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Detection of Transient Signals
With Unknown Localization

Francisco M. Garcia, Member, IEEE, and Isabel M. G. Lourtie, Senior Member, IEEE

Abstract—In the context of real-time detection of transient sig-
nals, a likelihood ratio (LR) test is evaluated at every sampling in-
terval. Performing the LR tests at a lower rate reduces significantly
the computational complexity of the detection algorithm. However,
in general, this simplification also leads to a strong degradation of
the detector performance. For example, with a small shift error, an
arriving transient may be in quadrature with its model. This degra-
dation is particularly noticeable when the signals to detect are de-
terministic and sampled at a frequency close to the Nyquist rate.
This letter proposes a method to overcome this limitation by using
locally stationary models of the signals to detect. The resulting de-
tectors are robust to shift errors and computationally efficient.

Index Terms—Bandpass signals, detection, local stationarity,
nonstationary processes, real-time processing, transient signals.

I. INTRODUCTION

DETECTION of transient signals is an issue of major con-
cern in many applications such as wireless communica-

tions, sonar and radar. Recent works in this field include [1] and
[2] where, respectively, the gap metric and order statistics are
used to detect signals with unknown parameters, namely delays
or unknown arrival times. In a similar line of thought, in this
letter, we propose a method to develop detectors for transient
signals with random amplitude that are robust to shift errors,
and exhibit low computational complexity.

This work addresses the problem of detecting a bandpass
transient signal with unknown localization. For example, con-
sider a surveillance environment where a certain signal is ex-
pected to arrive at the receiver with unknown arrival time. The
generalized likelihood ratio test (GLRT) is the classical pro-
cessor to solve this problem. It consists of an estimation/de-
tection scheme, where the likelihood ratio is evaluated continu-
ously along the time axis and its maximum value compared to
a threshold. In general, the observation process itself is filtered
and sampled with a sampling interval , and the likelihood ratio
(LR) is evaluated at the same rate. The GLRT is computation-
ally consuming because it requires high sampling frequencies
to avoid performance degradation due to time-shift errors which
are, at most, of length .

To reduce the computational cost (number of operations per
time unity) of the processor, it would be desirable to use sampling
rates close to the Nyquist frequency of the signal to detect, and
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to evaluate the LR at every time intervals, with and
.

When the signals to detect are Gaussian stationary processes,
the corresponding optimal quadratic processors are insensitive to
time shifts. This is not the case for nonstationary processes (see
[3]). In this letter, we consider a particular class of nonstationary
processes,where thesignals areknownup toarandomamplitude.
As shown later, the 2-D autocorrelation function (ACF) of such
signal is not locally stationary (NLS). In this case, a small shift
error can strongly degrade the processor performance since the
signal arrivingat the receivermaybe inquadraturewith itsmodel.
Inorder to reduce theperformance lossdue toshifterrors,weusea
locally stationary (LS), rather than NLS, signal model. This leads
to a robust detector that allows larger LR time intervals, thus with
smaller computational complexity.

Our framework is derived from second-order characteristics
of stochastic signals, related to the sampling theorem [4] and
to the local stationarity of nonstationary processes [3], [5]–[7].
It is shown in [3] and [7] that, due to the positive definiteness
of the ACF of a nonstationary process [8], both its 2-D
power spectrum (2DPS) and its Wigner distribution (WD) map
information regarding either the Nyquist frequency for sampling
purposes and the existence (or not) of local stationarity of the
process. In [3], we present a simple method to obtain a LS co-
variance matrix (which is a sampled version of the ACF) of a
zero-mean second-order process from data. Here, the ACF of
the signal has a single nonzero eigenvalue. We show that the
corresponding LS ACF has 2 nonzero eigenvalues, and derive
the corresponding eigenvectors as functions of the eigenvector
of the signal to detect.

II. LOCALLY STATIONARY AUTOCORRELATION FUNCTIONS

Let , be a zero-mean nonstationary sto-
chastic process characterized by the autocorrelation function
(ACF) , which can be expressed in terms of its eigen-
functions, , and eigenvalues, , by the Mercer-like expan-
sion [7]

Equivalently, the process can be described either by the 2-D
power spectrum (2DPS)

or by the Wigner distribution (WD)

where denotes the Fourier transform.
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Let us also assume that is a real bandpass transient that
has most of its energy lying in the interval , where

and . In other words,
its 2DPS, , is approximately zero everywhere in the
plane , except in the following situations [3], [7]:

1) or (regions
in the first and third quadrants of the plane).
2) or (regions

in the second and fourth quadrants of the plane).
In general, the process is NLS which means that region 2)
referred to above does not fade.

However, as detailed in [3], a LS ACF of a bandpass process
is easily obtained by eliminating in any of the equivalent rep-
resentations of the process (ACF, 2DPS, or WD) the terms that
are nonzero only when the process is NLS. For example, a LS
ACF is obtained by i) making the second and fourth quadrants
of equal to zero, and ii) taking the double inverse
Fourier transform of the resulting 2DPS. For the WD, local sta-
tionarity is characterized by the absence of cross-terms around
frequency . This corresponds to a basic difference be-
tween the WD for locally stationary processes and deterministic
signals, where cross-terms are always present unless the analytic
signal, rather than the original signal itself, is transformed.

III. TRANSIENT DETECTION ROBUST TO SHIFT ERRORS

The detection problem is formulated as a simple binary test.
The observation process is defined as

where is a Gaussian-distributed stochastic process, is
an unknown delay term and corresponds to a zero mean
Gaussian distributed process with autocorrelation function

, where and represent the Dirac delta func-
tion and the proportionality coefficient of the noise variance,
respectively.

When , the optimal solution for the detection problem
is the quadratic processor [9], defined by the LR test

(1)

where is the number of nonzero eigenvalues of the ACF
of denotes the coefficient resulting from the internal
product between the observation process and the -th eigenfunc-
tion, and and correspond to the -th eigenvalue and a com-
parison threshold, respectively. The value of may be chosen
using a Bayes or Neyman-Pearson criteria [9].

When is unknown, the classical processor is the GLRT. In
this letter, we consider , where is a known
bandpass transient, and is a zero-mean Gaussian distributed
random amplitude with unit variance (for simplicity). Its ACF

(2)

has a single nonzero eigenvalue and corresponding eigenfunc-
tion , given by

(3)

Fig. 1. Absolute value of the 2DPS of a nonlocally stationary autocorrelation
function.

Fig. 2. Wigner distribution of the nonlocally stationary autocorrelation
function.

In Figs. 1 and 2, we represent, respectively, a typical 2DPS and
WD of such process. Note that the nonzero terms on the second
and fourth quadrants of the 2DPS give rise to the cross-terms
around in the WD. As stated before, the classical re-
ceiver (GLRT) for this process is sensitive to shift errors, thus
requiring the evaluation of the LRs at a high rate, resulting com-
putationally complex.

If, in (1), the coefficients are computed based on a LS ACF,
the corresponding receiver is robust to shift errors. To obtain a
LS ACF from , we eliminate the nonzero
terms in both the second and fourth quadrants of the 2DPS,

, and keep unchanged its first and third quadrants.
For the NLS process given by (2), the correspondent
LS ACF

has two nonzero eigenvalues , and eigenfunctions
, that satisfy, in the frequency domain, the following rela-

tionships:

where and are, respectively, the Fourier transforms
of and , and
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The solution to the previous equations satisfies

(4)

where stands for the signum function ( for ,
and for ). From the Parseval relationship, for any
functions and related by (4), we have

Thus, and are orthonormal. Moreover, and since the
eigenfunctions of both processes have the same absolute value,
we may choose

(5)

which guarantees that and , given by (4)–(5), are
unitary, and represent the eigenfunctions of process .
Finally, we note that

This expression clearly shows that vanishes when
the signs of and are opposite, that is, on the second and
fourth quadrants of the plane. Consequently,
represent the ACF of a LS process. The corresponding 2DPS
and WD are represented, respectively, in Figs. 3 and 4 and
clearly show that the process is locally stationary: both the
terms of the second and fourth quadrant of the 2DPS and the
cross-terms of the WD at frequency vanish.

As mentioned above, the processor based on the LR test
(1) is robust to shift errors if the coefficients are com-
puted based on a LS ACF. For example, in the particular case
where the signal to detect is a narrowband process centered
at frequency and assuming a large SNR , it is
easily shown that, under hypothesis , in the NLS situa-
tion, we have whereas, in
the LS case, , where stands for the
expected value. Therefore, for , we have

and the detector performance strongly
degrades. On the contrary, the expected value of the LR using
the LS model is approximately constant and independent of .

IV. CASE STUDY

This experiment compares the robustness to shift errors and
the computational complexity of the quadratic detectors based
either on the LS or on the NLS ACFs. Several detection sim-
ulations, each of which with 100 000 Monte-Carlo runs, were

Fig. 3. Absolute value of the 2DPS of the locally stationary autocorrelation
function.

Fig. 4. Wigner distribution of the locally stationary autocorrelation function.

conducted as follows: 1) the signal to detect is a compressed air
shot sound recorded in an underwater environment; 2) for each
Monte-Carlo run, the (known) signal is multiplied by a random
amplitude with unitary variance; 3) a shift error corresponding
to sampling intervals is applied to the signal, where
is a continuous uniform random variable taking values in the
interval ; 4) the signal is corrupted by adding
white noise with variance 0.005; and 5) for each processor,
the LR tests (1) were computed. For each value of , the
threshold was chosen such that the desired probabilities of
false alarm were matched. The classical NLS processor uses the
single eigenfunction defined in (3) , whereas the
LS processor uses the eigenfunctions and ,
obtained from as described in the previous section.

For integer values of , the simulation study described
in the previous paragraph accesses the performance of the de-
tectors when the LRs are evaluated sequentially at every

time intervals. The detection results are presented in
Figs. 5 and 6, where we plot the probability of detection
as a function of , for probabilities of false alarm of
0.001 and 0.1, respectively. As expected, the NLS processor out-
performs the LS receiver for small values of . Remark that

denotes the case where the receiver knows exactly the
transient arrival time, for which the NLS detector is optimal.
Moreover, the classical situation where the LR tests are per-
formed at every sampling interval corresponds to

, in which the performance of both processors is approxima-
tively identical. For larger values of , the performance of
the NLS processor degrades dramatically, whereas the LS re-
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Fig. 5. Probability of detection versus N (pfa = 0:001).

ceiver exhibits a much smaller performance loss. For example,
from to , the NLS processor loss
reaches 0.25 in both situations. On the contrary, the variation
observed on the of the LS receiver is smaller than 0.02.
These experiments demonstrate the robustness to shift errors of
the proposed detector when compared to the classical solution.

The robustness to shift errors exhibited by the LS processor
enables the reduction of its computational complexity (CC). The
CC is the number of operations (sums and multiplications) re-
quired by a processor per time unity. The costlier part of the LR
evaluation corresponds to the internal products between the ob-
servation process and the eigenvectors. The NLS and LS proces-
sors have, respectively, 1 and 2 nonzero eigenvalues. Therefore,
for a single LR computation, the LS processor performs approx-
imately twice the number of operations of the NLS receiver’s.
This means that the LS processor CC is smaller than the NLS’s
only if it achieves a similar performance while computing the
LRs at a rate at least half than the NLS processor’s rate.

In Figs. 5 and 6, we observe that the performance of the NLS
processor with a LR test interval equal to the sampling interval

is only slightly better than the LS processor,
when the LR tests are performed at every 2 sampling intervals

. In this case, the performance of both receivers is
identical for the same CC. However, while the performance of
the NLS processor degrades strongly for larger LR evaluation
time intervals, the LS receiver still presents a small performance
loss for . For example, from Fig. 6, we see that the NLS
processor achieves for , while for the
LS processor, for . Thus, we obtain a gain
of 50% in the CC at a small performance cost.

As a final remark, we note that the sampling frequency used in
the experiment is larger (about 2.5 times) than the Nyquist fre-
quency. When the sampling frequency gets closer to the Nyquist
rate, which is the case in some applications where a low compu-
tational cost is mandatory, the probability of detection obtained
for the NLS processor fades even faster than in the shown situa-
tion. For critical sampling rates, the performance of the LS pro-
cessor with may, in general, be better than the NLS
processor’s with (same CC for both detectors).

Fig. 6. Probability of detection versus N (pfa = 0:1).

V. SUMMARY

In this letter, we develop a detector for transient signals that
are known up to a random amplitude, which is based on a lo-
cally stationary (LS) description of the autocorrelation function
(ACF) of the signal to detect. The analytical relationship be-
tween the eigenfunctions of the ACF and those of its LS estimate
is also derived. The proposed detector is robust to shift errors
between the signal model and a transient present in the observa-
tion process, and therefore is suited for real-time processing. Its
performance/computational complexity improvement over the
classical detector is illustrated by a real-data case study.
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