
Artificial Intelligence and Systems Theory Applied to Cooperative Robots

Pedro U. Lima, Luis M. M. Custódio 1
1 Institute for Systems and Robotics

Instituto Superior Técnico
Av. Rovisco Pais, 1

1049-001 Lisboa, PORTUGAL
{pal,lmmc}@isr.ist.utl.pt

Abstract: This paper describes an approach to the design of a population of cooperative robots based on
concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the
SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics -
Instituto Superior Técnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots"
and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a
very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect
and avoid static (walls, stopped robots) and dynamic (moving robots) obstacles. Furthermore, they must
cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative
sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task
planning and coordination, including cooperative reinforcement learning in cooperative and adversarial
environments, and behavior-based architectures for real time task execution of cooperating robot teams.

Keywords: Multi-Robot Systems, Sensor Fusion, Distributed Task Planning, Robot Navigation, Soccer Robots

1. Introduction

Cooperative Robotics is a modern research field, with
applications to areas such as building surveillance,
transportation of large objects, air and underwater
pollution monitoring, forest fire detection,
transportation systems, or search and rescue after
large-scale disasters. In short, a population of
cooperative robots behaves like a distributed robot to
accomplish tasks that would be difficult, if not
impossible, for a single robot. Many lessons
important for this domain can be learned from the
Multi-Agent Systems field of Artificial Intelligence
(AI) concerning relevant topics for Cooperative
Robotics, such as distributed continual planning
(desJardins, M. E., et al, 1999), task allocation
(Ferber, J., 1999), communication languages or
coordination mechanisms (Decker, K. S., & Lesser,
V. R., 1995).

Robotic soccer is a very challenging problem, where
the robots must cooperate not only to push and/or

kick an object (a ball) towards a target region (the
goal), but also to detect and avoid static (walls,
stopped robots) and dynamic (moving robots)
obstacles while moving towards, moving with or
following the ball. Furthermore, they must cooperate
to defeat an opposing team. All these are features
common to many other cooperative robotics
problems. This paper surveys the several research
problems addressed by the SocRob project, building a
Systems Theory standpoint on AI concepts. In
Section 2 we describe our view of the general
problem involving multiple robots that act as a team,
cooperating and coordinating their actions to attain
the team goal. Needless to say, single-robot
''traditional'' research problems are covered, both
from the sub-system and the integration standpoints.
Natural extensions to cooperative multi-robot teams
are also detailed. The problems addressed so far and
the solutions we obtained for them are described in
Section 3. Open problems of interest for the project
and clues on how we intend to approach their solution

are discussed in Section 4. We end the paper drawing
some conclusions in Section 5.

2. A General Multi-Robot Cooperation and
Coordination Problem

Many researchers around the world are designing
mobile robots capable to display increasing autonomy
and machine intelligence properties. Most groups
concentrate in specific subsystems of a robot, such as
the planner, the navigator, or the sensor fusion. What
usually is missing in their design is a systematic way
to glue together all these subsystems in a consistent
fashion. Such a methodology, should one be
available, would help engineering the mobile robots
of the future.

One of the key factors of success for a robot lies on
its capability to perceive correctly its surrounding
environment, and to build models of the environment
adequate for the task the robot is in charge of, from
the information provided by its sensors. Different
sensors (e.g., vision, laser, sonar, encoders) can
provide alternative or complementary information
about the same object, or information about different
objects. Sensor fusion is the usual designation for
methods of different types to merge the data from the
several sensors available and provide improved
information about the environment (e.g., about the
geometry, color, shape and relevance of its objects).

When a team composed of several cooperating robots
is concerned, the sensors are spread over the different
robots, with the important advantage that the robots
can move (thus moving its sensors) to actively
improve the cooperative perception of the
environment by the team. The information about the
environment so obtained can be made available and
regularly updated by different means (e.g., memory
sharing, message passing, using for instance wireless
communications) to all the team robots, so as to be
used by the other sub-systems.

Once the information about the world is available,
one may think of using it to make the team behave
autonomously and machine-wise intelligently. Three
main questions arise for the team:

Where and which a priori knowledge about the
environment, team, tasks and goals, and
perceptual information gathered from sensors,
should be kept, updated and maintained? This
involves the issue of distributed knowledge
representation adequate to consistently handle
different and even opposite views of the
world.

What must be done to achieve a given goal,
given the constraints on time, available
resources and distinct skills of the team

robots? The answer to this should provide a
team plan.

How is the actual implementation of a plan
handled, ensuring the consistency of
individual and team (sub)-goals and the
coordinated execution of the plan?

So far, a bottom-up approach to the implementation
of a cooperative multi-robot team has been followed
in the SocRob project, starting from the development
of single robot sub-systems (e.g., perception,
navigation, decision-making) and moving towards
relational behaviors, comprehending more than one
robot.

However, a key point is a top-down approach to
system design. The design phase establishes the
specifications for the system:

qualitative specifications - concerning formal
logical task design so as to avoid deadlocks,
livelocks, unbounded resource usage and/or
sharing non-sharable resources, and to choose
the primitive tasks that will span the desired
task space;

quantitative properties - concerning performance
features, such as accuracy (e.g., the spatial and
temporal resolution, as well as the tolerance
interval around the goal, at each abstraction
level), reliability and/or minimization of task
execution time given a maximum allowed
cost.

To support this top-down design and bottom-up
implementation philosophy, suitable functional and
software architectures, respectively, must be
conceived prior to the development of all the sub-
systems.

2.1. Single-Robot Research Problems
Most of the problems tackled so far within the
SocRob project concern the sub-systems of the
individual robots composing a team. From our
standpoint, relevant topics are:

Functional and Software Architectures:
Modern robots should be designed based on a
top-down design from specifications to ensure
desired performance levels (both qualitative
and quantitative). Therefore, the designers
should start by specifying a functional
architecture which will guide the design of the
robot sub-systems in an integrated fashion,
i.e., each sub-system is not necessarily
designed to optimize its performance but
rather aiming at optimizing the overall system
performance. Another important issue is to
determine, given the desired task space (i.e.,
the set of tasks that will have to be carried out

by the robot in a particular application), the
minimal set of primitive tasks that will span
that task space. Moreover, the final
implementation should be supported on a
suitable software architecture designed to
allow real-time multi-processing, data sharing
and mutually exclusive allocation of shared
resources among the robot sub-systems.

Single-Robot Task Planning: Given the
primitive task set referred in the previous item,
the robot must be able, given the current and
past world states (including its own internal
state), to compose primitive tasks so as to
come up with a plan that carries out a given
desired task. There may be more than one plan
that accomplishes a task, but a posterior
decision system should be able to determine,
eventually based on machine learning, the one
that achieves the best performance, based on
the available information and prediction
horizon.

Single-Robot Task Coordination: Plans must
be such that they allow continuous handling of
the environment uncertainties and unexpected
events. Once a plan is determined, task
coordination deals with its execution. Plan
execution must, at least, take into account the
detection of events, smooth transitions
between primitive tasks, synchronization of
primitive tasks executed concurrently, mutual
exclusion when two or more tasks attempt to
access shared resources, iterative estimation of
primitive task performance, learning how to
improve a plan over time by choosing more
convenient algorithms among those available
for each primitive task, and so on.

Navigation: The navigation system is an
important sub-system of a mobile robot. In
many applications one important feature of the
navigation system concerns the ability of the
robot to self-localize, i.e., to autonomously
determine its position and orientation
(posture). Using posture estimates, the robot
can move towards a desired posture, i.e., by
following a pre-planned virtual path or by
stabilizing its posture smoothly (Canudas de
Wit, C., et al, 1996). If the robot is part of a
cooperative multi-robot team, it can also
exchange the posture information with its
teammates so that appropriate relational and
organizational behaviors may be established.
In robotic soccer, these are crucial issues. If a
robot knows its posture, it can move towards a
desired posture (e.g., facing the goal with the
ball in between). It can also know its
teammate postures and prepare a pass, or
evaluate the game state from the team

locations. Most approaches to Navigation
determine with high accuracy the posture of
the robot with respect to a given coordinate
frame. However, this approach is typically
resource-consuming, requiring the robot to
spend a significant percentage of its
processing time with the navigation sub-
system, disregarding other important sub-
systems, such as perception or planning, to
name but a few. Furthermore, high accuracy is
not always required for navigation purposes.
One may be just interested to move closer to
an object, rotate to see a given landmark, or
move to another region. In those cases,
another approach to navigation, known as
topological (or relative) navigation, is
advisable.

Object Recognition and Tracking Using
Sensor Fusion: The ability to discriminate and
recognize its surrounding objects, to
distinguish the relevant ones and to track,
among them, those that are relevant, is a major
problem for any robot. For soccer robots, this
problem is simplified since the relevant
objects are distinguished by their colors (e.g.,
the ball is orange, the goals are blue and
yellow). Nevertheless, fast and reliable color
segmentation is not a trivial problem and
requires some attention too. Furthermore,
object detection may be performed by more
than one sensor, such as different virtual
sensors based on the vision transducer (e.g.,
mass center, edge detector, color
segmentation), sonars, infrared and others.
Therefore, sensor fusion arises as an important
topic.

2.2. Cooperative Multi-Robot Research Problems

Functional and Software Architectures: If a
team of cooperative robots is involved, the
single-robot architectures of each of the team
members must be integrated in the overall
team architecture. The most usual solutions
concerning the software architecture are
centralized, where one of the robots (or an

external machine) processes the data
acquired and sent by all the team members,
takes all the team decisions and sends
commands to the others;

distributed, where local data processing is
made at each of the robots but then
information is sent to one of them to take
the decisions;

fully decentralized, where each robot takes its
own decisions based on its own data and
on information exchanged with its
teammates.

The functional architecture of a behaviour-
based multi-robot team must also classify
behaviours according to their functionality.
One such division consists of considering
organizational, relational and individual
behaviours (Drogoul, A., and Collinot, A.,
1998), further described below.

Multi-Robot Task Planning and Allocation: In
the multiple-robot case, plans must take into
account the distributed nature of the task at
hand. Different tasks must be allocated to the
different robots in the team, according to their
skills and performance. So, the planning and
allocation system must be able to establish
(sub)groups of robots within a team, and the
robots must have and know how to deal with
the notion of “belonging to a group”.
Therefore, plans must also include
synchronization and communication among
team members involved in the task. Moreover,
if a robot cannot fulfill its assigned task, the
task may simply be re-assigned to a robot
within the group, a new robot may be
integrated in the group to perform that task, or
in the worst case a re-planning strategy has to
be applied.

Multi-Robot Task Coordination: The extension
of task coordination to a team of multiple
robots introduces issues related to knowledge
distribution and maintenance, as well as
communications and related problems (e.g.,
noise, protocols, limited bandwidth).
Furthermore, communication can be explicit
(e.g., through wireless radio-frequency
channels) or implicit (e.g., through the
observation of teammate actions, should an a
priori model of the teammates behaviour
exist). The coordination of a task carried out
by a team of cooperating robots involves
signalling events detected by one robot which
are relevant for some or all of its teammates
and/or to exchange information obtained
locally by the different robots of the team.
Whenever a formation is required, several
formation topologies are possible and the one
suitable for the task at hand must be chosen as
part of the coordination process. Although not
inevitable, communications among team
members are also required to keep the
formation under control.

 When the population is composed of
heterogeneous robots, if a robot has to perform
a particular task for which it does not have the
necessary skills, it may ask another robot with
the adequate skills to carry it out. In the
particular case of the SocRob robotic team,
where the robots are homogeneous, examples

of cooperative behaviour are the cooperative
localization of the ball, the execution of a pass,
the dynamical exchange of player roles or the
decision of which robot should go for the ball.
All of them require some form of inter-robot
coordination and underlying teamwork
methodologies.

Distributed World Modeling: A team
composed of multiple robots, possibly
heterogeneous concerning on board sensing,
can benefit from the availability of a world
model, obtained from the observations made
by the different team members and its on
board sensors. This world model can be richer
that if it were obtained by a single robot, due
to the coverage of a broader area by a more
diversified set of sensors. It can also be

Fig.1 – Three robots of the current SocRob team.

distributed through the teammates, e.g., by
keeping in a single robot information which is
only relevant locally and by broadcasting
information gathered locally but which is of
interest for the team as a whole. The sensor
fusion problem is similar to the single-robot
case, with the important difference that the
sensor subsets are now independently mobile
and can be actively positioned to improve the
determination of object characteristics.

3. Problems Already Addressed

A key issue of the research work developed under the
SocRob project is the application of conceptual
results to real robots participating in the Middle Size
League (MSL) of RoboCup. The current robot team,
displayed in Fig. 1, is composed of 4 Nomadic Super
Scout II commercial platforms, later significantly
modified by our group, each of them including:

Two-wheel differential drive kinematics;
Sixteen sonar sensors radially distributed around

the robot, equally spaced;

Motorola MC68332 based daughter board with
three-axis motor controller, sonar and bumper
interface, and battery level meters;

Two 12V batteries, 18Ah capacity;
Pentium III 1000MHz based motherboard, with

512MB RAM, 8GB disk;
Two Philips USB WebCam 740K Pro;
IEEE 802.11b wireless Ethernet PCMCIA card;
Pneumatic kicking device, based on Festo

components, plus one bottle for pressurized air
storage;

In the remaining subsections, we describe some of the
research problems addressed and solved for this team
of robots.

3.1. Color Segmentation and Cooperative Object
Recognition
A color segmentation interface was developed,
providing two alternatives to discriminate the relevant
MSL colors in HSV (Hue-Saturation-Value) color
space (Gonzalez, R., & Woods, R., 1992): adjusting
HSV intervals and graphically selecting regions with
a given pixel color. The two approaches are
cumulative. Furthermore, object segmentation is a
topic directly related to the previous one, as we
discriminate objects, namely the ball and the goals,
not only based on their color, but also on their shape
(e.g., by fitting circles to observed orange bulbs and
identifying the ball with the closest and more circular
bulb).

a)

b)

Fig. 2 – a) local (internal to each robot) sensor fusion
enabled and global (among team robots) sensor
fusion disabled; b) both local and global sensor fusion
enabled

A topic of current research within the project is the
use of sensor fusion for world modeling. The goal is
to maintain and update over time information on the
relevant objects, such as ball position and velocity,
teammates pose and velocity, opponents pose and
velocity, or position of the goals with respect to the
robot. Such information is obtained by each robot
from the observations of its front and up cameras and
then fused among all the team robots (Pinheiro, P. &
Lima, P., 2004), using a Bayesian approach to sensor
fusion, as depicted in Fig. 2. Currently this approach
is used to provide information on ball position to all
the team members, therefore enabling robots that do
not see the ball to know where it is, besides
improving ball localization reliability. Fusion is not
used when two robots disagree (in probabilistic
terms) on the ball localization.

3.2. Vision-Based Self-Localization
An algorithm that determines the posture of a robot,
with respect to a given coordinate system, from the
observation of natural landmarks of the soccer field,
such as the field lines and goals, as well as from a
priori knowledge of the field geometry, has been
developed within the SocRob project (Marques, C., &
Lima, P., 2001). The algorithm is a particular
implementation of a general method applicable to
other well-structured environments, also introduced
in (Marques, C., & Lima, P., 2001).

Fig. 3 – Bird’s eye-view of the field obtained by the
top catadioptric systems of the robots in Fig. 1.

The landmarks are processed from an image taken by
an omni-directional vision system, based on a camera
plus a convex mirror (catadioptric system image in
Fig. 3) designed to directly obtain the soccer field
bird's eye view, thus preserving the field geometry in
the image. The image green-white-green color
transitions over a pre-determined number of circles
centered with the robot are collected as the set of
transition pixels. The Hough Transform is applied to
the set of transition pixels in a given image, using the
polar representation of a line (Gonzalez, R., &
Woods, R., 1992):

φφρ sin.cos. t
i

t
i yx += (1)

where (xi
t,yi

t) are the image coordinates of transition
pixel pt and ρ, φ are the line parameters. The q
straight lines (ρl, φl), ..., (ρq, φq) corresponding to the
top q accumulator cells in Hough space are picked
and, for all pairs { (ρj, φj), (ρk, φk), j,k=1, ...,q, j ≠ k }
made out of those q straight lines the following
distances in Hough space are computed:

kj

kj

ρρρ

φφφ

−=∆

−=∆
 (2)

Note that a small φ∆ denotes almost parallel straight
lines, while ρ∆ is the distance between 2 parallel
lines. The φ∆ and ρ∆ values are subsequently
classified by relevance functions which, based on the
knowledge of the field geometry, will filter out lines
whose relative orientation and/or distances do not
match the actual field relative orientation and/or
distances. The remaining lines are correlated, in
Hough space, with the geometric field model, so as to
obtain the robot posture estimate. An additional step
must be taken to disambiguate the robot orientation.
In the application to soccer robots, the ambiguity is
due to the soccer field symmetry. The goal colors are
used to remove such ambiguity and to detect
situations where the localization values obtained are
not trustable.

Currently, an efficiently coded version of the
algorithm is used by each of the ISocRob team robots
to obtain its self-localization during a game every
second. The algorithm runs in parallel with all the
other processes and can compute self-localization in
about 13 ms on the average, using Intel IPP library.
The knowledge of each robot localization is useful for
individual robot navigation, but it is also used by the
robot to share information with its teammates
regarding team postures and ball location.

3.3. Multi-Sensor Guidance with Obstacle Avoidance
The ability to navigate at relatively high speeds
through an environment cluttered with static and
dynamic obstacles is a crucial issue for a mobile
robot. Most robotic tasks require a robot to move to
target postures adequate to carry out its planned
activities. In robotic soccer, relevant activities include
facing the opponent goal with the ball in between or
covering the team goal by positioning itself between
the ball and the goal, while avoiding the field walls
and the other (stopped and moving) robots. Also
relevant is the capability to move towards a given
posture while avoiding obstacles and keeping the ball
(also known as dribbling).

A guidance control method for non-holonomic
(differential drive) vehicles, using odometry,
regularly reset by the vision-based self-localization
algorithm described before, was first introduced in

(Marques, C., and Lima, P., 2002). The vehicle uses a
sonar ring for obstacle avoidance.

An alternative guidance method has been introduced
in (Damas, B., et al, 2002), consisting of a modified
potential fields method for robot navigation,
especially suited for differential-drive non-holonomic
mobile robots. The potential field is modified so as to
enhance the relevance of obstacles in the direction of
the robot motion. The relative weight assigned to
front and side obstacles can be modified by the
adjustment of one physically interpretable parameter.
The resulting angular speed and linear acceleration of
the robot can be expressed as functions of the linear
speed, distance and relative orientation to the
obstacles. This formulation enables the assignment of
angular and linear velocities for the robot in a natural
fashion. Moreover, it leads to an elegant formulation
of the constraints on angular speed, linear speed and
acceleration, that enable a soccer robot to dribble a
ball, i.e., to move while avoiding obstacles and
pushing the ball without losing it, under severe
restrictions to ball holding capabilities. It is shown
that, under reasonable physical considerations, the
angular speed must be less than a non-linear function
of the linear speed and acceleration, which reduces to
an affine function of the acceleration/speed ratio
when a simplified model of the friction forces on the
ball is used and the curvature of the robot trajectory is
small.

3.4. Behavior-Based Architectures
The basic functional architecture of the SocRob team
is organized in three levels of decision and
responsibility, similar to those proposed in (Drogoul,
A., and Collinot, A., 1998): individual, which is
responsible for all functionalities that involve only
one agent; relational, which is responsible for the
relationships between the robot and its teammates;
and organizational, which is responsible for the
strategic decisions that involve the team as a whole.
The current instantiation of this functional
architecture considers that:

there is, at the organizational level, a mapping
from the environment state, including the team
state, to a tactical decision, resulting in an
organizational behavior displayed by the team.
The tactics consists of the set of role
assignments to each team member. In robotic
soccer, basic roles can be Goalkeeper,
Defender, Attacker and Full
Player (both defender and attacker). Only
the captain robot will have the organizer
enabled. Should the captain “die”, the next
robot in a pre-specified list will have its
organizer level enabled and become the
captain.

there are, at the relational level, operators which
control relations between two or more team

members (e.g., to pass a ball, to avoid moving
simultaneously towards a ball, to cover a field
region while the teammate advances in the
field through role exchanges). Any team
member has relational operators running. Each
operator has a pre-conditions set and, when
this set is satisfied, establishes
communications with the relational operator(s)
of designated teammates, asking them to start
a negotiation process which may end up in a
coordinated action among this temporary sub-
team. As a result, a relational behavior is
displayed.

there are, at the individual level, operators
consisting of single primitive tasks or of
composite tasks (primitive tasks linked by
logical conditions on events).

The software architecture is the practical
implementation of the functional architecture, which
could be done in any programming language and
using different software technologies. In the SocRob
project, the software architecture was defined based
on three essential concepts: micro-agents (µA for
short), blackboard and plugins.

Inspired by the idea of Society of Agents, proposed
by Minsky (Minsky, M., 1988), each functional
module of the SocRob architecture was implemented
by a separate process, using the parallel programming
technology of threads. In this context a functional
module is named µA. In the current implementation
of the SocRob architecture there are nine different
threads, but only the three most important ones are
mentioned here: µA Vision, responsible for
processing the data acquired from the cameras, µA
Fusion, which fuses information concerning the same
object from different sensors, µA Machine,
responsible for deciding which behavior should the
robot display, and µA Control, responsible for the
execution of the corresponding operator.

The concept of threads was chosen to improve
module performance and simplify the information
passing among the threads. This was accomplished by
the blackboard concept (memory space shared by
several threads), further sophisticated here by the
development of a distributed blackboard, in what
information availability is concerned. Instead of
being centralized in one agent, the information is
distributed among all team members and
communicated when needed.

As mentioned before, the decision making involved
for each agent is twofold: which behavior should be
displayed, and how the operator which displays such
behavior is executed. This separation between
behavior decision and operator execution allows the

µA Machine, the one responsible for behavior
decision, to work with abstract definitions of
behaviors, and choose among them without knowing
details about their execution. So, new operators could
be easily added and removed without affecting the
existing ones, and these can also be easily replaced by
others with the simple restriction of maintaining the
name. This was accomplished using the concept of
plugin, in the sense that each new operator is added to
the software architecture as a plugin, and therefore
the µA Control can be seen as a multiplexer of
plugins. Examples of already implemented operators
are: dribble, score, go, standby, to name but
a few. The same idea of plugins was also used for the
µA Vision, as each particular functionality related to
vision data is defined as a different plugin, and
multiplexed by the µA Vision (e.g., a plugin for the
front camera, a plugin for the up camera, a plugin for
the self-localization algorithm, etc.).

The individual operators have been implemented as
state machines, where the states represent primitive
tasks, while the arcs between states (if any) are
traversed upon the validation of given logical
conditions over events (e.g., see ball, distance
< x). The relational operator state machines could
also be defined similarly, but events include
synchronization signals between the state machines
running in the sub-team robots.

However, the way the functional architecture was
conceptualized allows the implementation of these
operators and the switching among them using
different approaches, as for example AI production
systems. So, in order to have a more abstract way to
deal with behaviour switching, the µA machine has
been implemented using a distributed decision-
making architecture supported on a logical approach
to modeling dynamical systems (Reiter, 2001), based
on situation calculus, a first order logic dialect.

This architecture includes two main modules: i) a
basic logic decision unit, and ii) an advanced logic
decision unit. Both run in parallel; the former intends
to quickly suggest, using simple logical decision
rules, the next behavior to be executed, whereas the
latter uses more sophisticated reasoning tools
(situation calculus) capable of planning, learning and
decision-making, both for individual and cooperative
(teamwork) situations. This configures an hybrid
architecture where the basic (reactive) unit only
controls the robot if the advanced (deliberative) unit
takes too long to make a decision, assuming a
situation urgency evaluation. A partial
implementation of this architecture, the basic logic
decision unit, was already performed using Prolog
(Arroz, M., et al, 2004). Its modeling convenience
allowed the quick development of different roles for
field players (Attacker, Defender, Full-

Player), as well as dynamic role change between
field players (defenders switch with attackers,
depending on who is in a better position to get the
ball).

The advanced (deliberative) unit, Advanced Logic
Based Unit, has been developed using an action
programming language called Golog Golog
(Levesque, H., et al, 1997) and it is based on
situational calculus. This unit is responsible to
determine plans (sequences of behaviours) that allow
the team to achieve something (like scoring on the
opposite goal). Situational calculus is an extension to
first-order logic, specially suited to handle dynamic
worlds. The changes in the world are the results of
actions, that have pre-conditions and effects.

Our objective is to develop a tool capable of planning
and performing task control execution in a distributed
environment. To do so we assume that: the agents
(robots) can generate, change and execute plans; a
plan can be generated, and executed by one or more
agents; decisions over the generated plans are based
on hypotheses, i.e., assumptions over future states
that cannot be guaranteed; and the agents have the
capacity to communicate among them, and share
information about plans or environment states.

Another recent topic in the project research is the
design and implementation of relational behaviors,
where teamwork between two or more robots is
required to perform a certain task, like a ball pass
(Vecht, B., & Lima, P., 2004). These behaviors have
a general formulation based on Joint Commitment
Theory (Cohen, P. R., & Levesque, H. J., 1991), and
use the navigation methods already developed in the
project. Currently, the robots are capable of
committing to a relational pass behavior where one of
the robots is the kicker and the other the receiver. If
any of the robots ends the commitment, the other
switches to an individual behavior.

One cooperation mechanism, implemented in 2000,
consists of avoiding that two or more robots from the
same team attempt to get the ball. A relational
operator was developed to determine which robot
should go to the ball and which one(s) should not. In
the current implementation, each robot that sees the
ball and wants to go for it uses a heuristic function to
determine a fitness value. This heuristic penalizes
robots that are far from the ball, are between the ball
and the opposite goal and need to perform a angular
correction to center the ball with its kicking device.
Each robot broadcasts its own heuristic value, and the
robot with the smallest value is allowed to go for the
ball whereas the others execute a Standby behavior.

Though not tested yet in real robots, formal work on
Stochastic Discrete-Event Systems modeling of a

multi-robot team has been recently carried out within
the project with interesting results (Damas, B., &
Lima, P., 2004). The environment space and each
player (opponent and teammate) actions are
discretized and modeled by a Finite State Automaton
(FSA) 2 vs 2 players game model. Then, all FSA are
composed to obtain the complete model of a team
situated in its environment and playing an adversarial
game. Controllable (e.g., shoot_p1, stop_p2)
and Uncontrollable (e.g., lost_ball, see_ball)
events (i.e., our robots actions) are identified and
exponential distributions are assigned to their inter-
event times. Dynamic programming is applied to the
optimal selection of the controllable events, with the
goal of minimizing the cost function

[⎥
⎦

⎤
⎢
⎣

⎡
∫
∞

0

)(),(min dttutXC
π

] (3)

where π is a policy, X(t) the game state at time t, and
u(t) is a controllable event, with the cost of unmarked
states equal to 1, and all the other states have zero
cost. If the only marked states are those where a goal
is scored for our team, and there are no transitions
from marked to unmarked states, this method obtains
the minimum (in a stochastic sense) time to goal for
our team, constrained by the opponent actions and the
uncertainty of our own actions. Some of the chosen
actions result in cooperation between the two robots
of the team.

4. Problems To Be Addressed

Naturally, several interesting problems remain to be
tackled and solved within the project research. We
will only mention the currently most important ones.

Behavior Modeling: A consistent model for
individual and relational behaviors is required
to provide a systematic methodology for
behavior synthesis and analysis. FSA have
been used for this purpose up to now. They
have the advantage of the availability of
several tools for analysis and synthesis in the
literature (Cassandras, C. G., & Lafortune, S,
1999), but suffer from limited modeling
capabilities. Petri nets (Cassandras, C. G., &
Lafortune, S, 1999) extend the modeling
capabilities of FSA and provide a more
convenient modeling methodology starting
from the identification of the system
components and events. A wide range of
analysis (e.g., concerning boundedness,
liveness, stochastic and deterministic time)
and synthesis (e.g., concerning admissible
marked languages) tools is also available, and
the non-decidability of some analysis
problems can be overcome with no significant
expenses. Furthermore, modularity and system
design can be achieved by interconnecting

several sub-systems, each modeled as a Petri
net. This is particularly convenient to model
relational behaviors, where more than one
teammate is involved. So, Petri nets are being
investigated as an alternative tool for behavior
modeling. Behavior switching can also be
modeled as discrete-event systems
supervision, for which there are results
available regarding FSA and Petri nets.
Production systems also have modeling
characteristics that make them suitable for this
purpose. However, further work must be done
to study its design and analysis properties.

Distributed Planning: The available behaviors
among which switching is possible are
currently designed “by hand”. However, a
more appropriate approach would be to
develop a planner capable of periodically (or
when invoked) analyzing the world state and
providing a new set of individual and
relational behaviors appropriate for the current
conditions. A suitable approach should be the
continuous interleaving of plan generation and
execution. Task allocation among the team
robots and distributed world modeling are
relevant issues to be further investigated under
this topic.

Cooperative Learning: One possible way of
designing plans which continuously adapt to
new situations and are fine tuned to the actual
surrounding environment is to use
reinforcement learning (RL) algorithms,
especially those which guarantee convergence
properties (Sutton, R., and Barto, A., 1998).
However, learning is usually slow. An
envisaged approach that overcomes this
problem is to provide plans with alternative
paths among which the RL algorithms can
learn to switch over time. Cooperative
learning arises when a robot takes its decisions
from information learned and provided to it by
its teammates.

Control as a Game: Modern views of control
state the control problem as a game against an
adversary (i.e., the disturbances). In the
particular case of soccer, there is an actual
opponent whose modeled behavior, once
estimated (e.g., using Hidden Markov
Models), can be used as information for game-
playing algorithms, as part of the planning
process.

5. Conclusions

This paper described the SocRob project (on the
development of methodologies for analysis, design
and implementation of multi-robot cooperative

systems), its objectives, past, current and intended
future work. One interesting feature of the project is
that it enables different approaches to the solution of
the problem at hand. This naturally motivates
competing research approaches, as well as research
on analysis methods to compare the different results.
Furthermore, the project fosters education in AI and
Robotics related topics, because so many issues must
be solved to handle the overall problem. Students
from different levels (undergraduate, graduate, post-
doctorate) can get involved at different difficulty
levels and accomplish project sub-goals. They also
learn how to accomplish teamwork under hard time
deadlines. The SocRob project has involved so far 10
undergraduate and 4 graduate (MSc and PhD)
students, besides 2 doctorates who have been
supervising the project. All these students have
participated regularly in RoboCup - The World Cup
of Soccer Robots, since 1998. We believe that
RoboCup is a very attractive long-term scientific
challenge that brings together people from several
different scientific fields in an exciting fusion of
research, education and science promotion which are
actually the driving forces of our project too.

Some of the methodologies developed within the
project, namely its software and functional
architectures, have been applied meanwhile to other
projects, such as an European Space Agency project
on Formation Guidance and Navigation of
Distributed Spacecraft, and a Cooperative Navigation
for Rescue Robots project currently underway at
ISR/IST.

The project team is now developing new robots, in
the framework of a national research project, in
partnership with two Portuguese small companies.
These new robots are omnidirectional, with a new
modular construction, so that it will be easily
modified, e.g., the up camera module can switch
between a catadioptric system and a stereo image
system. The new robots will also incorporate a
controlled kicker mechanism, so that one can choose
the kicking force, using an electromechanical solution
with a DC motor pulling a spring and an infrared
sensor to measure the pulled distance, both coupled to
the kicking device. In order to make new and more
complex behaviors and for ball handling, there is a
ball reception mechanism, that will allow the
implementation of ball passes behaviors. Two new
sensors will be used: a rate-gyro for angular velocity
measurements, and an optical mouse to track the
robot position in the field. Both will provide data to
be fused with odometry and vision-based self-
localization, so as to improve navigation.

6. References

Canudas de Wit, C. and Siciliano B., and Bastin G.
(Eds) (1996), Theory of Robot Control, CCE Series,

Kluwer

Cassandras, C. G. and Lafortune, S. (1999),
Introduction to Discrete Event Systems, Kluwer
Academic Publishers

Cohen, P. R., and Levesque, H. J. (1991),
"Teamwork". Nous, Vol 35, pp. 487-512

Damas, B. and Lima P. and Custódio (2002), “A
Modified Potential Fields Method for Robot
Navigation Applied to Dribbling in Robotic Soccer”,
Proceedings of RoboCup-2002 Symposium, Fukuoka,
Japan

Damas, B., and Lima, P., (2004), "Stochastic Discrete
Event Model of a Multi-Robot Team Playing an
Adversarial Game", 5th IFAC/EURON Symposium on
Intelligent Autonomous Vehicles - IAV2004, Lisboa,
Portugal

Decker, K. S., and Lesser, V. R. (1995), “Designing a
Family of Coordination Algorithms”, Technical
Report No. 94-14, Department of Computer Science,
University of Massachussets, Amherst, MA01003

desJardins, M. E., and Durfee, E. H., and Ortiz Jr, C.
L., and Wolverton, M. J. (1999), “A Survey of
Research in Distributed, Continual Planning”, AI
Magazine, Winter, pp. 13-22

Drogoul, A., and Collinot, A. (1998), “Applying an
Agent-Oriented Methodology to the Design of
Artificial Organizations: A Case Study in Robotic
Soccer”, Autonomous Agents and Multi-Agent
Systems Journal, Vol. 1, pp. 113-129

Ferber, J. (1999), Multi-Agent Systems: An
Introduction to Distributed Artificial Intelligence,
Addison-Wesley

Gonzalez, R., and Woods, R. (1992), Digital Image
Processing, Addison-Wesley

Levesque, H., and Reiter, R., and Lesprance, Y., and
Lin, F., and Scherl, R. (1997), “Golog: A Logic
Programming Language for Dynamics Domains”.
Journal of Logic Programming

Marques, C., and Lima, P. (2001), “A Localization
Method for a Soccer Robot Using a Vision-Based
Omni-Directional Sensor”, RoboCup-2000: Robot
Soccer World Cup IV, P. Stone, T. Balch, G.
Kraetzschmar (Eds.), Springer-Verlag, Berlin

Marques, C., and Lima, P. (2002), “Multi-sensor
Navigation for Soccer Robots”, RoboCup-2001:
Robot Soccer World Cup V, A. Birk, S. Coradeschi,
S. Tadokoro (Eds.), Springer-Verlag, Berlin

Minsky, M. (1988), The Society of Mind, Touchstone
Publishers

Pinheiro, P., and Lima, P. (2004), "Bayesian Sensor
Fusion for Cooperative Object Localization and
World Modeling", 8th Conference on Intelligent

Autonomous Systems (IAS-8), Amsterdam, The
Netherlands, May 2004.

Pires, V., Arroz, M., and Custódio, L. (2004), “Logic
Based Hybrid Decision System for a Multi-robot
Team”, Proceedings of the 8th Conference on
Intelligent Autonomous Systems (IAS-8), Amsterdam,
The Netherlands.

Pires, V., Arroz, M., Lima, P., Ribeiro, M. I., and
Custódio (2004), L., “Distributed Deliberative
Decision System for a Multi-Robot Team”,
Proceedings of the ROBÓTICA 2004 Symposium,
Porto, Portugal, Abril 2004.

Reiter, R. (2001), Knowledge in Action. MIT Press

Sutton, R., and Barto, A. (1998), Reinforcement
Learning, MIT Press, Cambridge, MA

Vecht, B., Lima, P., 2004, “Formulation and
Implementation of Relational Behaviors for Multi-
Robot Cooperative Systems”. Proceedings of
RoboCup 2004 Symposium, Lisbon, Portugal

