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Abstract:

This paper presents a study on two kinematic structures for dynamically stable biped
locomotion. The two legs, each with three degrees of freedom, are connected through
a rigid waist. The dynamics of both structures is modelled by partitioning the six dof
kinematic chain in a 3 dof supporting leg and a 3 dof balance leg. A low complexity
model is obtained by simplifying the dynamics of the balance leg not accounting for
rotational dynamics. It is shown that the overall model produces good results under
the point mass assumption for each link and a standard robust control algorithm.
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1. INTRODUCTION

Biped robots are currently a hot research topic in robot-
ics. State of the art bipeds are close to the point where
they can be used to replace humans in a variety of tasks
taking place in environments designed for humans (as
the typical industrial environment). Legged locomotion
is characterized by the existence of multiple sets of
ground contact points that generate identical postures.
This characteristic is specially useful in irregular terrains
as the robot posture is less constrained by the obstacles
(if one set of ground contact points is not feasible due
to an obstacle then it is, in general, possible to use
alternative sets) as opposed to wheeled locomotion with
its fixed contact points that can not avoid obstacles.
Biped robots combine the flexibility of legged locomotion
with a small number of ground contact points (simplify-
ing the design of locomotion strategies) at the expense
of added difficulties in motion stability. Furthermore,
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biped robots are socially relevant as they can be used
to develop new artificial limbs for the handicapped.

Biped robots are usually studied aiming at emulating
human like locomotion capabilities, (Gill A. Pratt, 2000;
Youji Nakajima et al., 2000; Atsuo Takanishi et al.,
1990), although animal biped locomotion deserved also
some attention, (J. Pratt and G. Pratt, 1998). Human
locomotion is characterized by two distinct phases: the
swing phase and the double support phase. In the swing
phase, one foot, the supporting foot, is fixed on the
ground, whereas the other foot, the balance foot, swings
forward fast enough to avoid tip over. When the balance
foot hits the ground, starts the double support phase.
In this phase both feet are on the ground and exchange
roles, with the supporting foot becoming the balance
foot for the new step. The double support phase ends
when the balance foot leaves the ground.

One of the main issues in biped locomotion is stability.
Static stability requires that the biped be stable in any
static configuration and its measure depends exclusively
on position data. The complementary concept is dy-
namic stability which requires that the biped does not
fall down while walking, without being concerned with
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the stability at each point of the trajectory. Dynamic
stability measures depend also on velocity data. To cir-
cumvent dynamic stability issues, some biped structures
have counterweight devices. In humans, this counter-
weight role is performed by the upper body, including
arms and trunk. The structures considered in this paper
have a small number of degrees of freedom (dof) when
compared with the kinematics of a human body. Small
dof biped structures are simple to model and build,
though requiring, in general, more sophisticated control
techniques. Furthermore, the reference motion needs to
be carefully chosen to achieve dynamic stability.

Two kinematic structures are considered in this paper,
both composed of a pair of legs connected through a rigid
waist. No counterweight devices are used. The bipeds
move only on the sagital plane and in an obstacle free
environment. The point mass assumption greatly sim-
plify the dynamic models. Nevertheless, it remains as a
valid hypothesis for realistic modelling if the masses and
physical dimensions of the links involved are carefully
designed. Furthermore, for the considered structures, the
point mass assumption avoids lateral stability problems
and hence the overall stability can be controlled by a
trial-and-error procedure on the step size.

The dynamic models of both structures were obtained
using the Newton-Euler iterative algorithm, (J. Craig,
1989), with the coupling between legs being aproxi-
mated by the motion of a rigid body. Structures simi-
lar to the ones considered in this paper are presented
in (Ching-Long Shi, 1999), using prismatic joints and a
counterweight mass, and in (Eturoo Igarishi and Tooru
Nogai, 1992), using revolution joints without a waist.
Alternative kinematic structures, using counterweight
devices to improve stability, are reported in (Ching-Long
Shi, 1999; Atsuo Takanishi et al., 1990; C. Chanchai
and C. Prabhas, 2001). Human body replica structures
are reported in (Gill A. Pratt, 2000; Youji Nakajima et
al., 2000; J. Pratt and G. Pratt, 1999).

The remainder of this paper is organized as follows.
In Section 2 the two kinematic structures considered
are described. The corresponding dynamic models are
presented in Section 3. In Section 4 simulation results are
presented for motion along the sagital plane in obstacle
free environment. Finally, Section 5 concludes the paper
and presents directions for further research.

2. KINEMATIC STRUCTURES

The two different kinematic structures considered have
two legs and a rigid connecting waist. Given that the
biped locomotion considered in this paper is constrained
to the sagital plane, the legs need only to move in this
plane and hence each of them has a planar structure.

The kinematics of the first structure is illustrated in
Figure 1. All the joints are of revolution type. Each leg
has three joints (all of them actuated), identified with
the human leg: hip joint, knee joint and ankle joint.

In the second structure, the knee joint is replaced by
a prismatic joint. The corresponding diagram is shown
in Figure 2.

Fig. 1. Structure 6R

Fig. 2. Structure RPRRPR

In the 6R structure the three joints are used to position
and orientate the foot, whereas in the RPRRPR struc-
ture the knee joint is used only in positioning the foot
with the ankle joint used mainly for the foot orientation.
For this reason, specifying a reference motion for the
structure RPRRPR is simpler than for structure 6R.

With a single foot on the ground, both structures are
statically unstable, meaning that they loose balance and
tip over if kept long enough in an unstable configuration.
To overcome this difficulty, additional dof allowing the
motion of the legs, and hence of the center of mass of
the robot in the transversal plane, can be used, (Youji
Nakajima et al., 2000). To avoid high torques in the hip
joint, balance masses moving in the sagital plane are also
used to move the center of mass of the robot, (Ching-
Long Shi, 1999; Youji Nakajima et al., 2000; C. Chanchai
and C. Prabhas, 2001). Balancing strategies may require
elaborate mechanical structures to accomodate the cor-
responding sensors and actuators. The dynamics model
reflects this added mechanical complexity by increasing
the importance of nonlinear terms. Furthermore, balance
masses tend to be important when compared with the
rest of the structure, and hence actuators in the raw
locomotion structure are required to generate increased



power, e.g., the upper body in humans, where the bal-
ance dof lie, represents an average of 50% of the total
mass.

3. DYNAMICS

Legged locomotion is characterized by the leg-ground in-
teractions occuring at sparse instants of time. In general,
for statically stable robots, the interactions occuring at
leg taking off and landing can be safelly ignored in a
dynamics model, this not being the case when large
energy transfers are involved. However, for statically
unstable structures, such as the ones in this paper, even
low power leg-ground interactions propagate throughout
the whole structure and therefore must be taken into
account when designing the control system as they may
not yield a robust walking, (Yasutaka Fujimoto and At-
suo Kawamura, 1998). Assuming that no slippage occurs
between the feet and the ground, the relevant leg-ground
interaction takes place during the double supporting
phase at every impact on the ground.

3.1 Modelling of the two structures

The modelling of each of the structures takes advantage
from the fact that both are serial kinematic chains
and hence standard procedures on the kinematics and
dynamics modelling of serial manipulators can be used
(6-dof serial manipulators for each of the structures
considered in the paper). This procedure identifies the
base of the manipulator with the support foot and the
end-effector of the manipulator with the balance foot.
The impact and ground reaction forces are modelled as
external forces acting on the tip of the manipulator, i.e.,
the balance foot.

To obtain the dynamics model for robotic manipulators,
the Newton-Euler or the Lagrange methods are com-
monly used. For manipulators with more than three dof,
these methods lead to expressions for the dynamic model
that may be hard to analyse, (Carlos Canudas de Wit et
al., 1997).

To overcome the difficulties in obtaining the dynamics
model for the 6-dof serial structures, a partitioning strat-
egy schematically represented in Figure 3 is proposed.
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Fig. 3. Biped modelling through partitioning

This strategy considers each of the structures as being
composed by three separate components. Both legs can

be modelled as serial 3-dof manipulators. For the sup-
porting leg, the base and tip of the serial manipulator
are identified, respectively, with the supporting foot and
the waist. For the balance leg, the base is identified
with the waist whereas the tip is identified with the
balance foot. The influence of the supporting leg on the
balance leg is accounted by setting: (i) the linear and
angular acceleration of the base of the balance leg equal
to the linear and angular acceleration of the tip of the
supporting leg (the waist is assumed to be a rigid body),
(ii) the mass of the tip as the sum of the masses of the
waist and balance leg, and (iii) the center of mass of the
tip as the composition of the centers of mass of the waist
and of the balancing leg.

At each time instant, the supporting leg sees the balance
leg as a rigid body, not accounting for the corresponding
rotational dynamics. The forces/torques acting on the
tip of the supporting leg are computed straight from
those acting on the balance foot. The dynamics of the
balance leg tends to be relevant for some combinations
of the masses (distribution and value) and of the length
of the links. For instance, a long balance leg tends to
generate a large torque at the waist, thus requiring the
adequate reaction from the controllers in the joints of
the supporting leg to avoid excessive rolling.

Regardless of this oversimplification, this strategy has
the non negligible advantage of reducing the complexity
of the dynamics model. As already referred, the use
either the Newton-Euler (the technique used in this
paper) or the Lagrange formulations to express the
exact dynamics of a 6-dof kinematics chain leads to
complex expressions. Under the point mass assumption,
the lateral stability of both structures is easily verified
as the involved torques have no sagital component.
The overall stability can thus be reduced to the sagital
stability which in turn can be controlled by setting the
step size to a small enough value.

3.2 Modelling impact and ground reaction forces

In the double supporting phase, both legs support the
robot. Depending on the motion of the joints while in
this phase, the ground reaction felt by each foot changes.
Note that in a serial manipulator not subject to any
external forces the ground reaction occurs only at the
base and is constant, assuming no changes in the weight
of the manipulator. Figure 4 shows how to compute the
ground reaction force,

−→
R2, acting on the balance foot.
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Fig. 4. Ground reaction modelling (identical for both
structures)



In the double supporting phase, the only forces acting
on the robot center of mass are the gravity and the
ground reaction forces. Assuming that the robot is in
equilibrium, the resulting torque acting on the robot is
zero. These conditions are expressed by (1), where M is
the robot total mass, −→g is the gravity acceleration and
−→
R1 and

−→
R2 are the ground reaction forces represented in

Figure 4.

−→
R1 +

−→
R2 = M−→g ,

−→
P2 ×

−→
R2 +

−→
P1 ×

−→
R1 = 0 (1)

The balance phase ends with the impact of the balance
foot on the ground. During this phase the robot is falling
as it is statically unstable (in both structures). If not
properly controlled it may not be able to gently place
the balance foot on the ground (and thus not minimizing
the perturbations that will be induced in the whole
structure). In general, the ground has some complacency
meaning that, on impact, the balance foot does not
stop immediately. The impact forces are modelled by
elastic systems, arranged as in Figure 5 where K1 and
K2 are the elastic spring coeficients and −→v impact is the
impact velocity vector. The severity of the impact can
be modified acting on the spring constants. This model
is exclusively used to compute the impact forces and not
the ground reaction forces.

Balance leg

z

Y
x

K1

K2

base

foot

Vimpact

Fig. 5. Impact forces model

The impact forces acting on the balance foot are de-
scribed by

−→
F impact = (∆xK2, 0, ∆zK1)

if ∆x 6= 0 ∨ ∆z 6= 0
(2)

where ∆x and ∆z are the displacements of the foot
on impact. The total generalized forces acting on the
balance foot are thus

−→
F ext =

{−→
F impact +

−→
R2 if foot on the ground

0 otherwise
(3)

4. EXPERIMENTAL SIMULATION RESULTS

The dynamics model obtained from the application of
the standard iterative Newton-Euler algorithm, together
with the simplifying assumptions and the models for the
ground reaction and impact forces described in Section
3, was simulated in Matlab. The reference trajectories
for each of the joints in the robot were synthesized from
the kinematics model motion that generates human like
locomotion.

Table 1 shows the physical parameters data for both
robots.

Dimensions (cm)

L1 = 15.5 Lp = 4

L2 = 15.5 W = 25
L3 = 10 d0 = 30

Body Links Mass (Kg)

Legs waist-knee 0.5

knee-foot 0.5
foot 0.5

Waist 0.5

Table 1. Robot dimensions and weight.

For the presented experiments, the step size is 0.1m
and the planned duration is 0.1s. This relatively fast
motion (1 m/s) is imposed by natural static instability
of the simple kinematics of both structures, requiring the
balance foot to reach the floor as quickly as possible to
prevent the robot from falling down.

For each leg, a 3-state automaton chooses the control
mode according to the actual phase of the system:
supporting, if the leg is in the supporting phase, balance,
if the leg is in balance phase or double supporting
if both feet are on the ground. The duration of the
double supporting phase is determined by the need to
stabilize the robot when both feet are on the ground.
Stabilizing periods are required at the begining and end
of the motion, and in the interval between the end
of a step and the begining of a new one (note that,
a standing up 6R structure biped robot resembles a
double inverted pendulum like dynamics). At each of
the states, a continuous time standard partitioned robust
controller, (Carlos Canudas de Wit et al., 1997), is used
to generate the control for the actuators in the joints.

Figure 6 shows the motion of the robot over time using
a stick diagram (each link is represented by a line) for a
set of 4 steps. The diagram shows the biped motion with
the dynamics model described in the previous sections.

In the initial stage of the step, after an initialization
procedure, the robot lifts the balance leg, bending the
knee, while the supporting leg starts pushing the waist
forward. In the second stage, the supporting leg contin-
ues to push forward while the balance leg further extends
the hip link and unwinds the knee forward. In the last
stage, the robot places the balance leg on the ground,
recovers the original height of the waist and stops for a
period of time long enough to recover from the impact
of the balance foot on the ground and to achieve a stable
posture (an empirical 25% of the step duration was used
in the experiments). After this, a new step begins with
the roles of the support and balance legs interchanged.

For the revolution structure, Figure 7 shows the torques
applied by the joint actuators at the support and balance
legs. The robot is switched on at t = 0 while in double
support mode, with both legs in the upright position
(the initial step position). An initial 0.05s time interval
is used to achieve a stable posture. The torques of the
hip joints in both legs show a transient behavior lasting
for about 0.01s. For the balance leg, the knee joint also
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Fig. 6. Stick diagram for the 6R structure locomotion

exhibits a transient behavior whereas the supporting leg
knee is almost not affected.

The step motion starts at 0.05s and the torques in Figure
7 show, roughly, four relevant time slots, corresponding
to the intervals 0.05 to 0.075s, 0.075 to 0.1s, 0.1 to 0.13s
and 0.13 to 0.15s.

During the first interval, the supporting leg rotates
slightly to push the robot forward, this motion being
made, mainly, by the ankle and hip joints. The balance
leg starts raising and hence the hip and ankle joints in
the supporting leg must counteract the tendency for the
robot to tip over, this justifying the negative torques.
During this period the knee motion is limited to a slight
bend. Given this limited motion, the ankle joint “sees”
the remaining of the robot almost like the hip joint and
hence the similarity of their respective torques. The raise
of the hip by the balance leg is followed by the bending
of the balance knee, so that there is enough space for the
robot to account for the forward motion due to gravity.
While in the air, the balance foot is not influenced by
any external forces/torques and therefore the dynamics
of the hip joint is similar to that of the knee joint leading
to similar patterns for the joint torques (the difference in
the sign being due to the opposite rotations performed
by each of them).

During the interval 0.075 to 0.1s, the supporting leg
effectively pushes forward the whole structure, whereas
the balance leg moves forward, extending its knee (pre-
viously bended) and preparing for the impact with the
ground. During this period, the hip joint in the balance
leg moves forwards and backwards to compensate the
gravity motion.

During the third interval, the supporting leg extends
itself slightly further whereas the hip joint in the balance
leg pushes the whole leg down. The negative torque
shown by the knee joint does not indicate the bending
of the knee. Instead, it shows the reaction of the knee
control system to the pushing down of the hip joint to
control the fall of the robot.

During the interval 0.13 to 0.15s, both feet are on
the ground. The reaction forces applied at the time of

the ground impact lead to the large torques shown for
the supporting leg mainly because: (i) it occurs earlier
than expected (due to the approximations made on the
dynamics model) and (ii) at that time the leg was still
pushing forward opposing to the ground reaction forces.
To help the waist recovering the original height, the knee
in the balance leg slightly bends from its landing position
while the ankle compensates by slightly extending its
foot.

Figure 8 shows the forces applied by the prismatic actu-
ators in the RPRRPR structure. The torques values for
the hip and ankle joints are similar to the corresponding
ones in the 6R structure and hence their interpretation is
herein ommited. As before, the experiment time horizon
is divided into four intervals following an initialization
period.

During the initialization period, the support and bal-
ance knees generate constant forces of similar value and
opposite signs (the support knee pushing up and the bal-
ance knee pushing down to compensate for the ground
reaction force). In interval 1, the balance knee starts
shortening its length to help raising the balance leg. The
support knee exhibits a slight reaction to the motion
of the balance knee. The small glitches aroung 0.065 s
are caused by the balance foot leaving the ground. In
interval 2, the balance knee decreases the speed of its
upward motion and the support knee is still showing its
reaction to the upward motion of the balance knee. In
interval 3, the balance knee starts moving down whereas
the support knee reacts to this motion from the balance
knee. In interval 4, the balance leg starts decreasing
the speed of its downward motion, preparing for the
touchdown that occurs at, approximately, 0.13 s, and
causes the small glitches in the torque. The support
knee still shows a similar pattern of reaction to the down
motion of the balance knee.

Note that, during the balance phase, the force in the
balance leg knee is much higher than the force necessary
in the supporting phase. This is mainly due to the strong
coupling between the revolution joints of the hip and
ankle, but also to the required fast lifting and lowering
of the foot.
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Fig. 7. Structure 6R - Joint torques

5. CONCLUSIONS

The two structures presented, though mechanically sim-
ple, cannot stand on only one foot, i.e., are statically
unstable. For this reason, all the motions performed with
only one foot on the ground must be fast, to prevent the
robot from falling down. Because the robot moves at a
relatively high speed, the actuators must be powerful
enough to provide high torques/forces at high speeds.
However, the values obtained from the simulation ex-
periments can be matched by commercial off the shelf
actuators, even in terms of mass. This means that both
structures can be physically implemented.

Given the simplifying assumptions, the proposed dy-
namics modelling strategy is not exact. This caused the
difference between the expected (i.e., defined by the
reference trajectories) and the obtained step duration.
However, the simulation results show that a standard
partitioned robust control system was able to overcome
most of the effects of the modelling errors (e.g., the
reaction of the supporting leg to the motion of the
balance leg to avoid excessive roll over) and provide a
stable walking.

Since the motion specification for the RPRRPR struc-
ture is less restrictive, the movements of the hip and an-
kle joints of this structure have smaller amplitudes than
those of the 6R structure. Therefore, for implementation
purposes, the prismatic structure is preferred.

Further work includes (i) the assessment of alternative
robust control strategies, e.g., using neural networks as
in (D. Katić and M. Vukobratović, 2003), for the very
simplified modeling scheme considered, (ii) studying the
analytical stability for these structures without the point
mass assumption, (iii) testing the inclusion of additional
joints in the legs to improve the locomotion capabilitites,
namely in what concerns different terrain types, (iv)
adding a balance structure to improve the static stability
of the structures, and (v) testing alternative reference
trajectories used to generate the human like walking
behavior aiming at obtaining smaller torques.
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