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Abstract

A blind estimator of the ocean acoustic channel impulse response envelope is presented. The signal model

is characterized by a deterministic multipath channel excited by a highly non-stationary deterministic

source signal. The time-frequency representation of the received signal allows for the separation between

the channel and the source signal. The proposed estimator proceeds in two steps: first, the unstable

initial arrivals allow for the estimation of the source signal instantaneous frequency, by maximization of

the radially Gaussian kernel distribution; then, the Wigner-Ville distribution is sequentially windowed

and integrated, where the window is defined by the previously estimated instantaneous frequency. The

integral gives the channel impulse response envelope, which turns to be an approximation to the blind

conventional matched-filter. The blind channel estimator is applicable upon the following conditions:

that the multipath channel contains at least one dominant arrival well separated from the others, and that

the instantaneous frequency of the source signal is an one-to-one function. Results obtained on real data

from the INTIMATE ’96 underwater experiment, where the acoustic channel was driven by an LFM

signal, show that the channel’s envelope detailed structure could be accurately and consistently recovered,

with the correlation of the estimates ranging from 0.796 to 0.973, as compared to the matched-filter

result.

Index Terms

Blind channel estimation, multipath, time-frequency, LFM.

EDICS Category: 2-TIFR, 3-CEQU

Work supported by FCT –MCES, scholarship SFRH/BD/9032/2002–, Portugal.
1N.E. Martins and S.M. Jesus are with SiPLAB - FCT – Universidade do Algarve, Campus de Gambelas, PT-8000 Faro,

Portugal. E-mails:{nmartins,sjesus}@ualg.pt.



2 SUBMITTED TO IEEE JOURNAL OF OCEANIC ENGINEERING

I. I NTRODUCTION

Blind channel estimation is a topic of intense research in the underwater acoustics community[1],

[2], as well as in signal processing-related fields such as wireless communications[4], geophy-

sics[5], etc.. Being essentially transparent to sound propagation, the ocean is a favorable medium

for transmitting information by acoustic signals, either for biological or human purposes. This

information is contained on the signal emitted by the acoustic source, and is sensed by an

acoustic receiver, which can be positioned from meters to hundreds of kilometers from the

source. The received signal obviously contrasts with the emitted signal, due to the severe

distortion introduced by the medium boundaries, the space- and time-variable sound-speed,

bottom properties, source and receiver coordinates, among other factors. Both emitted and

received signals, and the ocean distortion, can be modeled by time- (or space-) dependent

functions. Assuming the ocean acoustic channel as linear time-invariant, the received signal can

be modeled as a noisy convolution of the emitted signal with the channel impulse response. At

the receiver end, the purpose is usually to interpret the information contained in the source signal,

for example in digital communications[3], or to estimate the physical or geometric (e.g. water

depth, source coordinates) parameters responsible for signal distortion, which is the purpose of

ocean acoustic tomography[25], [26]. This purpose can be achieved without major difficulty,

if the source signal is known at the receiver. Otherwise, in ocean monitoring scenarios where

the discretion of the receiver is important, as in biological studies or military applications, the

problem of channel estimation transforms itself onto a blind estimation problem, in that the only

information available to the receiver is the received signal, which encapsulates both the emitted

signal, the channel distortion and the inevitable noise. Consequently, there is an increasing need

for the development of blind receivers capable of estimating the ocean physical parameters, or

the emitted signal, in presence of this unknown excitation source signal. Often, these signal is

a non-stationary transient that propagates from the source to the receiver, after severe channel

distortion and noise corruption. Recovering the ocean distortion amounts to solving a blind

signal deconvolution problem, by modelling the ocean channel as linear and time-invariant.

Blind deconvolution is itself a research area, with specific principles and methods.

Classical deconvolution is a well-established inversion method, which allows for the estimation

of either the channel or the source signal. When the source signal is known, a correlator



3

receiver can be used for channel estimation, which constitutes an application of the classical

matched-filter. As is well known, the performance of this estimator is dependent on the source

signal’s bandwidth, which has a direct impact on the estimate quality. For low signal-to-noise

ratio environments, the correlator can be improved with a prior denoising step. This has been

done in [6], by using a chirp signal as training sequence to estimate the impulse response of the

channel. The proposed method makes use of the high concentration of the chirp signal when

compared to the noise spreading in the joint time-frequency plane. In essence, a time-variant

filter is applied to the received signal, resorting to the Gabor transform, prior to conventional

channel estimation. If the channel has a multipath structure, which is a reliable approximation

in the ocean channel case, then channel estimation can be transformed into a time-delay esti-

mation problem[7], [8], [9]. This can also be addressed in the spectral domain, as proposed by

Kirsteins[10]. This method is based on fitting weighted complex exponentials to the spectrum of

the received signal. In this case, the drawbacks of ill-conditioning and bias, and the requirement

of considering contiguous frequency samples, led to the development of other algorithms, which

attempt to find least-squares unbiased estimates of the time-delays[1]. In this last reference, the

techniques were extended to the blind deconvolution of a gated sinusoid, where the sinusoid and

channel parameters are searched simultaneously. A common problem in signal deconvolution is

ill-poseness. In underwater acoustics, this problem was dealt with by observing the source signal

through a multichannel array[11], [12]. The method presented in [11] is based onmaximum a

posteriori likelihood estimation, assuming a stochastic model for the source signal. The approach

proposed by Smithet al.[12] solves an iterative minimization problem, using simulated annealing.

In this last reference, the authors mention that the proposed method can be extended to the case

of the simultaneous estimation of the source signal and the multichannel impulse response.

Blind deconvolution methods that deviate from classical deconvolution generally involve higher-

-order statistics of the source signal or the channel. One important requirement is that the

involved signals satisfy ergodicity and stationarity. The techniques are based on the principle

that the higher-order moments of the input signal are decreased by convolution with a linear

and time-invariant channel. The problem is solved by maximization of the higher-order mo-

ments (equivalently, minimization of the entropy) of the deconvolved quantities. Finding obvious

applications, for example, in wireless communications, blind deconvolution has, in this field,

exploited also the cyclostationary properties of the received signal. As an example, Gardner[13]
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has proposed a method for channel identification based on the second-order cyclic autocorrelation

function. This method involves the use of a training period, during which, the unobserved

channel input is transmitted at a slow rate, making the inter-symbol interference negligible.

The need for a training period can however fall off (increasing the available bandwidth), for

certain channel models, as shown by Tonget al.[14], using extensions of Gardner’s original

method. A comprehensive study on the use of blind deconvolution on communication systems

was presented in [4]. Blind deconvolution methods dealing with higher-order statistics have

been applied also in geophysics[5], to estimate the reflection coefficients of a layered Earth

model. The same principles were recently applied, in underwater acoustics, to the deconvolution

of signals with a moderate degree of temporal non-stationarity[2]. However, the deconvolution

result is influenced by a free parameter –the filter length–, and there remains an open question

on whether such principles could be applied to signals with a high degree of non-stationarity.

This paper presents a blind estimator of the ocean acoustic channel, excited by a highly

non-stationary source (probe) signal. Assuming deterministic models for the channel and source

signal, the method is divided into two steps. The first step consists of the estimation of the

source signal instantaneous frequency. In the second step, the Wigner-Ville distribution of the

received signal is integrated along delayed versions of the source signal instantaneous frequency

estimate, giving as output the channel impulse response envelope estimate.

The paper extends the work presented in [15], [16], and is structured as follows. Sec. II defines

the problem and briefly sketches its solution, by time-frequency methods; the time-frequency

estimator is presented and characterized in Sec. III. Experimental results with underwater acoustic

data are presented in Sec. IV, and some conclusions and perspectives are drawn on Sec. V.

II. PROBLEM STATEMENT AND TIME-FREQUENCYAPPROACH

Consider both an acoustic source and receiver positioned at given locations in the ocean. Assu-

ming that their positions are stationary along the propagation time (here,≈4.5 s), and that the

environmental conditions do not change significantly along this same period, the acoustic channel

linking the source to the receiver can be characterized by a linear and time-invariant impulse

response. Note that for different source and/or receiver positions, and/or for environmental

temporal variations on time scales that are larger as compared to the observation time (in the

considered experimental setup, this time is≈1.5 min, see section IV), ase.g. tidal-induced
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water depth variation, the source and received signals will be linked by time-varying impulse

responses. Thus, during the observation time, the received signalr(t) can be modeled by a noisy

and channel distorted version of the deterministic source signal:

r(t) = x(t) + n(t)

= s(t) ∗ h(t) + n(t) (1)

whereh(t) is the impulse response of the ocean channel,n(t) is zero-mean stationary additive

noise,∗ stands for convolution, ands(t) is the complex representation (analytic signal) of the

real source signal:

s(t) = ai(t)e
jϕi(t), (2)

whereai(t) andϕi(t) are the instantaneous amplitude (IA) and phase, respectively. The instan-

taneous frequency (IF) ofs(t) is readily given by

fi(t) =
1

2π

dϕi(t)

dt
. (3)

One key point, in considering an impulse response model for the ocean acoustic channel, is its

structure, which, when given by a series of delayed impulses, generally constitutes a realistic

model. Further, the initial impulses are typically very close in time, and at least one of them has a

high amplitude as compared to the remaining well-separated impulses. The initial high-amplitude

impulse(s) is(are) due to direct eigenrays or eigenrays with a small number of reflections, while

the well-separated impulses are due to several surface and/or sediment reflections.

The problem at hand is, knowingr(t), to recover the impulse response envelope|h(t)|, assu-

ming no knowledge abouts(t), which constitutes a classical blind channel (envelope) estimation

problem. The present time-frequency approach does not allow to estimate the phase of the impulse

response, since the procedure is based on time-frequency integration, which gives a measure of

signal power. Nevertheless, if this impulse response estimate is to be usede.g. in travel-time

acoustic tomography, where only the time-delays of the impulse response are important, the

envelope estimate is sufficient for post-processing. Hence, the parameter of interest is designated

by

θ(t) = |h(t)| . (4)
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To solve this problem by a time-frequency approach, it is important to evidence the following

key ideas, which emerge as conditions of application:

• The acoustic channel is described by a set of arrivals, with at least one having a high

amplitude relatively to the other arrivals;

• The acoustic source emits a deterministic and non-stationary signal, whose instantaneous

frequency is an injective (one-to-one) mathematical function.

The channel estimation procedure is schematized in figure 1. As illustrated in this figure, the

first step relies on the representation of the received signal by a signal-dependent time-frequency

distribution. The maximization of this distribution gives the source signal instantaneous frequency

estimate. The second step consists of coherently measuring the Wigner-Ville distribution energy

of the received signal, on time-frequency supports defined by the source signal instantaneous

frequency estimate. The obtained estimator is a sub-optimal blind channel estimator, as compared

to the matched-filter estimator.

III. C HANNEL ESTIMATION

Taking into account that non-stationary signals are common in practical applications, TF pro-

cessing appears in such cases as a natural tool. TF representations indeed provide a means

for detailed analysis of the local TF structure of the received signal. As a consequence, if the

channel impulse response and the source signal have ‘distinct’ TF patterns, they can be separated

and recovered in the TF domain. In this work, the Wigner-Ville and the radially Gaussian

kernel[17] TF distributions (TFDs) are used.

A. Correlator Channel Estimator

Let us take, as a reference channel estimator, the correlator receiver. This estimator makes use

of the principle behind the matched-filter (MF), and can be used only when both received and

source signals are available. The correlator receiver output is given by

θ̂MF (t) =

∣∣∣∣∫ ∞

−∞
r(τ)s∗(τ − t)dτ

∣∣∣∣ (5)

and is used as a term of comparison to evaluate the performance of the TF blind channel

estimator, concerning the real data results presented in Sec. IV.
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B. Time-Frequency Blind Channel Estimator

This section describes the TF blind channel estimator. A non-blind directly related estimator

is first presented, and its similarity to the matched-filter is discussed. Then, it is seen that the

multipath nature of the channel allows for the derivation of an estimator of the IF ofs(t), and

the consecutive definition of the blind channel estimator.

1) Non-Blind Estimator:Let us state the definition of a TF non-blind channel estimator, by

first considering the formulation of the MF in the TF domain. This can be accomplished by

means of the classical Moyal formula, which relates the overlap of two signals in the time

domain with the overlap of their respective bilinear unitary TFDs[18], [19]:

∞∫∫
−∞

Cx1x2(τ, f)C∗
x3x4

(τ, f) dτ df

=

[∫ ∞

−∞
x1(τ)x∗3(τ)dτ

] [∫ ∞

−∞
x2(τ)x∗4(τ)dτ

]∗
(6)

whereCyz(τ, f) designates any unitary cross-distribution of the generic signalsy(τ) and z(τ).

For the particular cases ofx1(τ) = x2(τ) = r(τ) andx3(τ) = x4(τ) = s(τ − t), and when the

unitary distributionCyz(τ, f) is the Wigner-Ville distributionWVyz(τ, f), equation (6) transforms

into ∫ ∞∫
−∞

WVrr(τ, f)WV ∗
ss(τ − t, f) dτ df

=

∣∣∣∣∫ ∞

−∞
r(τ)s∗(τ − t)dτ

∣∣∣∣2 , (7)

where the second term is simply a squared version of the MF channel estimate (5). This expresses

the equivalence between the MF and a correlation in the TF domain with respect to the temporal

variable. This equivalence has already been used in the context of detection, in [20]. Thus, if

the source signal was known at the receiver, an MF estimator could be implemented in the time

domain, by (5), or equivalently in the TF domain, by the TF-based channel estimator

θ̂MF (t) ≡

√√√√√∫ ∞∫
−∞

WVrr(τ, f)WV ∗
ss(τ − t, f)dτ df. (8)
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In the case that the IA of the source signal does not change significantly with time, the spread

in frequency ofWVss(τ, f) can be approximated by[21]:

σ2
f |τ =

1

2

[(
a′i(τ)

ai(τ)

)2
]

, (9)

wherea′i(τ) designates the derivative ofai(τ). The value ofσ2
f |τ will be small, for a slowly-

-varying functionai(τ), meaning that the Wigner-Ville distribution (WV) is highly concentrated

along the IF. This will be the case when considering the experimental data, in section IV. Upon

this assumption, one can obtain an approximation to (8), by approximatingWVss(τ, f) as:

WV ss(τ, f) ≈ δ [f − fi(τ)] . (10)

Upon insertion of (10) into (8), a simply structured TF non-blind channel estimator is obtained:

θ̂TFNB(t) =

√∫ ∞

−∞
WVrr [τ, fi(τ − t)] dτ . (11)

Note that this estimator is sub-optimal with respect to the MF, in terms of output signal-to-noise

ratio, due to the approximation (10). Let us define the conditions upon which, (11) can be applied

as a channel estimator. Taking into account (1) and the fact that the WV satisfies the convolution

property, (11) can be developed as

θ̂TFNB(t) =
√
S(t) +N (t) + SN (t), (12)

whereS(t) refers to the signal component,

S(t) =

∫ ∞∫
−∞

WVhh(u, f)Ψ(u, f, t)df du (13)

with

Ψ(u, f, t) =

∫ ∞

−∞
δ [f − fi(τ − t)] WVss(τ − u, f)dτ, (14)

andN (t) andSN (t) refer to the noise and crossed signal-noise components,

N (t) =

∫ ∞∫
−∞

δ [f − fi(τ − t)] WVnn(τ, f)dτ df

=

∫ ∞

−∞
WVnn [τ, fi(τ − t)] dτ (15)
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and

SN (t) = 2

∫ ∞∫
−∞

δ [f − fi(τ − t)] Re {WVxn(τ, f)} dτ df

= 2

∫ ∞

−∞
Re {WVxn [τ, fi(τ − t)]} dτ, (16)

respectively. Let us analyze only the signal componentS(t). Note that if, at every frequencyf ,∫ ∞

−∞
δ [f − fi(t)] WVss(t− τ, f)dt ≈ δ(τ) (17)

then (13) can be approximated by:

S(t) ≈
∫ ∞∫
−∞

WVhh(u, f)δ(u− t)df du, (18)

which, for non-noisy data, leads to the approximate channel estimate

θ̂TFNB(t) ≈ |h(t)| . (19)

Approximation (17) holds, as long as:

(i) at every frequencyf , the distributionWVss(t, f) has at maximum one peak;

(ii) the distributionWVss(t, f) is infinitely concentrated alongfi(t).

For condition (i) to hold, it is necessary thatfi(t) be an injective (or one-to-one) mathematical

function –a function which maps distinct values oft to distinct values offi(t). For condition (ii)

to hold, it is necessary that the WV of the signals(t) be defined by a bi-dimensional Dirac

distribution centered onfi(t):

WVss(t, f) = |c|2 δ [f − fi(t)] (20)

wherec is a complex scalar. It is well established that the class of deterministic source signals

for which, both conditions are satisfied, entails the linear frequency modulation signal (LFM)

s(t) = c ej2π(α
2

t2+f0t+ϕ0) (21)

whereα, f0 andϕ0 designate the modulation rate, initial frequency and initial phase, respectively,

and the Dirac distribution

s(t) = c δ(t). (22)
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Note that the requirements for optimality of the TF channel estimator are very similar to the

requirement of an impulsive autocorrelation of the emitted signal, for the MF estimator. In the

former case, the emitted signal is required to have a concentrated signature in the TF plane,

while in the later, it is required to have a concentrated autocorrelation signature. In practice,

none of these conditions can be fully verified, which leads to sub-optimal estimators. In Sec. IV,

the results obtained with a finite-duration smooth-amplitude LFM signal in a real underwater

environment are shown to provide reliable and consistent channel estimates.

2) Blind Estimator: To construct a blind channel estimator, it is reasonable to modify (10)

according to an estimatêfi(t) of the IF:

WV ss(τ, f) ≈ δ
[
f − f̂i(τ)

]
. (23)

Using this approximation in (8), the final TF blind channel estimator is given by:

θ̂TFB(t) =

√∫ ∞

−∞
WVrr

[
τ, f̂i(τ − t)

]
dτ . (24)

Thus, contrarily to the non-blind channel estimator, the blind estimator requires prior estimation

of the source signal instantaneous frequencyfi(t).

3) Instantaneous Frequency Estimator:In several real underwater scenarios, the ocean is

reliably modeled by a multipath channel, with impulse response

h(t) =
M∑

m=1

amδ(t− τm), (25)

wheream andτm designate each of theM channel amplitudes and time-delays, respectively1. For

this case, an estimator offi(t) has been derived, taking advantage of a reduced cross-terms TFD.

As is well known, TFDs of this type are usually derived as a tradeoff between linearity and

high resolution. First, let us consider an ideal (linear and infinitely concentrated) TFDIs(t, f)

of s(t) (assumed a monocomponent signal), defined as

Is(t, f) = |c| δ [f − fi(t)] . (26)

1Here, frequency dispersion effects are neglected, because the ratios water depth-maximum wavelength and source-receiver

distance-maximum wavelength, are of orders 10 and 103, respectively
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The expected value of the ideal distribution of the received signal, assuming that this expected

distribution would represent the noise term as a constantIn, would be given by

E[Ir(t, f)] =
M∑

m=1

amIs(t− τm, f) + In. (27)

Consider now that the channel highest amplitude impulse is well separated and significantly

stronger than the closely spaced impulses. In this case, at least one of the replicas ofs(t) is

represented inE[Ir(t, f)] by a large amplitude along the delayed IF ofs(t). Thus, maximization

of E[Ir(t, f)] with respect tot, within a given band of interestB, would select the strongest

arrival, giving an unbiased estimate2 of fi(t). Obviously, within the available non-linear TFDs,

signal analysis is constrained by the particular characteristics of the kernel, and finite data lengths.

Nonetheless, it seems reasonable to apply the maximization with respect tot, to a TFD with

reduced cross-terms of the received signal, which will give an accurate estimate3 of fi(t), if this

distribution is a good approximation toIr(t, f), i.e., it attains a significant cross-terms rejection,

without causing a significant broadening of the signal components. In this work, the distribution

used for IF estimation was the signal-dependent radially Gaussian kernel distribution (RGK) of

the received signal,RGKrr(t, f). The signal-dependence of this distribution allows a reduced

cross-terms TF representation of the multipath received signal, even when the IF ofs(t) is a

non-linear function. This is due to the distribution capability of adapting the shape of a radially

Gaussian low-pass filter to a broad class of signals[17], hence attenuating the TF spurious cross-

terms. The volume of the distribution kernel was set to 1, since this is the volume of every

spectrogram kernel. In the ideal case in which the calculated kernel of the RGK would equal the

Doppler-reversed ambiguity function ofs∗(t), the RGK would coincide with the matched-filter

spectrogram. This point is discussed below in more detail. Obviously, other distributions could

be applied as well, due to their cross-terms rejection capabilities, such as the polynomial or

modified Wigner-Ville distribution[22], or TFDs with adaptive window width, to mention only

a few.

Considering the presence ofN snapshots at reception –what is the case in the real data

presented in the next section–, each one obeying to model (1), the estimation of the IF may

2It is expected that this estimate, seen as a function of frequency, is also a close estimate of the group delay ofs(t).

3The IF estimate is not rigorously a function oft, due to its definition as the ‘inverse function’ of a non-invertible function.
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take into account the information contained in the set of snapshots, in order to construct a TF

representation that is close toE[Ir(t, f)]. This TF representation is defined as the average RGK

over the snapshots:

RGKrr(t, f) =
N∑

n=1

RGKrnrn(t, f) (28)

wherern(t) designates thenth snapshot of the received signal. The multi-snapshot estimator is

defined by means of the maximization ofRGKrr(t, f):

[
ti, f̂i(ti)

]
=

{
(t, f) : t = arg

{
max

t
RGKrr(t, f)

}
, f ∈ B

}
. (29)

This signal-dependent maximization on the TF plane will be illustrated with experimental data

in section IV (see figures 9 and 10, and discussion). It is expected that the averageRGKrr(t, f)

preserves the replicas ofs(t), while the noise contributes as a simple additive term, in the TF

plane. This is difficult to assert theoretically, since the RGK is a signal-dependent TFD. However,

a simple analysis can be done by considering a TFD whose kernel is perfectly adapted to the

multicomponent received signal. Such a distribution, considering the multipath nature ofr(t), is

the matched-filter spectrogram (MFS)[17], whose analysis window is thus coincident withs∗(t).

The kernel of the MFS can be expressed as

ΦMFS(ν, τ) =

∫ ∞

−∞
s∗

(
t +

τ

2

)
s
(
t− τ

2

)
e−j2πνtdt. (30)

The MFS represents the best attainable representation ofr(t) by the RGK, in terms of the tradeoff

signal-terms information/cross-terms rejection. Finally, one can interpret the average RGK as an

estimator of



13

E[MFSrr(t, f)]

=
1

2π

∫ ∞∫
−∞

AFxx(ν, τ)AFss(−ν,−τ)e−j2π(νt+fτ)dνdτ

+σ2
n

]
=

1

2π

 M∑
m=1

M∑
n=1

aman

∫ ∞∫
−∞

AFss(ν, τ + τm − τn)

×AF ∗
ss(ν, τ)e−j2π[ν(t−τmn)+fτ ]dνdτ + σ2

n

]
, (31)

where

τmn = (τm + τn)/2. (32)

For a monocomponent signals(t), it is expected that, for the terms in (31) for which,τm 6= τn,

the different delays in the ambiguity functions will render the integrand approximately null. For

the M terms in whichτm = τn, the integrals transform into∫ ∞∫
−∞

|AFss(ν, τ)|2 e−j2π[ν(t−τm)+fτ ]dνdτ, (33)

what corresponds to slightly broadened signal terms in the TF plane. Thus,AF ∗
ss(ν, τ) is to be

viewed as a low-pass filter, which will retain only the eigen-terms ofAFxx(ν, τ), leading to an

approximate linear TF distributionE [MFSrr(t, f)]. Ideally, the maximization of the expected

MFS [requiring the knowledge ofs(t)] would be meaningful as an IF estimator; in practice, the

expected MFS is approximated by the average RGK.

A final concern about IF estimation relates to source signals with non-linear frequency mo-

dulation. In this case, each of the source signal replicas (in the received signal) contains its own

cross-terms in the TF plane, which will be added to the implicit cross-terms due to the multipath

channel. It is difficult to predict the relative amplitude between the signal terms and the cross-

terms, and the maximization of the signal-dependent TFD can be trapped into the cross-terms,

at given frequencies, instead of the signal term. To avoid this problem, it may be necessary to

decrease the volume of the RGK distribution kernel, in order to filter out all the high-amplitude
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cross-terms, and guarantee that the global maximization will pick only the signal term(s) due to

the initial strong channel arrival(s).

Note that the required minimum time separation (≈20 ms, in the considered data) between

the strong channel impulses(s) and the remaining impulses is much smaller than the source

signal duration (2 s, see figure 3), since the considered impulse response structure corresponds

to a shallow water scenario. This implies that each arrival overlaps several other arrivals, in

the received signal, in the time domain. This is opposed to the TF domain, where the inter-

arrival overlap is spread in the two dimensions of the plane. For extremely short-duration source

signals, or in deep water scenarios, if there was a completely isolated arrival in the received

signal, the channel impulse response could be estimated, for example, by simply cross-correlating

that arrival with the remaining portion of the received signal.

IV. EXPERIMENTAL RESULTS

The experimental results presented in this section concern data from the acoustic tomography

experiment INTIMATE ’96, whose details have appeared in [23]. The experiment was conducted

in the continental platform near the town of Nazaré, off the west coast of Portugal, during

June 1996. For the data considered here, the acoustic source and receiving hydrophone were

respectively located at 92 m and 35 m depth, 5.6 km apart in a 135 m-depth approximately range

independent shallow water area, as shown in figure 2. The signal-to-noise ratio estimate at the

receiver was 10 dB, within the frequency band of interest. The sound source was emitting a 300–

800 Hz, 2 s-duration LFM sweepl(t), repeated every 8 s. At the receiver,N = 10 consecutive

sweeps were processed to form one single channel estimate, under stationarity assumptions. This

process was repeated every 5 min, during 19 h of transmissions, with the objective of analyzing

the time variations of the acoustic channel due to tidal waves. The frequency response of the

electro-acoustic transducer used as sound source, presented a main resonance at 650 Hz and a

secondary resonance at 350 Hz. The convolution of one LFM sweepl(t) with the transducer

response is shown in figure 3. Straightforward lengthy calculations show that this convolution

may be approximately expressed as a product, leading to

s(t) ≈ l(t)v(t) (34)

wherev(t) is a factor due to the transducer response, which effectively modulates the source

signal in amplitude. As a matter of fact, figure 3 clearly shows the influence of the transducer
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resonances on the amplitude of the emitted signal. Note that the actual signal amplitude, as

modified by the transducer, is not taken into account when performing blind channel estimation,

and is another contribution (together with the non-infinite concentration of the TFD) to the

deviation from the optimal case. Moreover, signal amplitude discrepancy should be taken into

account when comparing the (non-blind) MF channel estimate (which ‘knows’ the transducer

response) to the blind TF estimate, which does not know the transducer response.

A. Channel Estimation Results

Taking into account that, for an observation time of the order of minutes, the acoustic multipath

channel can be assumed non-stationary in the amplitudes, and stationary in the time-delays[24],

and that an accurate estimate of the time-delays is sufficient for post-processing,e.g., in ocean

acoustic tomography[26], the presented results privilege time-delay estimation. Thus, due to the

similarity between the non-blind TF and MF channel estimators, and proceeding as in [24], for

the derivation of the MF, in the presence of a set of snapshots at the reception, the effectively

used channel estimators were given by

θ̂CE(t) =
1

N

N∑
n=1

θ̂CE,n(t) (35)

where CE is to be replaced byMF or TFB, in order to obtain averaged versions of the

estimators (5) and (24), respectively. This is expected to reduce the bias and variance of the

final estimators, by comparison to the single snapshot estimatorsθ̂CE,n(t). The IF estimate to

be inserted in (24) was obtained by maximization of the average RGK within the bandB =

[300, 800] Hz, coincident with the LFM’s band. Note that it is not necessary to havea priori

knowledge of the emitted signal’s band, provided thatB is chosen large enough, since the energy

of the received signal will lie essentially within the emitted signal’s band, in the TF plane.

The results obtained along the 19 h-duration data set are shown in figures 4 and 5, for the MF

and TF estimators, respectively. It can be seen that the blind channel estimates are, in general,

similar to the homologous (non-blind) MF estimates. Of most concern here is the ability to (i)

discriminate closely spaced arrivals and (ii) follow the arrivals waving through time. It can be

noted that these concerns are both met: after the initial non-separated arrivals (t ≤ 25 ms), four

distinct arrivals can be seen on each of the following seven packets of arrivals; the long period

waving due to tidal influence can clearly be seen on the later arrivals, on both figures.
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B. Performance Analysis

It is now important to quantify the accuracy of the blind TF channel estimator, taking, for

example, the (non-blind) MF estimator, as reference. For each TF channel estimate, the quality

measure is defined as the maximum of the normalized correlation between the TF and MF

channel estimates. In the same way, the qualityχ of the IF estimate (29) is defined as

χ = 1−

√∫
B

[
tiN(f)− t̂iN(f)

]2
df

2
(36)

where tiN(f) and t̂iN(f) are normalized versions of the instants corresponding to the true IF

and its estimate, respectively. Both channel and IF estimates quality measures are shown in

figure 6, for the whole 19 h data set. It can be seen in this figure that, in general, the IF and

the channel estimates are directly related,i.e., the channel estimate quality is highly sensitive

to the IF estimate quality, as can be seen fore.g. the estimates obtained at times 17 h 07 min

and 04 h 09 min. This fact can be explained by the high concentration ofs(t) in the TF plane,

which leads to meaningless values for the integral (24), when the IF is not accurately estimated.

In order to closely characterize the proposed IF and blind TF estimators, it is important to look

at the worst and best cases over the whole data set.

The reference channel given by the MF, corresponding to the worst blind channel estimate, is

shown in figure 7 (a), while the corresponding blind estimate, with quality 0.796, is depicted in

figure 7 (b). In this case, the acoustic channel consists of a set of leading closely spaced arrivals

with large amplitude, followed by a peaky pattern with smaller amplitude and well separated

in time. It can be seen that the MF and TF estimates differ mainly on the amplitude envelope

but not on the arrival times. However, the total number of arrivals seems to be higher in the TF

estimator than in the MF estimator.

According to the measure of quality plot shown in figure 6, the best blind TF channel estimate

is obtained at time 20 h 08 min, and the corresponding MF and TF estimates are shown in

figure 8 (a) and (b), respectively. The most important difference when comparing figure 8 (a) to

the MF estimate in the worst case of figure 7 (a) is the rapid progressive amplitude attenuation,

leading to a greater amplitude ratio between the initial and the remaining arrivals. The best

blind TF estimate, depicted in figure 8 (b), shows that both the envelope and arrivals positions

are well estimated and the MF and TF estimates are indeed very similar. As in the worst case,
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the number of arrivals is over-estimated on the TF estimator, by comparison to the MF estimator.

Figure 9 shows the IF estimates for the worst and best cases as discussed above. Clearly, the

worst case IF estimate shows a piecewise line where the IF oscillates well away from the due

straight line IF, and the best channel estimate corresponds to an accurate IF estimate close to

the true straight line. These IF estimates were obtained by maximization of the average RGKs

shown in figure 10, where one can see that, unlike for the best case in (b), the worst case in (a)

corresponds to initial high amplitude overlapped replicas ofs(t) in the average RGK.

Considering the available data, one can deduce that the quality of the channel estimate is

largely dependent on the quality of the IF estimate. A set of close unresolved strong arrivals

with similar amplitude, as is the case corresponding to the worst estimate, corresponds to energy

spreading in the TF plane, which, added to the low-pass filtering effect on the WV, in the

calculus of the RGK, gives a biased estimatef̂i(t). This difficulty is not observed for the case

corresponding to the best estimate. An additional concern is about the apparent higher resolution

of the TF estimator, leading to a larger number of small peaks along the arrival pattern, by

comparison to the MF estimator. This can be explained by the use of the IA information of

the emitted signal in the MF, while that information is not used in the blind TF. Using the IA

means using a reduced bandwidth of the transducer frequency response when compared to the

blind TF, where all frequencies are assumed to equally belong to the emitted signal spectrum:

reduced bandwidth implies larger correlation functions and therefore a lower resolution.

V. CONCLUSION

In this paper, a blind sub-optimal time-frequency channel envelope estimator was proposed. This

estimator was tested on a 19 h-duration real data set from the INTIMATE ’96 sea trial, where a

severe multipath underwater channel was driven by a deterministic linear frequency modulated

signal. Three main topics emerge as conclusions. The first concerns the restrictions imposed by

the blind channel envelope estimator. This estimator requires the multipath channel structure to

consist of at least one leading strong arrival well separated from the highly-attenuated remaining

arrivals. Also, the emitted signal is required to have a concentrated time-frequency signature,

and an injective (one-to-one) instantaneous frequency function. The second topic concerns the

influence of the instantaneous frequency estimate on the channel envelope estimate. The quality

of the time-frequency channel envelope estimate is largely sensitive to the source signal instan-
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taneous frequency estimate. Indeed, a small inaccuracy in the instantaneous frequency estimate

causes a large degradation in the channel envelope estimate, due to the high time-frequency

concentration of the source signal. The last topic is that the time-frequency blind channel envelope

estimator is reliable in that it gives similar results to the matched-filter, in terms of the arrivals

structure and resolution. In addition, though the blind estimator does not achieve an optimal

output signal-to-noise ratio, its higher resolution can be viewed as an advantage, when emphasis

is given to the estimation of the channel time-delays.

As future trends, the time-frequency channel envelope estimator will possibly be extended

to a broader class of source signals, for which, the instantaneous frequency estimator could

be reformulated by using the product high-order ambiguity function. The integration in the

time-frequency domain could be operated on a highly concentrated time-frequency distribution,

e.g. the polynomial or modified Wigner-Ville distribution.
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Fig. 3. Computer generated transducer response to the 300-800 Hz 2 s-duration LFM sweep [real part ofs(t)] used during

the INTIMATE ’96 sea trial.
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Fig. 4. INTIMATE ’96 data set: (non-blind) channel estimates obtained with the matched-filter [eq. 5 arranged as in (35),

with N=10].
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Fig. 5. INTIMATE ’96 data set: blind channel estimates obtained by time-frequency processing [eq. 24 arranged as in (35),

with N=10].
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Fig. 6. Measure of quality for the instantaneous frequency estimate, using eq. 36 (dash dots), and for the blind time-frequency

channel estimate, as the correlation between the blind time-frequency and the matched-filter estimates (solid), over the

whole INTIMATE ’96 data set. The vertical dashed and dotted lines indicate 20 h 08 min and 22 h 52 min as the times

corresponding to the best and worst blind channel estimates, respectively.
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Fig. 7. INTIMATE ’96: channel estimates given by the (a) (non-blind) matched-filter and (b) blind time-frequency

channel estimators, corresponding to the worst blind channel estimate, at time 22 h 52 min of figure 6. The blind estimate

quality [correlation coefficient between (b) and (a)] is 0.796.
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Fig. 8. INTIMATE ’96: channel estimates given by the (a) (non-blind) matched-filter and (b) blind time-frequency channel

estimators, corresponding to the best blind channel estimate, at time 20 h 08 min of figure 6. The blind estimate quality [correlation

coefficient between (b) and (a)] is 0.973.
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Fig. 9. INTIMATE ’96: instantaneous frequency estimates (eq. 29) for the worst (O) and best (+) cases as shown in figures 7

and 8, respectively. The underlying straight line represents the true instantaneous frequency.
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Fig. 10. INTIMATE ’96: contour plots of the average radially Gaussian kernel distributions from which, the instantaneous

frequency estimates for the worst (a) and best (b) cases as shown in figures 7 and 8, respectively, were obtained.
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