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Abstract. Nowadays, we can see an increasing amount of robotic systems for pur-
poses of continuously growing complexity. Some of these applications require, not
just a single robot, but a group or team of robots that must work together to accom-
plish the goal. This raises some problems related to the coordination of several robots
that must be handled accordingly.

Robotics has improved in many ways. Mechanics are becoming faster, more pre-
cise, reliable and durable. Electronics provides greater autonomy, reliable sensors, and
faster processing. Artificial vision endows robots with the ability to detect objects in
the world by justlookingat them with video cameras, with no special extra sensors.
But, even with all this great new technology, a big problem remains: how todecide
what the robot should do? A robotic arm can pick up a glass of water without spilling
it, but whenshould it do that?Whyshould it do that? Will picking up the glass help to
accomplish the goal?

This is why the link between Robotics and Artificial Intelligence (AI) is becoming
more relevant every day. Robotics provides the means to interact with the real world.
AI allows a robot to decide over that world.

In this paper a decision system for a team constituted by several robots is de-
scribed. The system uses logic to choose the most suitable action in order to accom-
plish a pre-determined goal. It also supports cooperation to better achieve the goal.

1 Introduction

Most robots rely mainly on reactive decision systems. Those systems are usually based on
simple and less flexible tools, like state machines or decision trees. Reactive systems are con-
ceptually simple, but involve some serious practical problems. For example, the complexity
of a state machine may grow rapidly for relatively simple behaviours. This will lead to big,
hard to read and modify, and prone to error state machines. If we consider a multi-robot sys-
tem the problems related with behaviour modeling with state machines turn out to be much
worse. In this kind of system, if a reactive approach is used for decision-making, everything,
including coordination among robots, ought to be pre-defined. So a robot can not anticipate
the consequences of its actions neither the consequences of its team mates actions. A system
with multiple robots using reactive decision systems behave much more like a bunch of in-
dividuals than a team. Robots using this kind of tools usually show very primitive behaviors,
and are not able to accomplish non-trivial goals on complex, dynamic, and incomplete do-
mains. On the other side, we have deliberative systems, which make decisions based on more



sophisticated tools, like a logical engine. These systems have many advantages over reactive
ones. They have more expressive power, in the sense that they allow us to model things about
the world that reactive systems cannot. A deliberative system can decide based upon past ex-
perience and by predicting future consequences of its actions. The system may even act and
decide in a way that was not predicted by the designers, but that is actually valid and efficient
in order to achieve the goal.

Of course, this advantage does not come for free. Deliberative systems are computation-
ally heavy. A logical engine may need hours to make a single decision. CPU and memory
usage cannot be underestimated for this kind of decision systems, even more in real-time
domains. A robot cannot be stopped for hours (or even minutes, and, sometimes, not even
seconds) tothink what to do next. It must be permanently making decisions, and acting ac-
cordingly.

How can we take advantage of both kinds of systems? How can we make intelligent
decisions, and, at the same time, guarantee that the robot will act in real time? A possible
solution is an hybrid architecture [2]. With this architecture, we have both systems working
in parallel, independently. The system uses, normally, the decisions made by the deliberative
component. But, when the deliberative component takes too long to decide or an unexpected
event happens, it uses the decision made by the reactive component. That decision is not as
good as the one provided by the deliberative component, but it is better than doing nothing.

In this paper a decision system for a team constituted by several robots is described. The
system uses logic to choose the most suitable action in order to accomplish a pre-determined
goal. The paper structure is as follows: in section 2 the RoboCup domain is described; section
3 presents the proposed architecture and a detailed description of its components, and in
section 4 we present some results and, in section 5, some conclusions and future work.

2 RoboCup Domain

Our application domain is the middle-size RoboCup soccer league1. A middle-size league
team is constituted by four robots (generally, three field players and one goal-keeper). The
robots diameter is about 40 cm, and the game is played on an (approximately) 10x5 meters
field. The robots may communicate via Wireless Ethernet, and may also send information
to a computer (external to the game) for monitoring and debugging purposes. According to
the RoboCup rules, the external computer may send data or commands to robots, but the
fundamental law of our team is that robots should be completely autonomous. So, our robotic
team only relies on information gathered from on-board sensors.

The domain is very incomplete: it is really hard for a robot to have a complete representa-
tion of the world, because sensors are not perfect and have limited range. The domain is also
very dynamic: all robots are moving, the ball keeps moving around the field, so there are a
lot of things happening at the same time.

All these characteristics make the middle-size RoboCup league a very interesting and
challenging domain for AI. In the next section we shall describe a functional decision-making
architecture developed for tackling some of these problems. It is being applied and tested on
a soccer robotic team composed of four Nomadic SuperScout II robots.2

1http://www.robocup.org
2http://socrob.isr.ist.utl.pt



3 Architecture

The hybrid architecture developed for our team, that enables us to use deliberation and reac-
tiveness, is presented in Fig. 1.
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Figure 1: Hybrid Architecture.

This architecture is composed by several components, from which the most important
ones are: World Representation, Reactive Component, Deliberative Component and Behavior
Selection.

3.1 Behaviour Decision

This is the most important set of components for our work, where the robot behaviour is de-
cided. It is easy to find a close resemblance with the generic hybrid architecture described in
[2], with Reactive and Deliberative Components generating decisions that will be processed
by the Behaviour Selecion component. The behaviors are then executed by the Control com-
ponent.

3.1.1 Reactive Component

The reactive component has two main purposes: to guarantee a quick, real-time decision to be
executed by the robot, and to react to unexpected events. For example, imagine one wants to
take a glass of water to a friend. Her brain generates a plan (going to the kitchen, opening the
cabinet, picking up a glass, filling it up with water, etc). If an unexpected event occurs, like
dropping the glass, she does not wait for a new plan... she just tries to catch the falling glass
[8]. On our domain, such things may happen very often: if a robot has the ball and plans to



take it to the goal, and score, it needs to react to an unexpected event (like an opposite robot
taking the ball away from it, the robot loosing the ball, or bumping against another robot).

Until the work presented here, decision-making within our robotic soccer team was per-
formed by a reactive system implemented as a state machine. This solution worked fine for
a reduced number of behaviours and simple behaviour switching. When we started to design
and implement more behaviours and, consequently, more sophisticated behaviour switching,
we soon realized that state machines were not an adequate tool for our problem. State ma-
chines have a very serious practical problem: complexity. If you try to model a complex
behaviour with a state machine, you will quickly get dozens or even hundreds of states, with
a large number of arcs among them. It is easy to make errors (like deadlocks), and hard to
read, understand and modify a state machine that big.

The first step of this work was to replace the state machine by a logic-based decision
system, calledBasic Logic Decision Unit(BLDU). This component, supported on first-order
logic statements, allows us to easily model the reactive behaviour of the robot. The BLDU
runs in a cyclic manner, and at each iteration it executes some operations related to the deci-
sion process and the world modeling. First, it broadcasts the status of the robot to its team-
mates. This includes the player role and the play mode (playing, paused, going to start posi-
tion, etc). Then, it checks if it needs or wants to change its role. Finally, it decides the next
behaviour to be executed (going to some place on the field, taking the ball to goal, etc).

The decision process is based on a set of Prolog3 rules, constituted by a set of pre-
conditions, that must all be true in order for that rule to be applied. The set of rules of the
BLDU has a pre-defined order, in the sense that the first rule following that order that has all
pre-conditions true will be the one used to make a decision (the consequence of the rule). A
pre-condition is anything that can be represented by a logical formula, like having the ball, or
being inside a pre-determined area of the field. In Fig. 2 there are two examples of rules used
in BLDU. The first one is related with the defender role. This rule tells the control component
to move the robot to a specific position on the field (given by X, Y, Theta) and it is applied if
the robot is playing, it sees the ball but does not have it, the ball is outside the defenders zone,
the robot is not near the position where he wants to go (a simple hysteresis), and there is not
another robot in that position.4 The second rule is related to the attacker, and tells the control
component to score if the robot is playing, if the ball is in the attacker zone, if the robot can
see the opposite goal, if it sees and have the ball, and if it is near the goal. This way, it is very
easy to design new behaviors, simply by adding new rules to the system. The designer just
needs to be careful with the rules precedences. This is clearly an easier system to work with,
compared to the state machine.

One good example of the simplicity and power of the BLDU is the management of player
roles. We defined three roles for our players: attacker, defender and full player. An attacker
robot remains on the attacker midfield and tries to receive or get the ball, take it to the goal
and score. A defender keeps itself between the ball and its goal, trying to intercept a possible
shoot. Also, it tries to get the ball if the ball enters the defensive midfield. The full player role
is used when, by some reason, there is only one player on the field. This player simply tries
to get the ball, wherever it is, take it to the goal and score. It would be very hard to model

3The choice of the Prolog Language with it’s backtracking inference system was based on the following
facts: there are more start states than goal states; the branching factor is smaller if the search starts by the
goal; and because the reasoning is triggered by a query and not by the appearance of new facts. All this makes
backward inference more suitable for our application than forward inference.

4defenderTrackBall is a function that calculates a position between the ball and the robots goal.



basicBehaviour( goGeneric, Generic, X, Y,
Theta, defender) :-
  currentMode(play),
  visionSeeball,
  \+ hasBall,
  ballOutDefenderZone(now),
  plGetGenericConst(Generic),
  defenderTrackBall(X, Y, Theta, now),
  \+ xyInSideMargin(X, Y),
  \+ plRobotInPosition(X,Y).

basicBehaviour( score, 0, 0.0, 0.0,
0.0, attacker) :-
  currentMode( play ),
  \+ ballOutAttackerZone(now),
  \+ stateFinished( score ),
  visionSeeOthergoal(true),
  visionSeeball,
  hasBall,
  nearGoal.

Figure 2: Two example rules of the Basic Logic Decision Unit.

all these behaviors with a state machine, but it would be even harder to switch roles in real
time, like BLDU does. This dynamic role switching is also an example of the the kind of
cooperation we intend to develop with our architecture.

As stated before, the robot keeps checking if it needs or wants to switch roles. The need
comes from two situations: if a robot stops playing (for instance, due to a referee decision, or
a software crash), or if another robot decides to change its role. In the latter case, it may be
necessary to switch roles in order to keep the strategy of the team. For example, if the team is
playing with 2 attackers and one defender, and if the defender decides to switch to attacker,
one of the attackers (and only one) will switch to defender, and take its teammate position.
But when the robot decides it wants to change roles? Imagine a defender in a situation that
the ball enters the defensive midfield. It will try to approach it, and take it to the opponent
goal. But, trying to score a goal is an attacker’s task, and, moreover, it would leave the team
with no one protecting the goal. So, one of the teammates will switch to defender and go back
in the field, protecting the goal again. The old defender may stay an attacker after a possible
shoot to the opposite goal, it doesn’t need to return to its old position and loose time and
battery power.

3.1.2 Deliberative Component

TheAdvanced Logic Based Unitis the next step of our work. The ALBU is based on situa-
tional calculus [7][4], and on a planning system. The goal of this component is to determine
plans (sequences of behaviours) that allow the team to achieve something (like scoring on
the opposite goal). Situational calculus is an extension to first-order logic, specially devel-
oped to handle dynamic worlds. The changes in the world are the results of actions, that have
pre-conditions and effects.

The development of the Advanced Logic Based Unit will be made in Golog [6], a lan-
guage built on top of Prolog with the purpose of programming intelligent robot behaviour.
This language allows us to use situation calculus in order to produce plans. We will study
two forms of team planning: distributed planning and multi-agent planning. The first uses the
resources of every robot to build acluster, used to produce a plan. The second solution, more
elegant, considers every robot as an individual, that proposes a plan. The final plan is built
after some negotiation among all the robots.



3.1.3 Behavior Selection

Behaviour Selection (BS) will choose between the decisions produced by DC and RC. It is
also the component that handles a plan execution and checks if it is still valid. If a plan is no
longer valid (due to an action pre-condition being no longer true), it will discard the plan and
use the reactive decision. This way, the robot may actually react to an unexpected event.

3.2 World Representation

The World Representation Component (WRC) is responsible to build a world model using
sensorial data. From the sensory inputs and the static information about the game, the WRC
builds the game model, that consists of basic information, like ball position and players pos-
tures, and advanced information, such as cooperative decisions. The variables used to define
the world model are stored in a Blackboard. The Blackboard is a data pool accessible by sev-
eral components, used to share data and exchange messages among them. Traditional black-
boards are implemented by shared memories and daemons that awake in response to events
such as the update of some particular data slot, so as to inform the components requiring that
data updated. Some data of the blackboard islocal, meaning that the associated information
is only relevant for that robot, but other isglobal, so its update must be broadcasted to the
other teammates (e.g., the ball position) [5].

The cooperation is divided in a high-level cooperation and a low-level cooperation. The
data related to the former is stored in the Blackboard, and consists ofGroup-LevelandTeam-
Level Tactics, that can be viewed as analogues of the coach’s directives in real soccer. The
Group Level Tacticsdefines tactical parameters for the different player groups: defense, mid-
field and attack. For instance, a good defensive tactic is to form a defensive line with the
goalkeeper to block all paths to our goal. TheTeam-Level Tacticsset general tactical condi-
tions of the whole team. Parameters as basic formation, e.g. 2 defenders - 1 attacker, if we are
in a defensive play, or 1 defender - 2 attackers, if we are in an offensive play. With our deci-
sion system, we may switch roles in real time, doing a better teamwork than just having fixed
roles. The low-level cooperation data is outside the blackboard because it is a commitment
between the robots that are involved in a cooperative action, e.g. when a robot tells another
teammate to move to a certain position, in order to be able to receive a pass.

The remaining question is how the world representation is related with a knowledge base
used by the inference engine. In fact they are very different in the sense that the world repre-
sentation keeps numerical values, like ball position and team mates position, contrariwise the
logic knowledge base contains beliefs that the robot (agent) has about the world. Each time
the world representation is updated, the beliefs should be changed accordingly. We have to
maintain a link between the world representation values and the knowledge base.

4 Results

In order to compare the BLDU with the state machine, we performed the following test: the
robot starts facing the opposite goal, near the penalty mark. The robot must go back to the
middle of the field, get the ball, return to the opposite goal and score. We applied this test ten
times using each system (logic based decision system and the original state-machine decision
system). The results are on Table 1.



Table 1: Average results for the tests using both decision systems.

Decision Ball Path Time Ball
System Losses Length (m) (s) Out

Logic 0.8 9.28 30.5 0.2
State Machine 0.7 9.40 33 0.1

Not surprisingly the results obtained are similar for both systems, since the control unit
is the same. For the robot performance on this test, the control unit is much more important
than which tool is used for behavior switching. The logic-based system has showed to be fast
enough (even a little faster than the state machine) to handle the low-level control problems,
like behavior switching, with the right timings. So, we concluded that the BLDU may replace
the state machine without negative consequences, and leave room to many improvements like
the one described next.

Another result obtained within this work is the importance of playing as a team. Figure
3.a and 3.b shows the difference of playing with roles and without roles. The robots using the
logic architecture maintain a formation in the field. In Figure 3.a, while the black robot takes
the ball to the goal, the grey one stays at the defence between the ball and his goal in order
to protect it. On the other hand, Figure 3.b shows the behavior without using roles. The black
robot takes the ball to the opponent’s goal and the grey robot gets lost in the field. Using a
dynamic role change we get a team formation during the game. Figure 4 shows a dynamic
change during the game, when the black robot (defender) catches the ball at the defence and
takes it to the opponents goal, the grey robot (attacker) switches to defender to replace his
teammate.

Figure 3: Robots behaviour with the new architecture (a) and the old one (b).

5 Conclusions and Future Work

The work done so far on the BLDU revealed how fast and simple is to model a robot high-
level behaviour using a logic based system. With a few lines of code (no more than a printed
page), we could make the robot behave as if it was being controlled by the state machine, even
a little better. We created a reactive decision system with practical results way better than the
state machine, while keeping the system simple, easy to modify and improve, contrariwise to
what happens with the state machine. Also, we have concluded that the cooperation among



Figure 4: Dynamic role change.

the robots has showed itself very useful, delegating different tasks to each robot and keeping
them working together to achieve the goal more easily.

Future work includes the development of the deliberative component of our architecture
based on situational calculus. We will also improve the world representation by translating
the perceived world status to a symbolic representation with the right characteristics needed
to build versatile inference system.
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