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Abstract: This paper describes an approach to the design of a population of cooperative robots based on 
concepts borrowed from Systems Theory and Artificial Intelligence. The research has been developed under the 
SocRob project, carried out by the Intelligent Systems Laboratory at the Institute for Systems and Robotics - 
Instituto Superior Técnico (ISR/IST) in Lisbon. The acronym of the project stands both for "Society of Robots" 
and "Soccer Robots", the case study where we are testing our population of robots. Designing soccer robots is a 
very challenging problem, where the robots must act not only to shoot a ball towards the goal, but also to detect 
and avoid static (walls, stopped robots) and dynamic (moving robots) obstacles. Furthermore, they must 
cooperate to defeat an opposing team. Our past and current research in soccer robotics includes cooperative 
sensor fusion for world modeling, object recognition and tracking, robot navigation, multi-robot distributed task 
planning and coordination, including cooperative reinforcement learning in cooperative and adversarial 
environments, and behavior-based architectures for real time task execution of cooperating robot teams. 
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1. Introduction 
 
Cooperative Robotics is a modern research field, with 
applications to areas such as building surveillance, 
transportation of large objects, air and underwater 
pollution monitoring, forest fire detection, 
transportation systems, or search and rescue after 
large-scale disasters. In short, a population of 
cooperative robots behaves like a distributed robot to 
accomplish tasks that would be difficult, if not 
impossible, for a single robot. Many lessons 
important for this domain can be learned from the 
Multi-Agent Systems field of Artificial Intelligence 
(AI) concerning relevant topics for Cooperative 
Robotics, such as distributed continual planning 
(desJardins, M. E., et al, 1999), task allocation 
(Ferber, J., 1999), communication languages or 
coordination mechanisms (Decker, K. S., & Lesser, 
V. R., 1995). 
 
Robotic soccer is a very challenging problem, where 
the robots must cooperate not only to push and/or 

kick an object (a ball) towards a target region (the 
goal), but also to detect and avoid static (walls, 
stopped robots) and dynamic (moving robots) 
obstacles while moving towards, moving with or 
following the ball. Furthermore, they must cooperate 
to defeat an opposing team. All these are features 
common to many other cooperative robotics 
problems. This paper surveys the several research 
problems addressed by the SocRob project, building a 
Systems Theory standpoint on AI concepts. In 
Section 2  we describe our view of the general 
problem involving multiple robots that act as a team, 
cooperating and coordinating their actions to attain 
the team goal. Needless to say, single-robot 
''traditional'' research problems are covered, both 
from the sub-system and the integration standpoints. 
Natural extensions to cooperative multi-robot teams 
are also detailed. The problems addressed so far and 
the solutions we obtained for them are described in 
Section 3. Open problems of interest for the project 
and clues on how we intend to approach their solution 



are discussed in Section 4. We end the paper drawing 
some conclusions in Section 5. 
 
2. A General Multi-Robot Cooperation and 
Coordination Problem 
 
Many researchers around the world are designing 
mobile robots capable to display increasing autonomy 
and machine intelligence properties. Most groups 
concentrate in specific subsystems of a robot, such as 
the planner, the navigator, or the sensor fusion. What 
usually is missing in their design is a systematic way 
to glue together all these subsystems in a consistent 
fashion. Such a methodology, should one be 
available, would help engineering the mobile robots 
of the future. 
 
One of the key factors of success for a robot lies on 
its capability to perceive correctly its surrounding 
environment, and to build models of the environment 
adequate for the task the robot is in charge of, from 
the information provided by its sensors. Different 
sensors (e.g., vision, laser, sonar, encoders) can 
provide alternative or complementary information 
about the same object, or information about different 
objects. Sensor fusion is the usual designation for 
methods of different types to merge the data from the 
several sensors available and provide improved 
information about the environment (e.g., about the 
geometry, color, shape and relevance of its objects). 
 
When a team composed of several cooperating robots 
is concerned, the sensors are spread over the different 
robots, with the important advantage that the robots 
can move (thus moving its sensors) to actively 
improve the cooperative perception of the 
environment by the team. The information about the 
environment so obtained can be made available and 
regularly updated by different means (e.g., memory 
sharing, message passing, using for instance wireless 
communications) to all the team robots, so as to be 
used by the other sub-systems.  
 
Once the information about the world is available, 
one may think of using it to make the team behave 
autonomously and machine-wise intelligently. Three 
main questions arise for the team: 

Where and which a priori knowledge about the 
environment, team, tasks and goals, and 
perceptual information gathered from sensors, 
should be kept, updated and maintained? This 
involves the issue of distributed knowledge 
representation adequate to consistently handle 
different and even opposite views of the 
world. 

What must be done to achieve a given goal, 
given the constraints on time, available 
resources and distinct skills of the team 

robots? The answer to this should provide a 
team plan. 

How is the actual implementation of a plan 
handled, ensuring the consistency of 
individual and team (sub)-goals and the 
coordinated execution of the plan? 

 
So far, a bottom-up approach to the implementation 
of a cooperative multi-robot team has been followed 
in the SocRob project, starting from the development 
of single robot sub-systems (e.g., perception, 
navigation, decision-making) and moving towards 
relational behaviors, comprehending more than one 
robot.  
 
However, a key point is a top-down approach to 
system design. The design phase establishes the 
specifications for the system:  

qualitative specifications - concerning formal 
logical task design so as to avoid deadlocks, 
livelocks, unbounded resource usage and/or 
sharing non-sharable resources, and to choose 
the primitive tasks that will span the desired 
task space; 

quantitative properties - concerning performance 
features, such as accuracy (e.g., the spatial and 
temporal resolution, as well as the tolerance 
interval around the goal, at each abstraction 
level), reliability and/or  minimization of task 
execution time given a maximum allowed 
cost.  

 
To support this top-down design and bottom-up 
implementation philosophy, suitable functional and 
software architectures, respectively, must be 
conceived prior to the development of all the sub-
systems. 
 
2.1. Single-Robot Research Problems 
Most of the problems tackled so far within the 
SocRob project concern the sub-systems of the 
individual robots composing a team. From our 
standpoint, relevant topics are: 
 

Functional and Software Architectures: 
Modern robots should be designed based on a 
top-down design from specifications to ensure 
desired performance levels (both qualitative 
and quantitative). Therefore, the designers 
should start by specifying a functional 
architecture which will guide the design of the 
robot sub-systems in an integrated fashion, 
i.e., each sub-system is not necessarily 
designed to optimize its performance but 
rather aiming at optimizing the overall system 
performance. Another important issue is to 
determine, given the desired task space (i.e., 
the set of tasks that will have to be carried out 



by the robot in a particular application), the 
minimal set of primitive tasks that will span 
that task space. Moreover, the final 
implementation should be supported on a 
suitable software architecture designed to 
allow real-time multi-processing, data sharing 
and mutually exclusive allocation of shared 
resources among the robot sub-systems. 

Single-Robot Task Planning: Given the 
primitive task set referred in the previous item, 
the robot must be able, given the current and 
past world states (including its own internal 
state), to compose primitive tasks so as to 
come up with a plan that carries out a given 
desired task. There may be more than one plan 
that accomplishes a task, but a posterior 
decision system should be able to determine, 
eventually based on machine learning, the one 
that achieves the best performance, based on 
the available information and prediction 
horizon. 

Single-Robot Task Coordination: Plans must 
be such that they allow continuous handling of 
the environment uncertainties and unexpected 
events. Once a plan is determined, task 
coordination deals with its execution. Plan 
execution must, at least, take into account the 
detection of events, smooth transitions 
between primitive tasks, synchronization of 
primitive tasks executed concurrently, mutual 
exclusion when two or more tasks attempt to 
access shared resources, iterative estimation of 
primitive task performance, learning how to 
improve a plan over time by choosing more 
convenient algorithms among those available 
for each primitive task, and so on. 

Navigation: The navigation system is an 
important sub-system of a mobile robot. In 
many applications one important feature of the 
navigation system concerns the ability of the 
robot to self-localize, i.e., to autonomously 
determine its position and orientation 
(posture). Using posture estimates, the robot 
can move towards a desired posture, i.e., by 
following a pre-planned virtual path or by 
stabilizing its posture smoothly (Canudas de 
Wit, C., et al, 1996). If the robot is part of a 
cooperative multi-robot team, it can also 
exchange the posture information with its 
teammates so that appropriate relational and 
organizational behaviors may be established.  
In robotic soccer, these are crucial issues. If a 
robot knows its posture, it can move towards a 
desired posture (e.g., facing the goal with the 
ball in between). It can also know its 
teammate postures and prepare a pass, or 
evaluate the game state from the team 

locations. Most approaches to Navigation 
determine with high accuracy the posture of 
the robot with respect to a given coordinate 
frame. However, this approach is typically 
resource-consuming, requiring the robot to 
spend a significant percentage of its 
processing time with the navigation sub-
system, disregarding other important sub-
systems, such as perception or planning, to 
name but a few. Furthermore, high accuracy is 
not always required for navigation purposes. 
One may be just interested to move closer to 
an object, rotate to see a given landmark, or 
move to another region. In those cases, 
another approach to navigation, known as 
topological (or relative) navigation, is 
advisable. 

Object Recognition and Tracking Using 
Sensor Fusion: The ability to discriminate and 
recognize its surrounding objects, to 
distinguish the relevant ones and to track, 
among them, those that are relevant, is a major 
problem for any robot. For soccer robots, this 
problem is simplified since the relevant 
objects are distinguished by their colors (e.g., 
the ball is orange, the goals are blue and 
yellow). Nevertheless, fast and reliable color 
segmentation is not a trivial problem and 
requires some attention too. Furthermore, 
object detection may be performed by more 
than one sensor, such as different virtual 
sensors based on the vision transducer (e.g., 
mass center, edge detector, color 
segmentation), sonars, infrared and others. 
Therefore, sensor fusion arises as an important 
topic.  

 
2.2. Cooperative Multi-Robot Research Problems 

Functional and Software Architectures: If a 
team of cooperative robots is involved, the 
single-robot architectures of each of the team 
members must be integrated in the overall 
team architecture. The most usual solutions 
concerning the software architecture are 
centralized, where one of the robots (or an 

external machine) processes the data 
acquired and sent by all the team members, 
takes all the team decisions and sends 
commands to the others; 

distributed, where local data processing is 
made at each of the robots but then 
information is sent to one of them to take 
the decisions; 

fully decentralized, where each robot takes its 
own decisions based on its own data and 
on information exchanged with its 
teammates. 



The functional architecture of a behaviour-
based multi-robot team must also classify 
behaviours according to their functionality. 
One such division consists of considering 
organizational, relational and individual 
behaviours (Drogoul, A., and Collinot, A., 
1998), further described below. 

Multi-Robot Task Planning and Allocation: In 
the multiple-robot case, plans must take into 
account the distributed nature of the task at 
hand. Different tasks must be allocated to the 
different robots in the team, according to their 
skills and performance. So, the planning and 
allocation system must be able to establish 
(sub)groups of robots within a team, and the 
robots must have and know how to deal with 
the notion of “belonging to a group”. 
Therefore, plans must also include 
synchronization and communication among 
team members involved in the task. Moreover, 
if a robot cannot fulfill its assigned task, the 
task may simply be re-assigned to a robot 
within the group, a new robot may be 
integrated in the group to perform that task, or 
in the worst case a re-planning strategy has to 
be applied. 

Multi-Robot Task Coordination: The extension 
of task coordination to a team of multiple 
robots introduces issues related to knowledge 
distribution and maintenance, as well as 
communications and related problems (e.g., 
noise, protocols, limited bandwidth). 
Furthermore, communication can be explicit 
(e.g., through wireless radio-frequency 
channels) or implicit (e.g., through the 
observation of teammate actions, should an a 
priori model of the teammates behaviour 
exist). The coordination of a task carried out 
by a team of cooperating robots involves 
signalling events detected by one robot which 
are relevant for some or all of its teammates 
and/or to exchange information obtained 
locally by the different robots of the team. 
Whenever a formation is required, several 
formation topologies are possible and the one 
suitable for the task at hand must be chosen as 
part of the coordination process. Although not 
inevitable, communications among team 
members are also required to keep the 
formation under control. 

    When the population is composed of 
heterogeneous robots, if a robot has to perform 
a particular task for which it does not have the 
necessary skills, it may ask another robot with 
the adequate skills to carry it out. In the 
particular case of the SocRob robotic team, 
where the robots are homogeneous, examples 

of cooperative behaviour are the cooperative 
localization of the ball, the execution of a pass, 
the dynamical exchange of player roles or the 
decision of which robot should go for the ball. 
All of them require some form of inter-robot 
coordination and underlying teamwork 
methodologies. 

Distributed World Modeling: A team 
composed of multiple robots, possibly 
heterogeneous concerning on board sensing, 
can benefit from the availability of a world 
model, obtained from the observations made 
by the different team members and its on 
board sensors. This world model can be richer 
that if it were obtained by a single robot, due 
to the coverage of a broader area by a more 
diversified set of sensors. It can also be  

Fig.1 – Three robots of the current SocRob team. 
 

distributed through the teammates, e.g., by 
keeping in a single robot information which is 
only relevant locally and by broadcasting 
information gathered locally but which is of 
interest for the team as a whole. The sensor 
fusion problem is similar to the single-robot 
case, with the important difference that the 
sensor subsets are now independently mobile 
and can be actively positioned to improve the 
determination of object characteristics. 

 
3.  Problems Already Addressed 
 
A key issue of the research work developed under the 
SocRob project is the application of conceptual 
results to real robots participating in the Middle Size 
League (MSL) of RoboCup. The current robot team, 
displayed in Fig. 1, is composed of 4 Nomadic Super 
Scout II commercial platforms, later significantly 
modified by our group, each of them including: 

Two-wheel differential drive kinematics; 
Sixteen sonar sensors radially distributed around 

the robot, equally spaced; 



Motorola MC68332 based daughter board with 
three-axis motor controller, sonar and bumper 
interface, and battery level meters; 

Two 12V batteries, 18Ah capacity; 
Pentium III 1000MHz based motherboard, with 

512MB RAM, 8GB disk; 
Two Philips USB WebCam 740K Pro; 
IEEE 802.11b wireless Ethernet PCMCIA card; 
Pneumatic kicking device, based on Festo 

components, plus one bottle for pressurized air 
storage; 

 
In the remaining subsections, we describe some of the 
research problems addressed and solved for this team 
of robots. 
 
3.1. Color Segmentation and Cooperative Object 
Recognition 
A color segmentation interface was developed, 
providing two alternatives to discriminate the relevant 
MSL colors in HSV (Hue-Saturation-Value) color 
space (Gonzalez, R., & Woods, R., 1992): adjusting 
HSV intervals and graphically selecting regions with 
a given pixel color. The two approaches are 
cumulative. Furthermore, object segmentation is a 
topic directly related to the previous one, as we 
discriminate objects, namely the ball and the goals, 
not only based on their color, but also on their shape 
(e.g., by fitting circles to observed orange bulbs and 
identifying the ball with the closest and more circular 
bulb). 
     

   
a) 

    

 
b) 

Fig. 2 – a) local (internal to each robot) sensor fusion 
enabled and global (among team robots) sensor 
fusion disabled; b) both local and global sensor fusion 
enabled 

 

A topic of current research within the project is the 
use of sensor fusion for world modeling. The goal is 
to maintain and update over time information on the 
relevant objects, such as ball position and velocity, 
teammates pose and velocity, opponents pose and 
velocity, or position of the goals with respect to the 
robot. Such information is obtained by each robot 
from the observations of its front and up cameras and 
then fused among all the team robots (Pinheiro, P. & 
Lima, P., 2004), using a Bayesian approach to sensor 
fusion, as depicted in Fig. 2. Currently this approach 
is used to provide information on ball position to all 
the team members, therefore enabling robots that do 
not see the ball to know where it is, besides 
improving ball localization reliability. Fusion is not 
used when two robots disagree (in probabilistic 
terms) on the ball localization. 
 
3.2. Vision-Based Self-Localization 
An algorithm that determines the posture of a robot, 
with respect to a given coordinate system, from the 
observation of natural landmarks of the soccer field, 
such as the field lines and goals, as well as from a 
priori knowledge of the field geometry, has been 
developed within the SocRob project (Marques, C., & 
Lima, P., 2001). The algorithm is a particular 
implementation of a general method applicable to 
other well-structured environments, also introduced 
in (Marques, C., & Lima, P., 2001). 

 
Fig. 3 – Bird’s eye-view of the field obtained by the 
top catadioptric systems of the robots in Fig. 1. 
 
The landmarks are processed from an image taken by 
an omni-directional vision system, based on a camera 
plus a convex mirror (catadioptric system image in 
Fig. 3) designed to directly obtain the soccer field 
bird's eye view, thus preserving the field geometry in 
the image. The image green-white-green color 
transitions over a pre-determined number of circles 
centered with the robot are collected as the set of 
transition pixels.  The Hough Transform is applied to 
the set of transition pixels in a given image, using the 
polar representation of a line (Gonzalez, R., & 
Woods, R., 1992): 

φφρ sin.cos. t
i

t
i yx +=     (1) 



where (xi
t,yi

t) are the image coordinates of transition 
pixel pt and ρ, φ are the line parameters.  The q 
straight lines (ρl, φl), ..., (ρq, φq) corresponding to the 
top q accumulator cells in Hough space are picked 
and, for all pairs { (ρj, φj), (ρk, φk), j,k=1, ...,q, j ≠ k } 
made out of those q straight lines the following 
distances in Hough space are computed: 

kj

kj

ρρρ
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Note that a small φ∆ denotes almost parallel straight 
lines, while ρ∆  is the distance between 2 parallel 
lines. The φ∆ and ρ∆  values are subsequently 
classified by relevance functions which, based on the 
knowledge of the field geometry, will filter out lines 
whose relative orientation and/or distances do not 
match the actual field relative orientation and/or 
distances. The remaining lines are correlated, in 
Hough space, with the geometric field model, so as to 
obtain the robot posture estimate. An additional step 
must be taken to disambiguate the robot orientation. 
In the application to soccer robots, the ambiguity is 
due to the soccer field symmetry. The goal colors are 
used to remove such ambiguity and to detect 
situations where the localization values obtained are 
not trustable. 
 
Currently, an efficiently coded version of the 
algorithm is used by each of the ISocRob team robots 
to obtain its self-localization during a game every 
second. The algorithm runs in parallel with all the 
other processes and can compute self-localization in 
about 13 ms on the average, using Intel IPP library. 
The knowledge of each robot localization is useful for 
individual robot navigation, but it is also used by the 
robot to share information with its teammates 
regarding team postures and ball location. 
 
3.3. Multi-Sensor Guidance with Obstacle Avoidance 
The ability to navigate at relatively high speeds 
through an environment cluttered with static and 
dynamic obstacles is a crucial issue for a mobile 
robot. Most robotic tasks require a robot to move to 
target postures adequate to carry out its planned 
activities. In robotic soccer, relevant activities include 
facing the opponent goal with the ball in between or 
covering the team goal by positioning itself between 
the ball and the goal, while avoiding the field walls 
and the other (stopped and moving) robots. Also 
relevant is the capability to move towards a given 
posture while avoiding obstacles and keeping the ball 
(also known as dribbling). 
 
A guidance control method for non-holonomic 
(differential drive) vehicles, using odometry, 
regularly reset by the vision-based self-localization 
algorithm described before, was first introduced in 

(Marques, C., and Lima, P., 2002). The vehicle uses a 
sonar ring for obstacle avoidance.  
 
An alternative guidance method has been introduced 
in (Damas, B., et al, 2002), consisting of a modified 
potential fields method for robot navigation, 
especially suited for differential-drive non-holonomic 
mobile robots. The potential field is modified so as to 
enhance the relevance of obstacles in the direction of 
the robot motion. The relative weight assigned to 
front and side obstacles can be modified by the 
adjustment of one physically interpretable parameter. 
The resulting angular speed and linear acceleration of 
the robot can be expressed as functions of the linear 
speed, distance and relative orientation to the 
obstacles. This formulation enables the assignment of 
angular and linear velocities for the robot in a natural 
fashion. Moreover, it leads to an elegant formulation 
of the constraints on angular speed, linear speed and 
acceleration, that enable a soccer robot to dribble a 
ball, i.e., to move while avoiding obstacles and 
pushing the ball without losing it, under severe 
restrictions to ball holding capabilities. It is shown 
that, under reasonable physical considerations, the 
angular speed must be less than a non-linear function 
of the linear speed and acceleration, which reduces to 
an affine function of the acceleration/speed ratio 
when a simplified model of the friction forces on the 
ball is used and the curvature of the robot trajectory is 
small. 
 
3.4. Behavior-Based Architectures 
The basic functional architecture of the SocRob team 
is organized in three levels of decision and 
responsibility, similar to those proposed in (Drogoul, 
A., and Collinot, A., 1998): individual, which is 
responsible for all functionalities that involve only 
one agent; relational, which is responsible for the 
relationships between the robot and its teammates; 
and organizational, which is responsible for the 
strategic decisions that involve the team as a whole. 
The current instantiation of this functional 
architecture considers that: 

there is, at the organizational level, a mapping 
from the environment state, including the team 
state, to a tactical decision, resulting in an 
organizational behavior displayed by the team. 
The tactics consists of the set of role 
assignments to each team member. In robotic 
soccer, basic roles can be Goalkeeper, 
Defender, Attacker and Full 
Player (both defender and attacker). Only 
the captain robot will have the organizer 
enabled. Should the captain “die”, the next 
robot in a pre-specified list will have its 
organizer level enabled and become the 
captain. 

there are, at the relational level, operators which 
control relations between two or more team 



members (e.g., to pass a ball, to avoid moving 
simultaneously towards a ball, to cover a field 
region while the  teammate advances in the 
field through role exchanges). Any team 
member has relational operators running. Each 
operator has a pre-conditions set and, when 
this set is satisfied, establishes 
communications with the relational operator(s) 
of designated teammates, asking them to start 
a negotiation process which may end up in a 
coordinated action among this temporary sub-
team. As a result, a relational behavior is 
displayed. 

there are, at the individual level, operators 
consisting of single primitive tasks or of 
composite tasks (primitive tasks linked by 
logical conditions on events).  

 
The software architecture is the practical 
implementation of the functional architecture, which 
could be done in any programming language and 
using different software technologies. In the SocRob 
project, the software architecture was defined based 
on three essential concepts: micro-agents (µA for 
short), blackboard and plugins. 
 
Inspired by the idea of Society of Agents, proposed 
by Minsky (Minsky, M., 1988), each functional 
module of the SocRob architecture was implemented 
by a separate process, using the parallel programming 
technology of threads. In this context a functional 
module is named µA. In the current implementation 
of the SocRob architecture there are nine different 
threads, but only the three most important ones are 
mentioned here: µA Vision, responsible for 
processing the data acquired from the cameras, µA 
Fusion, which fuses information concerning the same 
object from different sensors, µA Machine, 
responsible for deciding which behavior should the 
robot display, and µA Control, responsible for the 
execution of the corresponding operator. 
 
The concept of threads was chosen to improve 
module performance and simplify the information 
passing among the threads. This was accomplished by 
the blackboard concept (memory space shared by 
several threads), further sophisticated here by the 
development of a distributed blackboard, in what 
information availability is concerned. Instead of 
being centralized in one agent, the information is 
distributed among all team members and 
communicated when needed. 
 
As mentioned before, the decision making involved 
for each agent is twofold: which behavior should be 
displayed, and how the operator which displays such 
behavior is executed. This separation between 
behavior decision and operator execution allows the 

µA Machine, the one responsible for behavior 
decision, to work with abstract definitions of 
behaviors, and choose among them without knowing 
details about their execution. So, new operators could 
be easily added and removed without affecting the 
existing ones, and these can also be easily replaced by 
others with the simple restriction of maintaining the 
name. This was accomplished using the concept of 
plugin, in the sense that each new operator is added to 
the software architecture as a plugin, and therefore 
the µA Control can be seen as a multiplexer of 
plugins. Examples of already implemented operators 
are: dribble, score, go, standby, to name but 
a few. The same idea of plugins was also used for the 
µA Vision, as each particular functionality related to 
vision data is defined as a different plugin, and 
multiplexed by the µA Vision (e.g., a plugin for the 
front camera, a plugin for the up camera, a plugin for 
the self-localization algorithm, etc.). 
 
The individual operators have been implemented as 
state machines, where the states represent primitive 
tasks, while the arcs between states (if any) are 
traversed upon the validation of given logical 
conditions over events (e.g., see ball, distance 
< x). The relational operator state machines could 
also be defined similarly, but events include 
synchronization signals between the state machines 
running in the sub-team robots.  
 
However, the way the functional architecture was 
conceptualized allows the implementation of these 
operators and the switching among them using 
different approaches, as for example AI production 
systems. So, in order to have a more abstract way to 
deal with behaviour switching, the µA machine has 
been implemented using a distributed decision-
making architecture supported on a logical approach 
to modeling dynamical systems (Reiter, 2001), based 
on situation calculus, a first order logic dialect.  
 
This architecture includes two main modules: i) a 
basic logic decision unit, and ii) an advanced logic 
decision unit. Both run in parallel; the former intends 
to quickly suggest, using simple logical decision 
rules, the next behavior to be executed, whereas the 
latter uses more sophisticated reasoning tools 
(situation calculus) capable of planning, learning and 
decision-making, both for individual and cooperative 
(teamwork) situations. This configures an hybrid 
architecture where the basic (reactive) unit only 
controls the robot if the advanced (deliberative) unit 
takes too long to make a decision, assuming a 
situation urgency evaluation. A partial 
implementation of this architecture, the basic logic 
decision unit, was already performed using Prolog 
(Arroz, M., et al, 2004).  Its modeling convenience 
allowed the quick development of different roles for 
field players (Attacker, Defender, Full-



Player), as well as dynamic role change between 
field players (defenders switch with attackers, 
depending on who is in a better position to get the 
ball).  
 
The advanced (deliberative) unit, Advanced Logic 
Based Unit, has been developed using an action 
programming language called Golog Golog 
(Levesque, H., et al, 1997) and it is based on 
situational calculus. This unit is responsible to 
determine plans (sequences of behaviours) that allow 
the team to achieve something (like scoring on the 
opposite goal). Situational calculus is an extension to 
first-order logic, specially suited to handle dynamic 
worlds. The changes in the world are the results of 
actions, that have pre-conditions and effects.  
 
Our objective is to develop a tool capable of planning 
and performing task control execution in a distributed 
environment. To do so we assume that: the agents 
(robots) can generate, change and execute plans; a 
plan can be generated, and executed by one or more 
agents; decisions over the generated plans are based 
on hypotheses, i.e., assumptions over future states 
that cannot be guaranteed; and the agents have the 
capacity to communicate among them, and share 
information about plans or environment states.  
 
Another recent topic in the project research is the 
design and implementation of relational behaviors, 
where teamwork between two or more robots is 
required to perform a certain task, like a ball pass 
(Vecht, B., & Lima, P., 2004). These behaviors have 
a general formulation based on Joint Commitment 
Theory (Cohen, P. R., & Levesque, H. J., 1991), and 
use the navigation methods already developed in the 
project. Currently, the robots are capable of 
committing to a relational pass behavior where one of 
the robots is the kicker and the other the receiver. If 
any of the robots ends the commitment, the other 
switches to an individual behavior. 
 
One cooperation mechanism, implemented in 2000, 
consists of avoiding that two or more robots from the 
same team attempt to get the ball. A relational 
operator was developed to determine which robot 
should go to the ball and which one(s) should not. In 
the current implementation, each robot that sees the 
ball and wants to go for it uses a heuristic function to 
determine a fitness value. This heuristic penalizes 
robots that are far from the ball, are between the ball 
and the opposite goal and need to perform a angular 
correction to center the ball with its kicking device. 
Each robot broadcasts its own heuristic value, and the 
robot with the smallest value is allowed to go for the 
ball whereas the others execute a Standby behavior. 
 
Though not tested yet in real robots, formal work on 
Stochastic Discrete-Event Systems modeling of a 

multi-robot team has been recently carried out within 
the project with interesting results (Damas, B., & 
Lima, P., 2004). The environment space and each 
player (opponent and teammate) actions are 
discretized and modeled by a Finite State Automaton 
(FSA) 2 vs 2 players game model. Then, all FSA are 
composed to obtain the complete model of a team 
situated in its environment and playing an adversarial 
game. Controllable (e.g., shoot_p1, stop_p2) 
and Uncontrollable (e.g., lost_ball, see_ball) 
events (i.e., our robots actions) are identified and 
exponential distributions are assigned to their inter-
event times. Dynamic programming is applied to the 
optimal selection of the controllable events, with the 
goal of minimizing the cost function 
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where π is a policy, X(t) the game state at time t, and 
u(t) is a controllable event, with the cost of unmarked 
states equal to 1, and all the other states have zero 
cost. If the only marked states are those where a goal 
is scored for our team, and there are no transitions 
from marked to unmarked states, this method obtains 
the minimum (in a stochastic sense) time to goal for 
our team, constrained by the opponent actions and the 
uncertainty of our own actions. Some of the chosen 
actions result in cooperation between the two robots 
of the team. 
 
4. Problems To Be Addressed 
 
Naturally, several interesting problems remain to be 
tackled and solved within the project research. We 
will only mention the currently most important ones. 

Behavior Modeling: A consistent model for 
individual and relational behaviors is required 
to provide a systematic methodology for 
behavior synthesis and analysis. FSA have 
been used for this purpose up to now. They 
have the advantage of the availability of 
several tools for analysis and synthesis in the 
literature (Cassandras, C. G., & Lafortune, S, 
1999), but suffer from limited modeling 
capabilities. Petri nets (Cassandras, C. G., & 
Lafortune, S, 1999) extend the modeling 
capabilities of FSA and provide a more 
convenient modeling methodology starting 
from the identification of the system 
components and events. A wide range of 
analysis (e.g., concerning boundedness, 
liveness, stochastic and deterministic time) 
and synthesis (e.g., concerning admissible 
marked languages) tools is also available, and 
the non-decidability of some analysis 
problems can be overcome with no significant 
expenses. Furthermore, modularity and system 
design can be achieved by interconnecting 



several sub-systems, each modeled as a Petri 
net. This is particularly convenient to model 
relational behaviors, where more than one 
teammate is involved. So, Petri nets are being 
investigated as an alternative tool for behavior 
modeling. Behavior switching can also be 
modeled as discrete-event systems 
supervision, for which there are results 
available regarding FSA and Petri nets. 
Production systems also have modeling 
characteristics that make them suitable for this 
purpose. However, further work must be done 
to study its design and analysis properties. 

Distributed Planning: The available behaviors 
among which switching is possible are 
currently designed “by hand”. However, a 
more appropriate approach would be to 
develop a planner capable of periodically (or 
when invoked) analyzing the world state and 
providing a new set of individual and 
relational behaviors appropriate for the current 
conditions. A suitable approach should be the 
continuous interleaving of plan generation and 
execution. Task allocation among the team 
robots and distributed world modeling are 
relevant issues to be further investigated under 
this topic. 

Cooperative Learning: One possible way of 
designing plans which continuously adapt to 
new situations and are fine tuned to the actual 
surrounding environment is to use 
reinforcement learning (RL) algorithms, 
especially those which guarantee convergence 
properties (Sutton, R., and Barto, A., 1998). 
However, learning is usually slow. An 
envisaged approach that overcomes this 
problem is to provide plans with alternative 
paths among which the RL algorithms can 
learn to switch over time. Cooperative 
learning arises when a robot takes its decisions 
from information learned and provided to it by 
its teammates. 

Control as a Game: Modern views of control 
state the control problem as a game against an 
adversary (i.e., the disturbances). In the 
particular case of soccer, there is an actual 
opponent whose modeled behavior, once 
estimated (e.g., using Hidden Markov 
Models), can be used as information for game-
playing algorithms, as part of the planning 
process. 

 
5. Conclusions 
 
This paper described the SocRob project (on the 
development of methodologies for analysis, design 
and implementation of multi-robot cooperative 

systems), its objectives, past, current and intended 
future work. One interesting feature of the project is 
that it enables different approaches to the solution of 
the problem at hand. This naturally motivates 
competing research approaches, as well as research 
on analysis methods to compare the different results. 
Furthermore, the project fosters education in AI and 
Robotics related topics, because so many issues must 
be solved to handle the overall problem. Students 
from different levels (undergraduate, graduate, post-
doctorate) can get involved at different difficulty 
levels and accomplish project sub-goals. They also 
learn how to accomplish teamwork under hard time 
deadlines. The SocRob project has involved so far 10 
undergraduate and 4 graduate (MSc and PhD) 
students, besides 2 doctorates who have been 
supervising the project. All these students have 
participated regularly in RoboCup - The World Cup 
of Soccer Robots, since 1998. We believe that 
RoboCup is a very attractive long-term scientific 
challenge that brings together people from several 
different scientific fields in an exciting fusion of 
research, education and science promotion which are 
actually the driving forces of our project too. 
 
Some of the methodologies developed within the 
project, namely its software and functional 
architectures, have been applied meanwhile to other 
projects, such as an European Space Agency project 
on Formation Guidance and Navigation of 
Distributed Spacecraft, and a Cooperative Navigation 
for Rescue Robots project currently underway at 
ISR/IST. 
 
The project team is now developing new robots, in 
the framework of a national research project, in 
partnership with two Portuguese small companies. 
These new robots are omnidirectional, with a new 
modular construction, so that it will be easily 
modified, e.g., the up camera module can switch 
between a catadioptric system and a stereo image 
system. The new robots will also incorporate a 
controlled kicker mechanism, so that one can choose 
the kicking force, using an electromechanical solution 
with a DC motor pulling a spring and an infrared 
sensor to measure the pulled distance, both coupled to 
the kicking device. In order to make new and more 
complex behaviors and for ball handling, there is a 
ball reception mechanism, that will allow the 
implementation of ball passes behaviors. Two new 
sensors will be used: a rate-gyro for angular velocity 
measurements, and an optical mouse to track the 
robot position in the field. Both will provide data to 
be fused with odometry and vision-based self-
localization, so as to improve navigation. 
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