1(x),therefore reovering the traditional form of the ontrol system. Before intro-duing the notion of abstration for ontinuous ontrol systems, the onept oftrajetories of ontrol systems is required:De�nition 2 (Trajetories of Control Systems). A urve  : I �! M ,I � R+0 is alled a trajetory of ontrol system S = (U; F ) if there exists a urveU : I �! U satisfying: � Æ U = ddt (t) = �( ddt ) = �(1) = F (U )Again in loal oordinates, the above de�nition simply says that x(t) is asolution to a ontrol system if there exists an input u(t) 2 U(x(t)) = ��1(x(t))satisfying ddtx(t) = f(x(t); u(t)). Our goal is to onstrut a map � :M �! N ,the abstration map or aggregation map, that will indue a new ontrol sys-tem (UN ; FN ) on the lower dimensional manifold N having as trajetories �(),where  are S trajetories. The onept of abstration map for ontinuous ontrolsystems is de�ned as follows:



De�nition 3 (Abstration Map). Let SM = (UM ; FM ) and SN = (UN ; FN )be two ontrol systems on manifolds M and N , respetively. A map � : M �! Nis alled an abstration or aggregation map i� for every trajetory M of SM ,�(M ) is a trajetory of SN . Control system SN is alled a �-abstration of SM .The above de�nition is learly inspired from the notions of language equiva-lene and simulation of transition systems [10℄. From De�nition 3, it is lear thatan abstration aptures all the trajetories of the original system, but may alsoontain redundant trajetories. These redundant trajetories are not feasible bythe original system and are therefore undesired.Sine De�nition 3 de�nes abstrations at the level of trajetories, it is diÆultto determine whether a ontrol system is an abstration of another one, sinethis would require integration of the ontrol systems. One is then interested ina haraterization of abstrations whih is equivalent to De�nition 3 but easilyhekable. To pursue this, one needs to introdue the notion of �-related ontrolsystems.De�nition 4 (�-related ontrol systems). Let SM = (UM ; FM ) and SN =(BN ; FN ) be two ontrol systems de�ned on manifolds M and N , respetively. Let� : M �! N be a smooth map. Then ontrol systems SM and SN are �-relatedi� for every x 2M ���FM���1M (x)�� � FN���1N (�(x))� (1)The notion of �-related ontrol systems is a generalization of �-related vetor�elds ommonly found in di�erential geometry as explained in [11℄. It is evidentthat given two systems that are �-related to a ontrol system their interse-tion is also �-related. This immediately suggests that given a ontrol systemand a map �, there is a minimal �-related ontrol system, in whih ase theinlusion (1) an be replaed by equality1. We an now provide the onnetionbetween abstrations and �-related ontrol systems:Theorem 1 ([12, 11℄). Let SM and SN be ontrol systems on manifolds M andN , respetively, and � :M �! N a smooth map. Then SM and SN are �-relatedif and only if SN is a �-abstration of SM .The ontrol system SN is alled theminimal �-abstration of a ontrol systemSM i� SN is the minimal system that is �-related to SM .For analyti ontrol systems there is a onstrutive method whih given aontrol system SM and a map � : M �! N , generates a �-abstration SN . Thisonstrution, whih generalizes the onstrution for linear systems desribedin [11℄, is now briey reviewed. The reader is referred to [13℄ for more details.Given two distributions A and B on manifold M , de�ne a distribution [A;B℄by delaring [A;B℄(p) to be the subspae of TpM generated by vetors of the form[X;Y ℄(p), where X ,Y are any two analyti vetor �elds in A and B respetively,1 Note that this minimal element is unique up to a hange of oordinates.



and [X;Y ℄ is their Lie braket. By resorting to this onstrutive method, de�nethe distribution DM as:DM = K [ DM [ [K;DM ℄ [ [K; [K;DM ℄℄ [ : : : (2)where K is the integrable distribution Ker(��), �� is the push forward map of �,and DM the distribution assoiated with ontrol system SM . Distribution DMallows us to onstrut the minimal �-abstration on N as:DN (y) = ���DM (x)� (3)for any x 2 ��1(y). If SN is extrated from SM using this anonial onstrution,then ontrol system SN will be referred to as anonially �-related to SM .2.2 Controllability EquivaleneIn general, sine the abstrated system is less onstrained, the abstrated modelmay allow evolutions that might not be implementable on the original system.However the original system and its abstration an still be rendered equivalentregarding some properties of interest. In this paper, we will fous on exat timeontrollability whih is de�ned using the reahable sets of ontrol system SM :De�nition 5 (Reahable set [7℄). For eah T > 0, and eah x in M , the setof points reahable from x at time T , denoted by Reah(x; T ), is equal to the setof terminal points M (T ) of SM trajetories that originate at x.De�nition 6 (Exat Time Controllability). A ontrol system is said to beexat time ontrollable if for any T > 0, Reah(x; T ) =M for any x 2M .Consider two systems SM and SN and a surjetive map � :M �! N . Controlsystems SM and SN are equivalent from an exat time ontrollability point ofview if the following property holds: there exists an SM trajetory onnetingx1 2M to x2 2M in time T if and only if there exists a SN trajetory onneting�(x1) 2 N to �(x2) 2 N also in time T . This property is learly reminisent oftimed-bisimulations [10℄.If we assume that the ontrol system is aÆne in the ontrol, that is, on loalharts it an be written as:F (x; u) = f(x) + kXi=1 gi(x)ui (4)then we an haraterize exat time ontrollability through the Lie algebra gen-erated by fg1(x); g2(x); : : : ; gk(x)g and denoted by Lieg(SM ).Theorem 2 ([7℄). An analyti ontrol system SM aÆne in ontrol, as de�nedin (4), is exat time ontrollable if Lieg(SM (x)) = TxM for every x 2M .



We defer the reader to [6, 7℄ for further details regarding the various notions andonepts of ontrollability. The main theorem regarding ontrollability equiva-lene of abstrations (see [13℄) an now be restated as follows:Theorem 3 (Exat Time Controllability Equivalene). Let SM and SNbe two analyti ontrol systems on analyti manifolds M and N , respetively,and let N be an embedded submanifold of M . Let � : M �! N be an analytisurjetive submersion. If SN is anonially �-related to SM andKer(��) � Lieg(SM ) (5)then SN is exat time ontrollable i� SM is.Equations (2,3) and Theorem 3 provide a onstrutive way of building on-tinuous abstrations that propagate reahable sets, and in partiular exat timeontrollability. When additional properties must be propagated, additional on-straints must be imposed on the abstrating maps.3 Hybrid Control AbstrationsAlthough hybrid abstrations follow the same oneptual ideas of disrete andontinuous abstrations, their study is somewhat more involved due to the om-pliated nature of hybrid trajetories. We start with a hybrid system model thatallows di�erent ontinuous spaes in eah disrete loation.De�nition 7 (Hybrid Control System). A hybrid ontrol system is a tupleH = (X;X0; S; Inv;R) with the following omponents:{ X is the state spae of the hybrid ontrol system and is given by a family ofsmooth manifolds X = fMqgq2Q indexed2 by a �nite set Q. Eah state thushas the form (x; q), where x 2 Mq is the ontinuous part of the state, andq 2 Q is the disrete part.{ X0 = fM0q gq2Q0 � X is the set of initial states.{ S: Q ! f(Uq; Fq) : (Uq ; Fq) is a ontrol system on Mqg assigns to eahdisrete state q 2 Q a ontrol system (Uq ; Fq) whih governs the evolution ofthe ontinuous part of the state. Thus in disrete loation q, the ontinuouspart of the state satis�es ddtx = f(x; q; u) with u 2 ��1(x; q).{ Inv: Q! 2X assigns to eah loation q 2 Q an invariant set Inv(q) �Mq.{ R � X �X is a relation apturing the disrete jumps.Hybrid systems are typially represented as �nite graphs with verties Q,and edges E de�ned byE = f(q; q0) 2 Q�Q j ((x; q); (x0; q0)) 2 R for x 2 Inv(q) and x0 2 Inv(q0)g:2 When all the manifolds Mq are equal, then the state spae X is X =M �Q.



With eah edge e = (q; q0) 2 E we assoiate a guard set de�ned asGuard(e) = fx 2 Inv(q) j ((x; q); (x0; q0)) 2 R for some x0 2 Inv(q0)gand a set-valued reset mapReset(e; x) = fx0 2 Inv(q0) j ((x; q); (x0; q0)) 2 Rg:Trajetories of the hybrid system H originate at any initial state (x; q) 2 X0 andonsist of onatenations of ontinuous ows and disrete jumps. Continuousows keep the disrete part of the state onstant at q, and the ontinuous partevolves over time aording to the ontrol system ddtx = f(x; q; u), as long as xremains inside the invariant set Inv(q). If during the ontinuous ow, it happensthat x 2 Guard(e) for some e = (q; q0) 2 E, then the edge e beomes enabled.The state of the hybrid system may then instantaneously jump from (x; q) toany (x0; q0) with x0 2 Reset(e; x). Then the proess repeats, and the ontinuouspart of the state evolves aording to the ontrol system ddtx = f(x; q0; u). Weshall therefore assume that a trajetory of an hybrid ontrol system is a map3 �from a time set T to the state spae X = fMqgq2Q of H , that is:� : T �! fMqgq2Q� 7! (x(�); q(�)) (6)An abstrating map for hybrid systems an now be de�ned in the same way itwas de�ned for ontinuous systems.De�nition 8 (Abstration Map). Let HX = (X;X0; SX ; InvX ; RX) andHY = (Y; Y0; SY ; InvY ; RY ) be two hybrid ontrol systems with X = fMqgq2Qand Y = fNpgp2P . A map � : X �! Y is alled an abstration or aggregationmap i� for every trajetory HX of HX , �(HX ) is a trajetory of HY .Even though, we are interested in general abstrating maps, we now fous ona sublass of abstrating maps that are suitable for preserving timed languages.3.1 Timed Language Generated by a Hybrid SystemIn this paper we shall fous on abstrations that render the original systemand its abstration equivalent regarding the timed language they an generate.The timed string orresponding to a trajetory �(�) = (x(�); q(�)) of an hybridontrol system is simply given by q(t). Naturally q(t) an be regarded as a timedstring4 sine it an be written in the more usual form f(t; q(t))gt2R+0 . The timedlanguage generated by an hybrid ontrol system is therefore de�ned as:3 When multiple disrete jumps in zero time are allowed, a more omplex notion oftime is required to regard an hybrid trajetory as a map, see for example [9℄.4 The string s = q(t) an be transformed to retain only the disrete states, and the�rst instane of time at whih the system has hanged disrete state. The resultspresented in this paper are however independent of that transformation.



De�nition 9 (Timed language of a hybrid system). Let H be a hybridontrol system. The timed language generated by H and denoted by �H is givenby all the strings q(t), where q(t) is the disrete part of an hybrid trajetory�(�) = (x(�); q(�)) of H.With this notion of timed language, timed language equivalene between twohybrid system requires the disrete behavior of the hybrid abstration to be equalto the disrete behavior of the original system. Therefore aggregation an onlyhappen on the ontinuous part of the hybrid system. We will therefore restritthe lass of abstrating maps to the following form:� : fMqgq2Q �! fNqgq2Q�(x; q) = (�(x); q) (7)that is, if � is written as � = (�M ; �Q), then �Q is the identity map on Q = P .Even though for ontinuous systems we an always extrat abstrations thatpreserve trajetories, for hybrid ontrol systems additional onstraints must beimposed on the abstrating map to ensure timed language equivalene. This isbeause the disrete dynamis rely heavily on ertain sets, suh as the guardsand the invariants, and we have to ensure that these sets are abstrated orretlyat the higher level.3.2 Propagating Guards and InvariantsLet us zoom into a disrete state and onsider the relevant sets whih triggerthe disrete dynamis, namely the guards and the invariants. Timed languageequivalene requires that these sets must be aggregated in a onsistent way.Figure 1 represents the state spae of the original system with the guardde�ned by a relation of the type x2 > onst. When performing an abstrationusing the map �(x1; x2) = x2, in the abstrated system it is still possible todetermine if the ontinuous part of the trajetory belongs or not on the guard.No information required by the disrete dynamis was lost in the abstratingproess. However if the abstrating map is �(x1; x2) = x1 it is no longer possibleto determine if the ontinuous part of the trajetory belongs or not to the guard,therefore it is not possible to generate the same timed language.The essential property to be propagated is therefore the ability to distinguishbetween sets �(A) and �(B) in the abstrated system if and only if it is possibleto distinguish between relevant sets A and B in the original system. The relevantsets an be enoded in a partition of the state spae, where eah equivalene lassof the partition orresponds to a possible ombination of guards and invariants.The required partition an be modeled as a map 	M de�ned as:	M :M �! D (8)where D is a �nite set. We assume that the map 	M results in a topologiallywell behaved partition5. Partition propagation an now be de�ned as:5 For example, the partition an be a subanalyti strati�ation [8℄.
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Fig. 1. Deteting a guard.De�nition 10 (Partition Propagation). An abstrating map � : M �! Npropagates a partition 	M i� there exists a partition on N de�ned by a map	N : N �! D suh that the following diagram ommutes.M N-�D	M����R 	N����	 (9)or equivalently i� 	M (x) = 	N Æ �(x).Note that propagating the partitions is stronger than preserving the partitionwhih only requires that 	M (x1) = 	M (x2) ) 	N Æ �(x1) = 	N Æ �(x2) andallows, for example, merging two 	M equivalene lasses into a single equivalenelass in 	N . This is not a desirable situation sine the ability to distinguishbetween the two equivalene lasses is lost.Although De�nition 10 aptures the fundamental property that the abstrat-ing map should possess it does not haraterize it diretly. A haraterization isgiven in the following proposition:Proposition 1. An abstrating map � : M �! N propagates a partition 	Mi� the preimage under � of a point y 2 N is totally ontained in a single 	Mequivalene lass, equivalently, if for all y 2 N there exists one and only oned 2 D suh that 	M Æ ��1(y) = fdg.Proof. (SuÆieny) We proeed by ontradition. Suppose that 	M (x) = 	N Æ�(x) and there exist two di�erent elements a; b 2M that belong to two di�erent	M equivalene lasses, that is 	M (a) 6= 	M (b). Admit further that they aremapped into the same point in N , �(a) = �(b). We have that 	M (a) = 	N Æ�(a),but sine �(a) = �(b), 	N Æ�(a) = 	N Æ�(b) = 	M (b). Therefore 	M (a) = 	M (b),a ontradition.



(Neessity) We de�ne expliitly the map 	N as 	N (y) = 	M (x) for allx 2 ��1(y) whih is well de�ned sine ��1(y) is ontained in a single 	M equiv-alene lass. utProposition 1 states partition propagation onditions expliity on the ab-strating map �, but they are very diÆult to hek in general. However it israther intuitive that a suÆient ondition for partition propagation is symmetry,as expressed in the next proposition.Proposition 2. Suppose that the partition 	M on manifold M is invariant un-der the ation of a group G, then the abstrating map � de�ned as the projetionfrom the manifold M to the orbit spae M=G propagates the partition 	M .Proof. If the 	M equivalene lasses are invariant under G ation, then the orbitthrough the point x0, namely Ox0 = fx 2 M : x = gx0 8g2Gg is ontained ina 	M equivalene lass. Sine the preimages under � are preisely the sets Ox0the onditions of Proposition 1 are satis�ed. utIn fat, symmetry is also a neessary ondition when more struture is im-posed on the setM and the map �. To study general nonlinear abstrating mapswe onsider that M and N are smooth manifolds and that the abstrating map� is a smooth surjetive submersion. Resorting to this di�erentiable struture,Proposition 1 speializes to:Proposition 3. A smooth surjetive submersion � : M �! N between smoothmanifolds propagates a partition 	M if and only if the partition equivalenelasses are invariant under Ker(��).Proof. (SuÆieny) The vetors in Ker(��) span an involuntive distributionwhih has onstant rank at every x 2 M sine the map � is a submersion. ByFrobenius theorem [1℄ there exists an integrating manifold that an be desribedas the ation of Rp , with p = dim(K), on M given by  = �1(t1) Æ �2(t2) Æ : : : Æ�p(tp). Eah �i(ti) is the ow of the vetor �eld Zi from the generators of K, thatis K = SpanfZ1; Z2; : : : ; Zpg. The partition equivalene lasses are thereforeinvariant under this ation and by Proposition 2 the partition is propagated.(Neessity) The preimage of a point y 2 N by � is a smooth submanifold ofMwhen the derivative of �, is surjetive, whih is the ase sine � is an submersion.The tangent spae of the submanifold ��1(y) is given by the vetors X 2 TMthat belong to Ker(��). Sine the partition is propagated the preimage of apoint y 2 N by � is totally ontained inside a partition equivalene lass andtherefore the partition equivalene lasses are invariant under Ker(��). utThe above haraterizations of the abstrating maps are ritial in order topropagate disrete trajetories from the original hybrid ontrol system to theabstrated one while ensuring timed language equivalene.



3.3 Hybrid AbstrationsGiven a hybrid system, HX and an abstrating map �, we now present a on-strution that generates an hybrid abstration HY . The abstration proess de-pends on the observation that the ontinuous dynamis in a partiular disretestate is essentially deoupled from the ontinuous dynamis in the other disretestate, the only link being given by the Reset map. It is therefore possible to usea di�erent abstrating map �q in eah disrete state q 2 Q of the hybrid systemHX . More formally:De�nition 11 (Constrution of hybrid abstrations). Consider hybridontrol system HX = (X;X0; SX ; InvX ; RX) with X = fMqgq2Q and onsiderthe olletion of maps � = f�qgq2Q, �q : Mq �! Nq. The resulting hybrid ab-stration HY = (Y; Y0; SY ; InvY ; RY ) is a tuple onsisting of:{ For all q 2 Q, Nq = �q(Mq), therefore the state spae is Y = fNqgq2Q.{ Y0 = fN0q gq2Q0 where N0q = �q(M0q ).{ SY is a funtion that maps eah q 2 Q to the minimal �q-abstration of theorresponding ontrol system SX(q) using the anonial onstrution (2,3).{ InvY (q) = �q(InvX (q)).{ RY = f�(y; q); (y0; q0)� 2 Y � Y : (y; q) = �q(x; q) ^ (y0; q0) = �q0(x0; q0) ^((x; q); (x0; q0)) 2 RXg. More spei�ally we have� GuardY (e) = �qi (GuardX (e))� ResetY (e; xi) = �qj ÆResetX(e; ��1qi (xi)) for all e = (qi; qj) 2 E, x 2M .Therefore the disrete state spae remains unaltered and only the ontinuousstate spae is aggregated from Mq to Nq is eah disrete loation q 2 Q, andsimilarly for the set of initial onditions. The ontinuous ontrol system SX(q)is replaed by its minimal �q-abstration. The new invariant on eah loationq 2 Q is the image of the initial invariant under �q , that is �q(InvX (q)). Thereset relation RY is the image of the reset relation RX by the abstrating mapresulting in the new guards being the image of the initial guards by the abstrat-ing map. The reset maps ResetY are given by the image under �qj of the resetmaps ResetX evaluated at every point of the set valued map ��1qi . The mainresult relating hybrid abstration onstruted through De�nition 11 and timedlanguage equivalene an now be stated as follows:Theorem 4 (Timed language equivalent hybrid abstrations). Let HXand HY be hybrid ontrol systems and suppose HY is obtained from HX usingDe�nition 11. If the family of maps � = f�qgq2Q is suh that the invariants andguards in eah disrete loation q 2 Q are invariant under Ker(�q�) then HY isa �-abstration of HX .If furthermore Ker(�q�) � Lieg(SM (q)) for eah q 2 Q then HX and HYgenerate the same timed language.Proof. To show that HY is a �-abstration of HX we need to show that for everytrajetory HX = (x(�); q(�)), �(HX ) is a trajetory of HY . For any trajetory(x(�); q(�)) of HX , (x(0); q(0)) 2 X0, therefore �(x(0); q(0)) = (�q(0); q(0)) 2 Y0
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