

AGENT-BASED SOFTWARE ARCHITECTURE FOR MULTI-ROBOT TEAMS

João Frazão, Pedro Lima

Institute for Systems and Robotics
Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

{jfrazao,pal}@isr.ist.utl.pt

Abstract: This paper describes an agent-based software architecture that intends to close the gap
between hybrid systems and software agent architectures. The developed concepts and tools
provide support for: task design, task planning, task execution, task coordination and task analysis
for a multi- robot system. Copywright © IFAC

Keywords: Multi-robot systems, Agents, Software Architecture, Cooperation.

1. INTRODUCTION

In general, any software architecture should be
capable of handling a family of applications.
Furthermore, a non-ad-hoc architecture, based on
design principles and clear concepts, allows
researchers with different backgrounds to talk and
share each other’s experiences with less effort. Last,
but not the least, it allows them to integrate their
work on a larger project.
There are currently available several software tools
for the mission design and development for teams of
real robots like TeamBots, Mission Lab and
CHARON.
TeamBots (Balch, 2002) is a collection of Java
application programs and libraries designed to
support multiagent systems. It supports simulation of
robot control systems and execution of the same
control systems on mobile robots. It includes a
communication package (RoboComm), and Clay, a
library to support behavior-based control systems.
The simulation environment is written entirely in
Java. Execution on mobile robots sometimes requires
low-level libraries in C, but Java is used for all
higher-level functions.
Mission Lab (Arkin, 2002) is a mission specification
software that uses visual programming and reusable
components. It is composed by several subsystems
such as console display, a visual configuration editor,
a simulator, and a runtime and usability data logging
module. MissionLab generates code that runs under a
distributed architecture (e.g., the main user’s console
can run on one computer while multiple robot control
executables are distributed across a network,
potentially on-board the actual robots they control.).
CHARON (Esposito and Kumar, 2002) is a language
for modular specification of interacting hybrid
systems based on the notions of agent and mode. It

provides operations for both an hierarchical
description of the system architecture (referring to
the agents relations), and an hierarchical description
of the behavior of an agent. The discrete and
continuous behaviors of an agent are described using
modes. A mode is basically a hierarchical state
machine, that is, a mode can have submodes and
transitions connecting them. Agents in CHARON can
communicate via shared variables and
communication channels. Both event-driven discrete
state and time-driven continuous state system
descriptions are supported.
In this paper, we describe an agent-based software
architecture aiming at a considerably large set of
applications involving multi-robot teams, based on
simple and hopefully clear design principles that
enable the development of multi-robot tasks under
different architectural concepts at different levels of
abstraction and by researchers with different
backgrounds.

2. CONCEPTUAL MODEL

The conceptual model of the agent-based software
architecture includes different types of agents that
can be combined both hierarchically and in a
distributed manner.
The architecture support information fusion between
several sensors and the sharing of information
between the agents by a Blackboard (Roth, 1985)
and is geared towards the cooperation between
robots.
Agents are generically organized hierarchically: “At
the top of the hierarchy, the algorithms associated
with the agents are likely to be planners, whilst at the
bottom they are interfaces to control and sensing
hardware. The planner agents are able to control the
execution of the lower level agents to service high-
level goals.” (Esposito and Kumar, 2002).

The fundamental differences between our approach
and the previous described ones are the use of a
distributed blackboard for data sharing; the
introduction of new agents types like the exclusive
agent as well the introduction of new agent execution
modes.
The elements of the architecture are the Agents, the
Blackboard, and the Control/Communication Ports.
Next, each of them is described in detail.

3. ELEMENTS

3.1. Agent

We define an Agent as an entity with its own
execution context, its own state and memory and
mechanisms to sense and take actions over the
environment.
Agents have a control interface used to control their
execution. The control interface can be accessed
remotely by other agents or by a human operator
(Henning and Vinoski, 1999). Through the control
interface, an Agent can be enabled, disabled and
calibrated (see the execution modes).
Agents share data by a data interface. Through this
interface, the agents can sense and act over the world.
There are Composite Agents and Simple Agents.

• Composite agents are Agents that are composed

by two or more agents. The principle behind
composite agents is to abstract a group of related
agents. An agent society can have several types
of groups. Groups represent the way that agents
relate or interact with each other. Composite
agents allow a group of agents to be faced as a
single agent by designers, by operators or by
other parts of the system. For this to be possible,
a composite agent must take control over the
agents that compose him. Moreover, composite
agents must be easy to use: their usage should be
only a matter of choosing the right type of
composite agent and then plugging the
controlled agents.

• Simple agents are agents that do not control
other agents; they do not even need to know
about the existence of other agents. Simple
agents represent hardware devices, data fusion
and control loops.

The supported agent types are:

• Concurrent Agent: composite agent that

represents the simultaneous execution of two or
more agents. All the agents plugged to this
composite agent will execute simultaneously.

• Exclusive Agent: Composite agent represents the
exclusive execution of agents. It is used to make
sure that only one of the plugged agents is
executing at a given time. This is a type of agent
similar to the micro-agents of the SocRob
project, developed by this group (Lima and
Custódio, 2002).

• Periodic Agent – This agent executes a given
function periodically. The period is specified.
This agent can be used for data fusion and
control loops.

• Sensor Agent - A driver or a server to an
hardware device of the sensor type. These are
customized for each type of sensor. Usually they
take data from the sensor to the blackboard.

• Actuator Agent - A driver or a server to an
hardware device of the actuator type. These are
customized for each type of actuator. Usually
they take commands from the blackboard to the
actuator.

The possible combinations among these agent types
provide the flexibility required to build a Mission for
a cooperative robotics project (Gamma et al., 1995).
For special interactions that are not currently
supported, the architecture is open to include other
types of agents.
We refer to the mission as the top-level task that the
system should execute. In the same robotic system,
we can have different missions. The mission is a
particular agent instantiation. The agents
implementation is made to promote the reusability of
the same agent in different missions.

3.2. Blackboard

The Blackboard is a distributed structure that gives
support to the data exchange between the Agents.
Each entry on the blackboard is a collection of
samples ordered by their creation time. Since all the
data shared between the agents goes through the
blackboard, reads and writes are concurrent to
maximize performance.

3.3. Ports

Ports are an abstraction to keep the agents decoupled
from other agents. When an agent is defined, his
ports are kept unconnected. This approach enables
using the same agent definition in different places
and in different ways. There are two types of ports:
control ports and data ports (Figure 1).
Control ports are used within the Agent hierarchy to
control agent execution. Each agent is endowed with

one upper control interface. The upper interface has
two defined control ports.

Agent A

BlackBoard

Output Control Port

Data Input Port

Input Control Port

Data Output Port

... DataEntry

DataEntry

Figure 1 – Agent Control and Data Ports.

One of the ports is the input control port; we can see
it like the request port from where the agent receives
notifications of actions to perform from higher-level
agents. The other port is the output control port
through which the agent reports progress to the high
level agent. This is what we denote as a consistent
interface for control.
Composite agents also have a lower level control
interface from where they can control and sense the
agents beneath him. The lower level control interface
is customized in accordance to the type of agent. For
instance, an Exclusive Agent has as many lower level
control ports as agents that he is controlling. An
additional data input port is used to enable the
exclusive agent receiving the events that select which
agent to execute (Fig. 2).

Fig. 2 – A Composite Agent and two controlled

agents beneath him.

Data ports are used to connect the agents to the
blackboard data entries, enabling agents to share
data. More than one port can be connected to the
same data entry. Several agents can be reading from
the same place at the same time (Fig. 3). However if
a data entry has more than a write port connected,
some sort of contention resolution mechanism (such
as in an Exclusive Agent) must be used.

The data ports are linked together through the
blackboard. For configuration flexibility of the
agent’s hierarchy, the agent ports are not assigned in
the definition of the agent.

Agent A

BlackBoard
Output Control Port

Data Input Port
Data Output Port

Agent B

data

data

Data Output Port

Fig. 3 – Agent A is writing a value on the Blackboard

that Agent B is reading.

Ports are assigned in the instantiation of the agent
hierarchy.

4. EXECUTION MODES

Traditionally, in Robotics, there is a trend towards
giving importance only to the run-time impact of the
robotic system architecture. Unfortunately, during
several research phases, robots are stopped most of
the time. Much time and resources are consumed in
system design, system calibration and system
analysis. These are very relevant issues often
forgotten by Robotics researchers. A well-designed
architecture targets the support and speed-up of these
development phases.
Usually, properties such as system distribution and
concurrency are relevant during the mission
execution, since they provide better resource
allocation and robustness.
Centralization and persistency are important
properties when dealing with the robots prior to the
mission execution or handling the data acquired after
the mission execution. Those properties also help
managing different missions for a team of robots.
Even during mission execution, system distribution is
not required all the time for all the aspects. To
control the robots it is better to think of them as a
fleet, and to be able to exert control over the fleet
from a central place, when needed.
Under this architecture, a different execution mode
exists for each development phase of a multi-robot
system.
The system hardware is composed by a central
station and by the robots. The robots and the central
station use a wireless network for communication.
The centralized execution modes of the software
architecture are located on the central station. In spite
of being centralized, they do interact with the robots
(Fig. 4).

State Machine Agent

Output Control Port

Agent C

Input Control Port

Agent B

Data Port

The control mode follows a distributed approach.
This mode is spread across the robots (Fig. 4).

Mission and Fleet Management
Station Control

Design Calibration
Supervisory
Control and
Monitoring

Data and
Debug

Robot::Atrv Robot::Bimp

wireless

Run-time
ControlRun-time

Control
Fig. 4 – System Execution Modes – Example for the

Rescue Project.

Next, we describe each of the five execution modes
available for the elements described in the previous
section.
First, we describe the Control Mode that refers
mostly to the run-time interactions between the
elements. Afterwards, we describe the Design Mode,
the Calibration Mode, the Supervisory Control Mode
and finally the Logging and Data Mode.

4.1. Control Mode

The control exerted by an upper-level agent over a
lower-level agent is accomplished through special
and well-defined functions: start, stop, set and reset.
In this sense if we stop the agent that encapsulates
the whole fleet, he will request his lower-level agents
to stop, so a cascading reaction will stop all the
agents’ hierarchy inside each of the robots, from the
top down to the lowest level hardware agents,
including the robots. A similar behavior happens
with the start command.

4.2. Design Mode

The Design Mode is similar to a graphics-drawing
program. In these programs, there are different tools
for the different graphic objects, such as lines,
squares and so on (MacKenzie and Arkin, 1998).
In the Design Mode, instead of drawing tools for
each type of graphic we have a drawing toolbox for
each type of the supported agents, plus one additional
toolbox for linking agents written in pure code. The
output is a meta-language that represents an
instantiation of the supported agents or the included

code files when the agent is implemented in pure
code. The language describes the connections
between the agents. This meta-language is then
transferred to the target robots for execution.

4.3. Calibration Mode

Usually, robots have controllers, sensory processing
and hardware that must be configured or calibrated.
Controllers, behaviors and perceptual processes have
parameters that must be tuned. Usually this data is
kept in text files for ease of modification without the
need to recompile the code. For more complex
calibration procedures (like color segmentation)
special configuration processes must be executed
sometimes.
To simplify the calibration procedure for the robot
fleet, each agent has an associated calibration
window, which can be requested remotely before the
start of the mission. The calibration data is persistent
and can be used in a later mission. To keep
management of the fleet a simple job, the calibration
data is stored in the central station. This data is
distributed to the robots before run time.
The operator does the calibration following the
instructions appearing in the remote window. For
each agent involved the mission, the program asks
the operator if he/she wishes to make a new
calibration, to skip, to save or to load a previous one.
This is done in a top-down manner. Answering skip
to the agent that encapsulates the whole fleet will
produce the result of all robots with all their agents
being calibrated by the latest data used.
This mode provides support on managing the data
calibration files. It also supports the way the various
data types are written and read from the files.

4.4. Supervisory Control Mode

Each of the agents has, in addition to the Calibration
window, an associated Supervisory Control window,
corresponding to the Supervisory Control Mode,
designed to be user-friendly. Therefore, the agent that
controls the motors has a user-interface appropriated
for its specific task. This user-interface is different
from the user-interface to a (higher-level) planner
agent. There are common features to all agents like
the request to start, the request to stop or the request
to logging. These common features are present on the
associated windows and are provided automatically.
The supervisory control window uses the same
program interface through which the agents receive
control requests from higher-level agents and get data
from the same program interface through which the
agents report success, failure or progress to the

higher-level agents. The only difference is the use of
a graphical window for ease of human use. If the
operator chooses to control an agent from the
hierarchy, the framework should disable all control
requests arriving at the controlled agent from other
agents.
In the supervisory control window, there is also a
blackboard view. In the blackboard view, the
supervisor can consult or modify the various types of
variables. This is an extension of the blackboard view
interface of the SocRob project (Lima et al., 2000).

4.5. Logging and Data Mode

Each of the agents can keep a logging file. If the
supervisor chooses an agent whose activities are to
be logged, that file is written locally inside each of
the robots. After the mission ends, the log files are
stored in the central station. During run-time, an
operator can also choose to consult the logging of a
particular agent. This mode logs, with the
corresponding time tag, all the requests arriving and
all reports departing an agent. Changes in the
variables inside the blackboard can also be selected
to be automatically logged by this mode, with the
corresponding time tag. Additional logging should be
made inside the code of the agent.

5. AGENT ARCHITECTURE APPLIED ON
RESCUE PROJECT

Under the reference scenario for the Rescue project
(Lima et al, 2003), a land robot should be able to
build a topological map and be able to locate itself on
that map as well as to show different navigation
capabilities, such as topological navigation with
obstacle avoidance. With the topological navigation
the robot should be able to go from one topological
state to an arbitrary topological state. It should be
able to change from Topological Navigation to either
Waypoint Navigation or User Operated Navigation.
The following steps describe part of the top-down
instantiation of such a Rescue Mission.

Fig. 5 – System Top Agent

Figure 5 shows the first system decomposition.
Sensor and Actuator agents where kept out of the
diagram for the ease of interpretation. In addition to
one agent per sensor and one per actuator, the system
is split into five main Agents. All these agents are
running simultaneously, therefore they are inside a
Concurrent Agent.

Each of the agents is responsible for a subsystem:

• Features Transform – This group of agents is

responsible for picking raw data from the
several sensors (sonar, laser, compass and
image). The raw data is subsequently
transformed into features that the Topological
agents can use (Vale and Ribeiro, 2002; Vale
and Ribeiro, 2003).

• Navigation System – This group of agents is
responsible for the either the topological or the
metric navigation of the robot. The Navigation
sub-system includes obstacle avoidance
behavior.

• Topological Localization – This agent gets the
data-features and, comparing then with
information taken from the topological map,
determines where the robot is on the topological
map (Vale and Ribeiro, 2002; Vale and Ribeiro,
2003).

• Topological Mapping – This agent is responsible
for picking the features and building the
topological map (Vale and Ribeiro, 2002; Vale
and Ribeiro, 2003).

• Metric Localization – This agent is responsible
for picking raw data from several sensors
(odometric, GPS and compass). This data is
fused together to determine the robot metric
position and velocity.

The Fig. 6 depicts the data exchanged by the top
rescue agents. The arrows represent data connections
between the agents. As explained before, these
connections are made throughout the blackboard.
Arrows represent more than a value being
exchanged. An arrow denotes that the starting agent
is writing the data on blackboard entries. The pointed
agent is reading the data from the blackboard entries.
For ease of image reading only the TopologicalMap
and TopologicalPosition data entries where
represented.
If the arrow forks it means that more than one agent
is reading the same data. When the arrow is double it
means that the agent is reading and writing data. In
the figure, the TopologicalLocalizationAgent is
reading the TopologicalMap data and writing the
TopologicalPosition data.

Periodic::TopologicalLocalization

Periodic::TopologicalMapping

Concurrent::Atrv

Periodic::MetricLocalization

Concurrent::NavigationSystem

Concurrent::FeaturesTransform

Periodic::TopologicalMapping

Concurrent::FeaturesTransform

Concurrent::NavigationSystem

TOPOLOGICAL
MAP

&
POSITION

Periodic::TopologicalLocalization

Sensors::Raw

Periodic::MetricLocalization

RAW DATA FEATURES

RAW DATA POSITION, VELOCITY

T.M
AP

T.M
AP,

T.PO
SITIO

N

TPOSITION
TMAP

Actuator::Motors

VELOCITY

Blackboard

Fig. 6 – Data Flow for the first system

decomposition.

All the values on the blackboard of the land robot are
readable over the network (Henning and Vinoski,
1999). The land robot can ask the aerial robot to meet
him. For now the aerial robot only has two behaviors:
parametric navigation and camera target following.
First the blimp tries to get to the land robot position
using the blackboard land robot parametric position.
If successful the blimp changes to camera target
following, thus using an exclusive agent to change
from one behavior to the other.

6. CONCLUSIONS AND FUTURE WORK

We have described an agent based software
architecture whose key-points are:
• Agents as Reusable Software Components.

Agents can be controllable and can control other
agents over the network.

• Blackboard as a mean to share data over the
network, addressing the problems of different
agent execution rates and different agent
locations.

• Several Execution modes as a mean to increase
the overall system usability.

We have shown how to use the Proposed Agent
Software Architecture applying it to the work already
developed on the robots of our Rescue Project.
Future work on this project includes moving the
Topological Mapping Agent to the aerial robot
instead of the Land Robot and the development of
cooperative navigation agents.
We also plan to use the software architecture on
another R&D project where we are currently
involved with a Portuguese company.

ACKNOWLEDGMENTS - Work partially supported
by POSI in the frame of QCA III and by the FCT

Project Rescue - Cooperative Navigation for Rescue
Robots (SRI/32546/99-00).

REFERENCES

A. Vale, M. I. Ribeiro. “A Probabilistic Approach for
the Localization of Mobile Robots in Topological
Maps", Proc. of the 10th IEEE Mediterranean Conf.
on Control and Automation, 2002.

A. Vale, M. I. Ribeiro. “Environment Mapping as a
Topological Representation", 11th International
Conference on Advanced Robotics (submitted),
2003.

D.C. MacKenzie and R.C. Arkin. “Evaluating the
Usability of Robot Programming Toolsets" The
International Journal of Robotics Research, Vol. 17,
No. 4, pp 381-401, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
“Design Patterns: Elements of Reusable Object
Oriented Software", Addison-Wesley, Reading, MA,
1995.

Hayes-Roth, B. “A Blackboard Architecture for
Control”, Artificial Intelligence, 26:pp. 251-321,
1985.

J. M. Esposito, V. Kumar. “A Hybrid Systems
Framework for Multi-robot Control and
Programming”, Working notes of tutorial on
Mobile Robot Programming Paradigms, ICRA 2002.

Michi Henning, Steve Vinoski “Advanced Corba
Programing with C++”, Addison Wesley, 1999.

P. Lima, R. Ventura, P. Aparício, L. Custódio. “A
Functional Architecture for a Team of Fully
Autonomous Cooperative Robots", RoboCup-99:
Robot Soccer World Cup III, Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 2000.

P. Lima, L. Custódio, “Artificial Intelligence and
Systems Theory Applied to Cooperative Robots: the
SocRob Project”, Actas do Encontro Científico do
Robótica 2002 - Festival Nacional de Robótica, 2002.

P. Lima, M. Isabel Ribeiro, Luis Custodio, Jose
Santos-Victor, "The RESCUE Project - Cooperative
Navigation for Rescue Robots", Proc. of ASER'03 -
1st International Workshop on Advances in Service
Robotics, March 13-15, 2003 - Bardolino, Italy, 2003

R. Arkin. “MissionLab: Multiagent Robotics Meets
Visual Programming”, Working notes of tutorial on
Mobile Robot Programming Paradigms, ICRA 2002.

T. Balch. “The TeamBots Environment for Multi-
Robot Systems Development”, Working notes of
tutorial on Mobile Robot Programming Paradigms,
ICRA 2002.

	INTRODUCTION
	CONCEPTUAL MODEL
	ELEMENTS
	Agent
	Blackboard
	Ports

	EXECUTION MODES
	Control Mode
	Design Mode
	Calibration Mode
	Supervisory Control Mode
	Logging and Data Mode

	AGENT ARCHITECTURE APPLIED ON RESCUE PROJECT
	CONCLUSIONS AND FUTURE WORK

