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Abstract. In this paper, the problem of determining if a population of
mobile robots is able to travel from an initial con�guration to a target
con�guration is addressed. This problem is related with the controlla-
bility of the automaton describing the system. To solve the problem,
the concept of navigation automaton is introduced, allowing a simpli�-
cation in the analysis of controllability. A set of illustrative examples is
presented.

1 Introduction

Robotic navigation is a central topic of research in robotics, since the ability that
a robot has to accomplish a given task may greatly depend on its capability to
navigate in the environment. The related literature presents numerous works on
the subject, and proposes di�erent navigation strategies, such as Markov Models
[1], dynamic behaviours [2] or Petri Nets [3].

In the last decades a great e�ort has been addressed to the subject of multi-
robot systems. A common approach to the multi-robot navigation problem is the
extension of known strategies for single robot navigation to the multi-robot case,
for which there are several examples presented in the literature [4]. However, in
the multi-robot navigation framework, new topics of investigation emerged, such
as cooperation and formation control or �ocking [5].

In this paper, the problem of multi-robot navigation is addressed. We analyze
the problem of driving a robot population moving in a discrete environment
from some initial con�guration to a target con�guration. We develop analysis
strategies in order to determine under which situations the target con�guration
becomes non-achievable, in order to prevent those situations. In a previous work
[6], this analysis has been conducted for a set of homogeneous robots(1). This
paper extends those results to a set of heterogeneous robots, i.e., where robots
with di�erent capabilities may intervene.

The robot population is modeled as a �nite-state automaton (FSA) and the
main contribution of this paper is the analysis of the blocking and controllabili-
ty properties of this automaton. Since it models the movement of the complete
1 We consider a set of robots to be homogeneous when all robots are alike, i.e., they
have the same capabilities.
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robot population in the environment, from a start con�guration to given goal
con�guration, properties such as blocking and controllability have direct cor-
respondence with the successful completion of this objective. For example, a
blocking state corresponds to a distribution of the robots from which the desired
goal con�guration is not achievable (because one of the robots has reached a
site from where it cannot leave, for example). Controllability means that such
blocking states are avoidable: it is possible to disable some actions to prevent
the robots from reaching blocking con�gurations.

The results presented in this paper relate the blocking and controllability
properties of the automaton modeling the multi-robot system (which can be a
large-dimension automaton, for complex systems) with the blocking and con-
trollability properties of smaller automata, named as navigation automata, that
model the navigation of each individual robot in the population.

The paper is organized as follows. In Section 2, some basic concepts are in-
troduced and the problem under study is described. Section 3 approaches the
problem of determining the blocking properties of the automaton describing
the system. In Section 4, the results regarding controllability are presented for
generic systems. Section 5 presents a set of illustrative examples. Finally, Sec-
tion 6 concludes the paper and presents directions for future work. The proofs
of all results in Sections 3 and 4 can be found in [7].

2 Navigation Automata and the Multi-robot system

In this section, some basic concepts regarding automata are introduced and the
notation used throughout this paper is described.

Notation regarding automata [8]:
An automaton Q is a six-tuple Q = (X, E, f, Γ, x0, Xm), where
� X is the state space;
� E is the set of possible events;
� f : X × E −→ X is the transition function;
� Γ : X −→ 2E is the active event function;
� x0 is the initial state;
� Xm is the set of marked states.

The languages generated and marked by Q are denoted, respectively L(Q) and
Lm(Q). An automaton is called unmarked if Xm = ∅.

An automaton Q is said to be non-blocking if Lm(Q) = L(Q) and blocking if
Lm(Q) ( L(Q).

A set XC ⊂ X of states is said to be closed if f(x, s) ∈ XC , for any s ∈ L(Q)
and x ∈ XC . A blocking automaton veri�es XC ∩Xm = ∅.

The Problem Consider a system of N robots, moving in a discrete envi-
ronment consisting of M distinct sites. This is referred as a N -R-M -S situation
(N robots and M sites) or a N -R-M -S system. The set of sites is denoted by
S = {1, . . . ,M}.

Generally, when in site i, a robot will not be able to reach all other sites
in a single movement. The function Ωk : S → 2S establishes a correspondence
between a site i and a set Si ⊂ S of sites reachable from i in one movement of



robot k. If j ∈ Ωk(i), then, for robot k, site j is adjacent to site i. Function Ωk

is called the adjacency function for robot k.
This paper addresses the problem of driving the robots from an initial con-

�guration CI to a �nal or target con�guration CF . The set of sites containing at
least one robot in the �nal con�guration is denoted by ST . The sites in ST are
called target sites. From the point of view of �nal con�guration, no distinction
is made among the robots, i.e., it is not important which robot is in each target
site.

Navigation Automata A robot k moves in the environment de�ned by the
topological map according to its own adjacency function and is described by
an unmarked automaton Gk = (Yk, Ek, fk, Γk, y0k). Yk is the set of all possible
positions of robot k, verifying Yk = S. Ek is the set of all possible actions for
robot k. Actions consist of commands leading to the next site for the robot to
move to. Since all robots have the same event space, to avoid ambiguity, action
i issued to robot k is denoted by Gok(i), where i is the next site for the robot k.
Therefore, all events in the system correspond to movements of the robots. It is
assumed that only one robot moves at a time. The active event function Γk when
robot is in state i corresponds to the sites reachable from i in one movement.
This means that Γk = Ωk.
De�nition 1 (Navigation automaton). Given a robot k moving in a discrete
environment consisting of M distinct sites, the navigation automata for this
robot are the marked automata Gk(Ym) = (Yk, Ek, fk, Γk, y0k, Ym), where:
� Yk, Ek, fk and Γk are de�ned as above;
� Ym is a set of target states, Ym ⊂ ST .

In the case of a homogeneous set of robots, in which Ω1 = . . . = ΩN , all Gi

are alike, except for the initial condition y0k. In this situation, when the initial
condition is clear from the context or not important, a navigation automaton
will simply be denoted by G(Ym) = (Y, Em, fm, Γm, y0, Ym).
2.1 The Multi-Robot System

If there are no constrains on the number of robots present at each site, each of
the robots can be in M di�erent positions, and there are MN di�erent possible
con�gurations.

The system of all robots can be described by a FSA, G = (X, E, f, Γ, x0, Xm),
where X is the set of all possible robot con�gurations, yielding, in the most
general situation, |X| = MN . Each state x ∈ X is a N -tuple (x1, x2, ..., xN ) and
xi is the site where robot i is.

Also, there is a set XF ⊂ X of states corresponding to the target con�gura-
tions. Notice that, in automaton G, Xm = XF .

As seen before, robot k has an available set of actions Ek, denoted by Gok(i).
Therefore, the multi-robot system has a set of actions E =

⋃
k Ek, all consisting

of Gok(i) actions.
3 Blocking

Let G be the automaton modeling a N -R-M -S system.
If G is blocking, there is a closed set of states C, called blocking set, such that

C∩Xm = ∅. This, in turn, means that whenever the robots reach a con�guration



corresponding to a state x ∈ C it is not possible to drive them to the desired
con�guration anymore.

Usually, blocking is checked by verifying Lm(G)  L(G) exhaustively. In the
present case, as the system can lead to relatively large automata for not so large
M and N , a more e�ective way to check the blocking properties of G is desirable.
This section addresses this problem.
3.1 Blocking and Navigation Automata

Let G be the automaton modeling a N -R-M -S system. If the system is homoge-
neous, Result 2 of [6] holds.

For a generic (non-homogeneous) system, if G is non-blocking, then so is
each of the navigation automaton Gi, with all target states as marked states.
However, the converse is not true. Theorem 1 follows.
Theorem 1. In a generic N -R-M -S system, for its automaton G to be non-
blocking, all the navigation automata Gi(Ym) must non-blocking, with Ym = ST .
Similarly, if G is blocking, there is at least one i and one target state ym ∈ Ym

such that Gi(ym) is blocking.

Proof. See in [7]. ut

3.2 Blocking Information Matrix
From section 3.1 one can conclude that, generally, it is not possible to determine
the blocking properties of G simply by taking into account the blocking proper-
ties of each navigation automaton individually, since these properties depend on
the relation between them. It is, however, possible to determine whether or not
G is blocking, by comparing the blocking properties of each automaton Gi(ym).

In an N -R-M -S system, let K(m) be the number of robots in target site m
in the �nal con�guration CF . If U ⊂ ST is a set of target sites, de�ne K(U) =∑

m∈U K(m). De�ne as B(m) the number of robots that block with respect to
target site m. If U ⊂ ST is a set of target sites, de�ne B(U) as the number of
robots simultaneously blocking the sites in U . In general, B(U) 6=

∑
m∈U B(m).

If the number of robots blocking simultaneously the sites in some set U ⊂ ST

is such that N−B(U) < K(U), then G blocks, and therefore, N−B(U) < K(U).
This means that there are not enough �free� robots to go to the sites in M . This
condition may be easily veri�ed using the blocking information matrix.
De�nition 2 (Blocking Information Matrix). Given a generic N -R-M -S
system, the blocking information matrix (BIM) BN is a N×N matrix such that
element (k, m) is 0 if Gk(ym) is blocking and 1 otherwise.

Each of the N lines of matrix BN corresponds to a di�erent robot. On the other
hand, if a site m has K(m) robots in the target con�guration, matrix BN will
have K(m) columns corresponding to this site. Matrix BN is easily computed
from the analysis of the navigation automata Gk(ym), and the following result
can be proved.
Theorem 2. Given the Blocking Information Matrix BN for a N -R-M -S sys-
tem, the automaton G describing the overall system is blocking if and only if there
is a permutation matrix P such that PBN has only ones in the main diagonal.

Proof. See in [7]. ut



4 Supervisory Control

In this section, the problem of controllability of G is addressed. The controlla-
bility problem is related to the design of a supervisor S, such that, when applied
to the original system, the resulting system marks some desired language K.

Although the automaton G describing the system already marks the desired
language, in a situation where the automaton is blocking, it is not desirable that
the system reaches a blocking state, since this will prevent the �nal con�gura-
tion to be reached. The presence of a supervisor S in the system under study
will necessarily relate to this situation where blocking must be prevented. It is
important to determine the existence of such a supervisor, i.e., it is important
to determine if the system is controllable.

In the following analysis, the existence of unobservable events is disregarded
even if they make sense from a modeling point of view, as described in [6].
4.1 System Controllability

Consider the automaton G describing a N -R-M -S system, which is assumed
blocking, and suppose that there is a non-empty set of uncontrollable events
Euc ⊂ E. These events may correspond to accidental movements of the robots
which cannot be avoided. If the system is homogeneous, Result 3 of [6] holds.

Consider, now, a heterogeneous system. As stated before, blocking in G is
related to the number of robots �available� to �ll each target site, when con-
sidering blocking sets. Controllability relates with the ability of a supervisor to
disable strings of events driving a robot to a blocking set.

Let Euk ⊂ Ek be the set of uncontrollable events for robot k. It is possible
to include controllability information in matrix BN in order to conclude about
the controllability of G. If Gk(ym) is blocking but controllable with respect to
the language K = Lm(Gk(ym)), then the element (k, m) of matrix BN is set to
−1. This motivates the following and most general form of Theorem 2.
Theorem 3. Given the Blocking Information Matrix BN for a generic N -R-
M -S system, the automaton G describing the overall system is blocking if and
only if there is a permutation matrix P such that PBN has only ones in the
main diagonal.

If G is blocking, but there is a permutation matrix P1 such that P1BN has
only non-zero elements in the main diagonal, then G is controllable with respect
to the language K = Lm(G).

Proof. See in [7]. ut
Observe the relation between Theorem 3 and Result 3 of [6]. In fact, the latter
can be derived from Theorem 3 when the robot set is homogeneous.

5 Examples

We present three examples of the application of Theorem 3 in a simple indoor
rescue situation. Consider a non-homogeneous set of three robots in which:

The Crawler (Cr) has tracker wheels and is capable of climbing and descend-
ing stairs. It is able to open doors only by pushing;

The Puller (Pl) is a wheeled mobile manipulator, able to open doors either by
pushing or pulling. However, it is not able to climb stairs;



The Pusher (Ps) is a wheeled robot, able to open doors only by pushing. It
cannot climb stairs.

The rescue operation takes place in the indoor environment depicted in Figure 1
(e.g., a �re scenario). On the left is the physical map of the place, and on the
right is the corresponding topological map. Each of the robots is described by a
di�erent automaton, as represented in Figure 2.

Fig. 1. Map of the environment.

Fig. 2. Automata for the robots.

The robots will leave Room 1 to assist three di�erent victims, somewhere in
the building. The doors open as shown in Figure 1 which limits the robots access
to the di�erent rooms. When in Rooms 6 or 7, only the Crawler can go upstairs.
Finally, when in Rooms 3 and 4, all the robots may fall downstairs, i.e., events
Gok(6) and Gok(7) are uncontrollable for all k. The following examples illustrate
the practical use of Theorem 3. We determine if there are con�gurations that
prevent the success of a given rescue operation which, in terms of the framework
proposed in this paper, correspond to blocking con�gurations. The situation
where there are victims in sites a, b and c is referred to as the a− b− c Rescue.
5.1 6 − 7 − 8 Rescue

In this situation, the BIM for the system is:

B3 =

−1 −1 0
1 1 0

−1 −1 1

 , (1)



where the lines correspond to Pusher, Puller and Crawler and the columns cor-
respond to target sites 6, 7 and 8, respectively.

Note that both Ps and Cr, once inside Room 8, are not able to leave.
Then, GPs(6), GPs(7), GCr(6) and GCr(7) are blocking. However, by disabling
the events GoPs(8) and GoCr(8), blocking can be prevented and B3(1, 1) =
B3(1, 2) = B3(3, 1) = B3(3, 2) = −1.

If Ps or Pl get downstairs, they cannot go back upstairs. However, they
cannot get to Room 8 without going through Room 4 and eventually falling to
Room 6, which cannot be avoided, since Gok(6) is uncontrollable. Then, GPs(8)
and GPs(8) are blocking and uncontrollable, and B3(1, 3) = B3(2, 3) = 0.

Finally, Pl can always reach Rooms 6 and 7, and Cr can always reach Room
8. GPl(6), GPl(7) and GCr(8) are non-blocking, and B3(2, 1) = B3(2, 2) =
B3(3, 3) = 1.

From Theorem 3 the system is blocking but controllable. For example in
the con�guration where Crawler and Pusher are in room 8, it is impossible to
reach the target con�guration. However, this can be prevented, by disabling, for
example, GoPs(8), which is a controllable event.
5.2 2 − 8 − 8 Rescue
In this situation, the BIM for the system is:

B3 =

−1 0 0
−1 0 0
−1 1 1

 , (2)

with the columns corresponding to target sites 2, 8 and 8, respectively. It be-
comes evident that the system is blocking but, unlike the previous example, it
is uncontrollable. Since two robots are required for site 8 and the only way to
reach Room 8 is through Room 4, they will eventually move to Room 6 instead
of moving to Room 8 (since Gok(6) is uncontrollable), once they get to Room 4.
In this situation, it may be impossible to assist both victims in site 8. In fact,
as long as there is more than one victim in site 8 (K(8) > 1), this problem will
always exist. This happens because there are two robots which �helplessly� fall
downstairs, blocking site 8 (B(8) = 2). Then, N − B(8) = 3 − 2 = 1 < K(8),
and the system is blocking. Since the only way to Room 8 is through Room 4,
this situation cannot be prevented.

6 Conclusions and future work

The problem of analyzing the navigation of a set of mobile robots operating in a
discrete environment was approached. Relevant results have been derived, that
allow the use of small dimension automata (navigation automata) to infer about
the blocking and controllability properties of the automaton that describes the
complete system. In a situation where a speci�c con�guration is aimed for a set
of robots, the presented results allow to determine, using global information, if
the global objective is achievable, and if blocking con�gurations are avoidable.

An important extension of the present work is the determination of the rela-
tion between the blocking properties of the navigation automata and the ergodic-
ity of the Markov Chain which can be used to model the complete system, when



a probabilistic uncertainty is associated to the events representing the move-
ments of the robots. Other interesting issue is the use of this local information
in an optimal decision process, when a decentralized system is considered.
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