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ABSTRACT

In general, finite-dimensional discrete-time representations of
continuous-time Gaussian transients is not complete. Such repre-
sentations typically lead to suboptimal detectors, where the com-
promise between computational complexity and processor perfor-
mance requires optimization, specially when real-time process-
ing is mandatory. This paper proposes a procedure for the opti-
mization of the processor parameters, using the Bhattacharyya dis-
tance to evaluate the resemblance between the original continuous-
time signal and its finite dimensional discrete representation. Two
different decompositions are analyzed and compared, namely the
Karhunen-Loéve decomposition (KLD) and the discrete wavelet
transform (DWT). It is shown that the DWT presents serious ad-
vantages when the signals to detect have a large number of impor-
tant eigenvalues, which is often the case in some applications such
as passive sonar.

1. INTRODUCTION

In recent years, passive detection has known an increasing interest
in underwater acoustic applications. In particular, the need to de-
tect small wideband transients, such as man-made metallic noises,
mammal sounds or bubbles bursts arising from the sea floor in seis-
mic regions [6] require the use of nonstationary stochastic models
with a large number of relevant eigenvectors that increase the ro-
bustness of the processor. The classical solution to this problem
is baséd on the Karhunen-Logve decomposition (KLD), where the
observation process is decomposed under a small number of un-
correlated coefficients. This procedure has proven to be adequate
when the signals to detect are stationary, and the corresponding
KLD is the Fourier transform, approximated in the discrete-time
domain by the FFT after a correct filtering and sampling proce-
dure. The resulting processor, consisting mainly on a FFT decom-
position stage and a log-likelihood test (LLT) is thus efficient since
the FFT is computationally low-cost and the covariance matrix in
the quadratic form of the LLT is diagonal. When the signals to de-
tect are transients with a large number of eigenvectors, the signal
KLD is no more the FFT and the decomposition step is performed
by discrete-time internal products between the samples of the ob-
servation process and the signal covariance matrix eigenvectors.
As the number of eigenvectors increase, the computational com-
plexity (CC) of the decomposition step also increases. In real-time
applications, the KLD leads, in many cases, to prohibitive costly
algorithms.

Using Mallat’s recursive algorithm for image decomposition
in its one-dimensional form, the discrete wavelet transform (DWT)
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Figure 1: Processing scheme.

strongly reduces the decomposition stage CC of the processor. The
LLT stage CC, however, increases since the resulting decomposi-
tion coefficients are in general correlated, even though a conve-
nient choice of the mother wavelet and sampling interval lead to
sparse coefficients covariance matrices.

This paper proposes methods to find the parameters that opti-
mize the performance of the processor given a fixed CC, for both
cases where either the KLD or the DWT are used. It also presents
an example showing that in some realistic situations, the DWT can
present a huge efficiency gain comparing with the KLD.

2. PROBLEM FORMULATION

The detection problem is formulated as a simple binary test. The
observation process r(t) is defined as
(t) = s(t) + n(t), under hypothesis H1 )
W= a@), under hypothesis Ho,

where s(t) and n(t) correspond to continuous-time zero mean
Gaussian distributed processes with autocorrelation functions
ks(t1,t2) and 028(t; — t2), respectively, and 6(t) and o? repre-
sent the Dirac delta and the proportionality coefficient of the noise
variance. It is assumed that most of the energy of the signal s(t)
(s(t) € L2(R)) lies in compact support bands either in the time
and frequency domains.

The processing scheme is presented in fig. 1. The first two
blocks consist in filtering and sampling stages. The lowpass fil-
ter is assumed ideal with cutoff frequency w. equal to half the
sampling frequency ws (we = ws/2), this restriction being neces-
sary to ensure that the filtering and sampling stages are equivalent
to a linear decomposition. The samples are then truncated in the
time-domain, and decomposed in a small number of coefficients
with low cross-correlation. Afterwards, the log-likelihood ratio is
computed and compared with a threshold. Clearly, the filtering,
sampling, gating and linear decomposition operations reduce the



signal information represented by the coefficients covariance ma-
trix. It is possible to reduce this negative effect by choosing an
almost-complete signal representation (high sampling rates, large
observation intervals and many decomposition coefficients) but the
corresponding processor CC becomes untracktable, specially for
real-time applications. It is thus necessary to determine the best
tradeoff by choosing the parameters of the scheme in fig. 1 that
optimize the processor performance, while maintaining the CC at
a reasonable level.

For real-time applications, the rate at which the likelihood ra-
tios are sequentially computed also influences the tradeoff
CCl/processor performance. In this scenario, it is assumed that a
given process is observed (filtered and sampled) for a long time in-
terval. However, only the coefficients corresponding to a compar-
ative small sliding window (the size of the gating in fig. 1, i.e. the
approximate length of the transient signal), are computed and the
resulting likelihood test is evaluated. As new samples of the obser-
vation process arrive, the window is shifted and a new likelihood
test is performed. Defining by V; the shift interval of the sliding
window, two consecutive likelihood tests are separated by IV; sam-
pling intervals. Thus, at times ¢ — N; and ¢, the sliding windows
correspond respectively to the intervals [t — N, — Ny + 1;& — N¢]
and [t — N, + 1;t], where N, stands for the sliding window
length. Clearly, the performance of the real-time processor is the
best when Ny = 1, i.e., when the likelihood tests are computed
at every sampling interval and thus reducing as much as possible
the probability of missing a signal between two consecutive tests.
However, the processor’s CC is strongly reduced if V; corresponds
to several sampling intervals (the CC is proportional to 1/N;). Al-
though this effect degrades the processor performance, quadratic
processors are relatively robust to small arriving times shifts [3],
even when the signals to detect are small transients, nonstationary
in nature.

3. OPTIMIZATION PROBLEM

The optimization problem can be stated as follows: let {y} be the
set of parameters that uniquely define a given processor, and let
a({~}) and B({7}) be measures of, respectively, the performance
and the CC of the processor. We wish to determine the optimum
set of parameters {~Yopt } such that

{ope} = argmax{a({YHIBH}) = frer}, @
where Bret stands for the desired CC.

The CC B({v}) is represented by the number of multiplica-
tions per time unity executed by the processor. The expression
of B({v}) depends on the linear decomposition used and on the
likelihood ratio expression. Since these two terms differ substan-
tially on the KLD and the DWT cases, the corresponding CCs are
derived individually for each case in the next two sections.

The best measure to evaluate the processor’s performance in
detection problems is the probability of error (PE). However, the
PE between two hypotheses does not have a closed form and is
difficult to compute, specially in muitidimensional optimization
problems. An alternative way is to use the Bhattacharyya distance
(BD) [2] to obtain an upper bound, e,(Ho, H1), of the PE be-
tween two hypothesis Ho and H;. However, in the present case,
one needs to measure the negative impact of the model mismatch
in the detector performance. One important component that con-
tributes to this mismatch is the shift error that results from the
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non-coincidence between the signal arriving times and LLT time
instants computation. To deal with this situation, the BD is used
instead to evaluate the resemblance between the covariance matri-
ces of the true and approximated signals in hypothesis Hi. For
simplicity, it is assumed that the random ”shift error”, correspond-
ing to a diagonal shift on all the elements in the covariance matrix
of the approximated signal, is maximum when the signal arrives at
half the length of the sliding window, and the detector performance
is evalvated through the BD in this worst case condition. The
BD requires furthermore that i) a finite-dimensional discrete de-
scription of the complete and approximated signals is available, ii)
the corresponding coefficients are expressed in the same subspace
and iii) the covariance matrices are positive definite. Although a
finite-dimensional description of a continuous-time process can-
not in general be obtained, a very good approximation (obtained
by observing the transient signal on a large observation window,
using very high sampling rates and a large number of eigenval-
ues) is used as a “discrete reference signal”. The approximated
signal is computed by sequentially reducing the number of eigen-
vectors and the observation window length, and increasing both
the sampling interval and the likelihood test interval (i.e., the di-
agonal shift between the approximated covariance matrix and the
reference one). Since it is assumed that the lowpass filtering is
ideal, the filtering and sampling processes correspond to a linear
decomposition, as are the KLD and the DWT. Reducing the ob-
servation interval signifies only that some of the coefficients of the
filtering and sampling decomposition are kept and the others are
discarded. Thus, the approximated signal coefficients subspace is
only a shifted linear subspace of the reference signal and it is pos-
sible to obtain a projection of the approximated signal covariance
matrix in the subspace of the reference signal to satisfy the above
referred point ii). Regarding point iii), the white noise present in
the binary hypothesis problem ensures that the covariance matrices
of the reference and approximated signals plus noise are positive
definite. Finally, we evaluate the processor performance through

a({v}) = eu(H,, Ha), 3

where H, and H, stand for the hypotheses where the reference
and approximated signals plus noise are present, the correspond-
ing covariance matrices being Cy, and Ch,,, this latter corre-
sponding to the projection of the low order approximated covari-
ance matrix C'g, on the higher dimension reference signal sub-
space. When a({v}) is close to 0.5, the resemblance between the
approximated and reference signals is high and a negligible detec-
tor performance degradation can be expected.

4. KARHUNEN-LOEVE OPTIMIZATION

When the decomposition used is the KLD, the set of parameters
{~} that need to be optimized are i) N; " - the relation between the
approximated and reference sampling intervals (Ng” € R, NJ™ >
1); ii) N, - The size of the sliding window, or the gating in figure
1, expressed in number of reference signal samples. For simplicity,
it is assumed that IV;, is an integer multiple of Ng"; iii) M, - The
number of eigenvalues and eigenvectors considered in the KLD.
It is important to note that these do not correspond to the largest
original eigenvalues of the reference signal, but with the filtered
and truncated ones (M, € N); iv) Ny - The LLT is performed
every N; approximated signal sampling intervals (IV; € N).

As it was referred to before, the CC of a processor depends on
i) the decomposition stage and ii) the likelihood ratio decomposi-



tion. When the KLD is used, the decomposition stage corresponds
to M, internal products between each of the eigenvectors and the
observation process. Since the KLD coefficients are uncorrelated,
the likelihood ratio is defined as

Ma
=Y riki
i=1

where 7; is the coefficient resulting from the decomposition of the
sampled observation process under the i-th eigenvector, X; is the
i-th eigenvalue and o2 is the noise spectral height after lowpass fil-
tering (02 = 0?/T2), T2 being the approximate signal sampling
interval. Therefore, the number of multiplications per reference
sampling interval is

Ai

with o200 + 02 )

ki = C))

M. (%ﬁ— +2)

:HKLD(NS :NwaMaaNt)z NtNgr

5

Since a closed-form expression for the CC is available, it is
possible to transform the optimization problem of (2) to an unre-
stricted optimization problem. For this purpose, using the restric-
tion in (2) and solving (5) in order to N¢" (the only parameter that
takes values in R) we get

Ma + /M2 + Nifres Mo N7,

Nar — (6)
Sret = NtlBref ’
and the new unrestricted optimization problem is rewritten as
[Ny, Ma, Nelope = arg NrmMa:(M{a(N;, Nfr:f, M., Ny},
G

which is easily maximized using a three steps iterative algorithm:
optimization is performed sequentially on each single parameter
until convergence is achieved.

5. DISCRETE WAVELET TRANSFORM OPTIMIZATION

The DWT decomposes iteratively an initial discrete sequence &
under the subsequences dj, j = 1,---,J and a lowpass residual
sequence cj . By Mallat’s algorithm [1, 5]

=3 h(n=2k)d ", & =) gln-2k)c, ®)

where h(n) and g(n) are, respectively, lowpass and highpass ele-
ments of a quadrature mirror filter (QMF) pair of compact support.
The decompositions in (8) are equivalent to internal products of
the original sequence ¢ with orthogonal filters ki (n) and gi.(n).
One important feature of the DWT consists in the lrans]anon prop-
erty [3]. Letting no = 1.2”, then a no shift in the original sequence
¢? returns shifted coefficients, such that

di =< Cn no7gk(n) >=< Crngk_H 2J—J (n) >= dk—l—l 2J=7
Ck =< Cn no hk (Tl) >=< Cnv hk+l >= Ci-H
&)
In real-time detection problems, one of the most attractive assets
of the DWT consists in the fact that if the likelihood tests are car-
ried out at an integer multiple of 27, it is only necessary to cal-
culate the new coefficients corresponding to the non-overlapping
zone of two consecutive sliding windows. Furthermore, the filters
h(n) and g(n) are, in general, of small size and the decomposi-
tion CC of (8) is very low. The drawback consists on the fact that,
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usually, the coefficients covariance matrices are not diagonal, al-
though, with a correct choice of the filters h(n) and g(n), sparsity
can be achieved. The resulting likelihood ratio is thus

t=r'Mr, M=Cxy —Chq, (10)
where 7 represents the DWT coefficients vector. In opposition to
the KLD case, where the decomposition is completely defined by
the signal covariance matrix, for the DWT case there is an infinity
of possibilities for the filters h(n) and g(n), among which a sin-
gle pair must be chosen. The optimization problem is thus more
complex than in the KLD case, and is carried out in two steps:
i) Choose a small number of combinations of sampling intervals
and QMF pairs that, in some way, fit best to the signal present in
hypothesis Hi; ii) Choose among the results of i) and the other pa-
rameters that need optimization, the situation that returns the best
detector performance for a given CC. Step i) of the optimization
process is performed according to a frequency functional discussed
in [4].

For a given scale j-and a filter length V¢, the filter coefficients
and the sampling interval Ty are chosen in order to maximize the
functional

=[]
an

where S(t,w) = FT,[ks(t,t — 7)](w), FT[] denotes the Fourier
transform and |G? (w)| = |FT{g] (n)]| is independent of the trans-
lation parameter k [3]. The maximization of F is performed for
a limited number of scales (typically j = 1,2,3). For larger
scales, the optimum sampling interval 7y becomes too small and
the solutions are not efficient. Regarding the filter coefficients, [7]
presents parameterizations of orthonormal QMFs of length 2/V¢
from Ny — 1 free parameters 6 € [0;2n], k = 1,---, Ny — L.
The maximization of F is performed in the following steps. i) The
Daubechies family of filters [1] are used to initialize the values
of @y; ii) F is maximized according to T¢; iii) F is maximized
according to the coefficients 6y; iv) return to step ii) until con-
vergence is achieved. In steps ii) and iii), MATLAB optimization
algorithms were used.

In (11), the maximization of F is performed in a single scale j
to achieve the maximum sparsity in the DWT coefficients covari-
ance matrix. However, a convenient description of the signal may
require more scales than only the scale j. Furthermore, although
the resulting matrix M is sparse, the evaluation of (10) considers
only the largest Ny,, non-zero terms of M. This procedure requires
some care since it is necessary to ensure that the resulting matrix is
symmetric and all the cross-terms correspond to elements that are
also present in the diagonal (i.e, the elements (i,j) and (j,i) of M
can be nonzero, if the elements (i,i) and (j,j) are nonzero too). This
procedure ensures that the corresponding approximated signal co-
variance matrix is semipositive definite. Under these conditions,
the parameters to tune in the second step of the optimization algo-
rithm are: a) The filter length IVs; b) The optimization scale j; c)
The initial and final DWT decomposition scales Ji and J2; d) The
binary parameter f;, that determines whether the lowpass DWT
residue at scale J» is computed (f5, = 1) or not (fy, = 0); e)
The number of nonzero terms in the matrix M, N,,; f) The shift
parameter k; (meaning that the likelihood ratios are performed at
every k:.272 approximated sampling intervals T¢). For a given
optimization scale § and filter length Ny, step i) of the optimiza-
tion procedure has already determined the corresponding best filter

P(w)|GF (WT®)Pdw  P(w) = / S(t,w)dt,



Table 1: KLD optimization results.
ﬂref N;” N’Zl‘! Mu Nt

50 | 4.4452 1 293 | 36 | 11
150 | 3.8628 | 328 | 60 9

coefficients and approximated and reference sampling intervals ra-
tio V2. The resulting CC is given by

Jo—=Jy

Jo—1
(Z 2+ > 2‘+f12) Nkt + Nimc + 2Nma

=1 1=0

ﬂDWT = kt2J2Ng )

(12)
where Npm: and Npq correspond, respectively, to the nonzero
cross and diagonal elements of M. Given a desired CC Sy,
we have

Ja—1 Jo—Jq
Nt = [[2’2N;‘ktﬁ,ef — keNy (Z 2+ ) 2 +fJ2)] ,
=0

=1

13)
where Np¢ = Npe + 2N and |(x) stands for the largest
even integer smaller than z. A given set of parameters {y} =
{4, J1, J2, N¢, ke, f1,, N5} uniquely define the value of Np¢, but
there are still a large number of combinations of pairs { Ny, Nma}
to choose from. To find the best combination, we evaluate the
value of a({vy}) with the restriction given in (13), from the limit
case where Nyg = Npm:/2 and Npme = 0 (only diagonal elements
are present in the covariance matrix), up to the other limit case
where Ny, = Nppg + Nipe = N,2nd P> and + Npg — Nme =0
(we have a matrix with smaller dimension, but with no zero el-
ements), and choose the maximum. From one limit case to the
other, we decrease N,,q4 by one (taking out the smaller element of
the diagonal) and increase Ny, by the two largest symmetric cross
elements (/V,,: remains the same).

6. SIMULATION RESULTS

This example illustrates the case where the transient signal s(t)
in hypothesis H; is represented by a large number of eigenval-
ues. s(t) corresponds to a small chirplike stochastic transient of
small duration (approximatively 0.5s.), with 98 nonzero eigenval-
ues presented in fig 2 a). This signal shows that a relatively large
number of orthonormal eigenvectors sound alike to the human ear,
and thus may be generated by a single source. The discrete ref-
erence signal corresponding to s(t) is sampled at a frequency of
1600 Hz., with a gating window of 800 samples. The noise vari-
ance at the reference signal sampling frequency is 02 = 10. The
processors using the KLD and DWT were optimized respectively
for the cases where B,y = {10;50} and f,.5 = {50;150}. The
parameter optimization results are presented respectively in tables
1 and 2. Using the optimum parameters for each case, the receiver
operating characteristics (ROCs) were drawn from Monte-Carlo
simulation with 100000 runs, and the results are presented in fig.
2b).

The ROCs in fig. 2 b) show that the performances of the DWT
with 8,5 = 10 and B;5 = 50 are better respectively to the KLD
ones with Bres = 50 and B,.5 = 150. Thus, in the present situ-
ation, the DWT requires at least 3 to 5 times less multiplications
to achieve better results than the KLD. This result is due mainly to
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Figure 2: a) Eigenvalues of s(t). b) Receiver operating character-
istics.

Table 2: DWT optimization results.
Bres | Ny Vg |} Jo | Jop | Nmd | Neme | ke
10 3 [1]1 2 0 55 233 | 2
50 8 (21 3 1 110 | 544 | 1

the low-cost CC of the DWT decomposition stage, together with
the sparsity of the resulting coefficients covariance matrices.

7. CONCLUSION

This paper reports on the real-time detection of Gaussian transient
signals in noise. It presents methods for the optimization of the
processor parameters either when the KLD or the DWT are used.
It is known that for stationary and/or strongly correlated signals
the KLD is efficient. The example presented shows that when the
original signal has a large number of eigenvalues, the DWT may
present a huge efficiency increase comparing to the KLD.
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