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Chapter 1

Normal random variables

A random variableX is said to be normally distributed with meanµ and variance
σ2 if its probability density function (pdf) is

fX(x) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
, −∞ < x < ∞. (1.1)

Whenever there is no possible confusion between the random variableX and the
real argument,x, of the pdf this is simply represented byf(x) omitting the explicit
reference to the random variableX in the subscript. The Normal or Gaussian
distribution ofX is usually represented by,

X ∼ N (µ, σ2),

or also,
X ∼ N (x− µ, σ2).

The Normal or Gaussian pdf (1.1) is a bell-shaped curve that is symmetric about
the meanµ and that attains its maximum value of1√

2πσ
' 0.399

σ
at x = µ as

represented in Figure 1.1 forµ = 2 andσ2 = 1.52.
The Gaussian pdfN (µ, σ2) is completely characterized by the two parameters

µ andσ2, the first and second order moments, respectively, obtainable from the
pdf as

µ = E[X] =

∫ ∞

−∞
xf(x)dx, (1.2)

σ2 = E[(X − µ)2] =

∫ ∞

−∞
(x− µ)2f(x)dx (1.3)
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Figure 1.1: Gaussian or Normal pdf, N(2, 1.52)

The mean, or the expected value of the variable, is the centroid of the pdf. In
this particular case of Gaussian pdf, the mean is also the point at which the pdf is
maximum. The varianceσ2 is a measure of the dispersion of the random variable
around the mean.

The fact that (1.1) is completely characterized by two parameters, the first and
second order moments of the pdf, renders its use very common in characterizing
the uncertainty in various domains of application. For example, in robotics, it is
common to use Gaussian pdf to statistically characterize sensor measurements,
robot locations, map representations.

The pdfs represented in Figure 1.2 have the same mean,µ = 2, andσ2
1 >

σ2
2 > σ2

3 showing that the larger the variance the greater the dispersion around the
mean.
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Figure 1.2: Gaussian pdf with different variances (σ2
1 = 32, σ2

2 = 22, σ2
3 = 1)
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Definition 1.1 The square-root of the variance,σ, is usually known asstandard
deviation.

Given a real numberxa ∈ R, the probability that the random variableX ∼
N (µ, σ2) takes values less or equalxa is given by

Pr{X ≤ xa} =

∫ xa

−∞
f(x)dx =

∫ xa

−∞

1√
2πσ

exp

[
−(x− µ)2

2σ2

]
dx, (1.4)

represented by the shaded area in Figure 1.3.
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Figure 1.3: Probability evaluation using pdf

To evaluate the probability in (1.4) theerror function, erf(x), which is related
with N (0, 1),

erf(x) =
1√
2π

∫ x

0

exp−y2/2 dy (1.5)

plays a key role. In fact, with a change of variables, (1.4) may be rewritten as

Pr{X ≤ xa} =


0.5− erf(µ−xa

σ
) for xa ≤ µ

0.5 + erf(xa−µ
σ

) for xa ≥ µ

stating the importance of the error function, whose values for variousx are dis-
played in Table 1.1

In various aspects of robotics, in particular when dealing with uncertainty in
mobile robot localization, it is common the evaluation of the probability that a
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x erf x x erf x x erf x x erf x
0.05 0.01994 0.80 0.28814 1.55 0.43943 2.30 0.48928
0.10 0.03983 0.85 0.30234 1.60 0.44520 2.35 0.49061
0.15 0.05962 0.90 0.31594 1.65 0.45053 2.40 0.49180
0.20 0.07926 0.95 0.32894 1.70 0.45543 2.45 0.49286
0.25 0.09871 1.00 0.34134 1.75 0.45994 2.50 0.49379
0.30 0.11791 1.05 0.35314 1.80 0.46407 2.55 0.49461
0.35 0.13683 1.10 0.36433 1.85 0.46784 2.60 0.49534
0.40 0.15542 1.15 0.37493 1.90 0.47128 2.65 0.49597
0.45 0.17365 1.20 0.38493 1.95 0.47441 2.70 0.49653
0.50 0.19146 1.25 0.39435 2.00 0.47726 2.75 0.49702
0.55 0.20884 1.30 0.40320 2.05 0.47982 2.80 0.49744
0.60 0.22575 1.35 0.41149 2.10 0.48214 2.85 0.49781
0.65 0.24215 1.40 0.41924 2.15 0.48422 2.90 0.49813
0.70 0.25804 1.45 0.42647 2.20 0.48610 2.95 0.49841
0.75 0.27337 1.50 0.43319 2.25 0.48778 3.00 0.49865

Table 1.1: erf - Error function

random variableY (more generally a random vector representing the robot loca-
tion) lies in an interval around the mean valueµ. This interval is usually defined
in terms of the standard deviation,σ, or its multiples.

Using the error function, (1.5),the probability that the random variableX lies
in an interval whose width is related with the standard deviation, is

Pr{|X − µ| ≤ σ} = 2.erf(1) = 0.68268 (1.6)

Pr{|X − µ| ≤ 2σ} = 2.erf(2) = 0.95452 (1.7)

Pr{|X − µ| ≤ 3σ} = 2.erf(3) = 0.9973 (1.8)

In other words, the probability that a Gaussian random variable lies in the in-
terval [µ − 3σ, µ + 3σ] is equal to 0.9973. Figure 1.4 represents the situation
(1.6)corresponding to the probability ofX lying in the interval[µ− σ, µ + σ].

Another useful evaluation is the locus of values of the random variableX
where the pdf is greater or equal a given pre-specified valueK1, i.e.,

1√
2πσ

exp

[
−(x− µ)2

2σ2

]
≥ K1 ⇐⇒ (x− µ)2

2σ2
≤ K (1.9)
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Chapter 2

Normal random vectors

A random vectorX = [X1, X2, . . . Xn]T ∈ Rn is Gaussian if its pdf is

fX(x) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x−mX)T Σ−1(x−mX)

}
(2.1)

where

• mX = E(X) is the mean vector of the random vectorX,

• ΣX = E[(X −mX)(X −mX)T ] is the covariance matrix,

• n = dimX is the dimension of the random vector,

also represented as
X ∼ N (mX , ΣX).

In (2.1), it is assumed thatx is a vector of dimensionn and thatΣ−1 exists. If
Σ is simply non-negative definite, then one defines a Gaussian vector through the
characteristic function, [2].

The mean vectormX is the collection of the mean values of each of the random
variablesXi,

mX = E


X1

X2
...

Xn

 =


mX1

mX2

...
mXn

 .
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The covariance matrix is symmetric with elements,

ΣX = ΣT
X =

=


E(X1 −mX1)

2 E(X1 −mX1)(X2 −mX2) . . . E(X1 −mX1)(Xn −mXn)
E(X2 −mX2)(X1 −mX1) E(X2 −mX2)

2 . . . E(X2 −mX2)(Xn −mXn
)

...
...

E(Xn −mXn)(X1 −mX1) . . . . . . E(Xn −mXn)2

 .

The diagonal elements ofΣ are the variance of the random variablesXi and the
generic elementΣij = E(Xi−mXi

)(Xj −mXj
) represents the covariance of the

two random variablesXi andXj.
Similarly to the scalar case, the pdf of a Gaussian random vector is completely

characterized by its first and second moments, the mean vector and the covariance
matrix, respectively. This yields interesting properties, some of which are listed
in Chapter 3.

When studying the localization of autonomous robots, the random vectorX
plays the role of the robot’s location. Depending on the robot characteristics and
on the operating environment, the location may be expressed as:

• a two-dimensional vector with the position in a 2D environment,

• a three-dimensional vector (2d-position and orientation) representing a mo-
bile robot’s location in an horizontal environment,

• a six-dimensional vector (3 positions and 3 orientations) in an underwater
vehicle

When characterizing a 2D-laser scanner in a statistical framework, each range
measurement is associated with a given pan angle corresponding to the scanning
mechanism. Therefore the pair (distance, angle) may be considered as a random
vector whose statistical characterization depends on the physical principle of the
sensor device.

The above examples refer quantities, (e.g., robot position, sensor measure-
ments) that are not deterministic. To account for the associated uncertainties, we
consider them as random vectors. Moreover, we know how to deal with Gaussian
random vectors that show a number of nice properties; this (but not only) pushes
us to consider these random variables as been governed by a Gaussian distribution.

In many cases, we have to deal with low dimension Gaussian random vec-
tors (second or third dimension), and therefore it is useful that we particularize
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the n-dimensional general case to second order and present and illustrate some
properties.

The following section particularizes some results for a second order Gaussian
pdf.

2.1 Particularization for second order

In the first two above referred cases, the Gaussian random vector is of order two
or three. In this section we illustrate the case when n=2.

Let

Z =

[
X
Y

]
∈ 2,

be a second-order Gaussian random vector, with mean,

E[Z] = E

[
X
Y

]
=

[
mX

mY

]
(2.2)

and covariance matrix,

Σ =

[
σ2

X σXY

σXY σ2
Y

]
(2.3)

whereσ2
X andσ2

Y are the variances of the random variablesX andY andσXY is
the covariance ofX andY , defined below.

Definition 2.1 The covarianceσXY of the two random variablesX andY is the
number

σXY = E[(X −mX)(Y −mY )] (2.4)

wheremX = E(X) andmY = E(Y ).

Expanding the product (2.4), yields,

σXY = E(XY )−mXE(Y )−mY E(X) + mXmY (2.5)

= E(XY )− E(X)E(Y ) (2.6)

= E(X)−mXmY . (2.7)

Definition 2.2 Thecorrelation coefficientof the variablesX andY is defined as

ρ =
σXY

σXσY

(2.8)
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Result 2.1 The correlation coefficient and the covariance of the variablesX and
Y satisfy the following inequalities ,

|ρ| ≤ 1, |σXY | ≤ σXσY . (2.9)

Proof: [2] Consider the mean value of

E[a(X −mX) + (Y −mY )]2 = a2σ2
X + 2aσXY + σ2

Y

which is a positive quadratic for anya, and hence, the discriminant is negative,
i.e.,

σXY − σ2
Xσ2

Y ≤ 0

from where (2.9) results.
According to the previous definitions, the covariance matrix (2.3) is rewritten

as

Σ =

[
σ2

X ρσXσY

ρσXσY σ2
Y

]
. (2.10)

For this second-order case, the Gaussian pdf particularizes as, withz = [x y]T ∈
R2,

f(z) =
1

2π
√

detΣ
exp

[
−1

2
[x−mX y −mY ]Σ−1[x−mX y −mY ]T

]
(2.11)

=
1

2πσXσY

√
1− ρ2

exp
[
− 1

2(1− ρ2)

(
(x−mX)2

σ2
X

− 2ρ(x−mX)(y −mY )
σXσY

+
(y −mY )2

σ2
Y

)]
where the role played by the correlation coefficientρ is evident.

At this stage we present a set of definitions and properties that, even though
being valid for any two random variables,X andY , also apply to the case when
the random variables (rv) are Gaussian.

Definition 2.3 Independence
Two random variablesX andY are called independent if the joint pdf,f(x, y)

equals the product of the pdf of each random variable,f(x), f(y), i.e.,

f(x, y) = f(x)f(y)

In the case of Gaussian random variables, clearlyX andY are independent
whenρ = 0. This issue will be further explored later.
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Definition 2.4 Uncorrelatedness
Two random variblesX andY are called uncorrelated if their covariance is

zero, i.e.,
σXY = E[(X −mX)(Y −mY )] = 0,

which can be written in the following equivalent forms:

ρ = 0, E(XY ) = E(X)E(Y ).

Note that
E(X + Y ) = E(X) + E(Y )

but, in general,E(XY ) 6= E(X)E(Y ). However, whenX andY are uncorre-
lated,E(XY ) = E(X)E(Y ) according to Definition 2.4.

Definition 2.5 Orhthogonality
Two random variablesX andY are called orthognal if

E(XY ) = 0,

which is represented as
X ⊥ Y

Property 2.1 If X andY are uncorrelated, thenX −mX ⊥ Y −mY .

Property 2.2 If X and Y are uncorrelated andmX = 0 and mY = 0, then
X ⊥ Y .

Property 2.3 If two random variablesX and Y are independent, then they are
uncorrelated, i.e.,

f(x, y) = f(x)f(y) ⇒ E(XY ) = E(X)E(Y )

but the converse is not, in general, true.

Proof: From the definition of mean value,

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xyf(xy)dxdy

=

∫ ∞

−∞
xf(x)dx

∫ ∞

−∞
yf(y)dy = E(X)E(Y ).
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Property 2.4 If two Gaussian random variablesX andY are uncorrelated, they
are also independent, i.e., for Normal or Gaussian random variables,independency
is equivalent to uncorrelatedness. IfX ∼ N (µX , ΣX) andY ∼ N (µY , ΣY )

f(xy) = f(x)f(y) ⇔ E(XY ) = E(X)E(Y ) ⇔ ρ = 0.

Result 2.2 Variance of the sum of two random variablesLet X andY be two
random variables, jointly distributed, with meanmX and mY and correlation
coefficientρ and let

Z = X + Y.

Then,

E(Z) = mZ = E(X) + E(Y ) = mX + mY (2.12)

σ2
Z = E[(Z −mZ)2)] = σ2

X + 2ρσXσY + σ2
Y . (2.13)

Proof: Evaluating the second term in (2.13) yields:

σ2
Z = E[(X −mX) + (Y −mY )]2

= E[(X −mX)2] + 2E[(X −mX)(Y −mY )] + E[(Y −mY )2]

from where the result immediately holds.

Result 2.3 Variance of the sum of two uncorrelated random variables
Let X andY be two uncorrelated random variables, jointly distributed, with

meanmX andmY and let
Z = X + Y.

Then,
σ2

Z = σ2
X + σ2

Y (2.14)

i.e., if two random variables are uncorrelated, then the variance of their sum
equals the sum of their variances.

We regain the case of two jointly Gaussian random varaibles,X andY , with
pdf represented by (2.11) to analyze, in the plots of Gaussian pdfs, the influence
of the correlation coefficientρ in the bell-shaped pdf.

Figure 2.1 represents four distinct situations with zero mean and null corre-
lation betweenX andY , i.e., ρ = 0, but with different values of the standard
deviationsσX andσY . It is clear that, in all cases, the maximum of the pdf is ob-
tained for the mean value. Asρ = 0, i.e., the random variables are uncorrelated,
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Figure 2.1: Second-order Gaussian pdfs, withmX = mY = 0, ρ = 0 a) σX =
1, σY = 1, b) σX = 1.5, σY = 1.5, c) σX = 1, σY = 2.5, d) σX = 2, σY = 1
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the change in the standard deviationsσX andσY has independent effects in each
of the components. For example, in Figure 2.1-d) the spread around the mean is
greater along thex coordinate. Moreover, the locus of constant value of the pdf
is an ellipse with its axis parallel to thex andy axis. This ellipse has equal axis
length, i.e, is a circumference, when both random variables,X andY have the
same standard deviation,σX = sigmaY .

The examples in Figure 2.2 show the influence of the correlation coefficient
on the shape of the pdf. What happens is that the axis of the ellipse referred
before will no longer be parallel to the axisx andy. The greater the correlation
coefficient, the larger the misalignment of these axis. Whenρ = 1 or ρ = −1 the
axis of the ellipse has an angle ofπ/4 relative to thex-axis of the pdf.

2.2 Locus of constant probability

Similarly to what was considered for a Gaussian random variable, it is also useful
for a variety of applications and for a second order Gaussian random vector, to
evaluate the locus(x, y) for which the pdf is greater or equal a specified constant,
K1, i.e.,{

(x, y) :
1

2π
√

detΣ
exp

[
−1

2
[x−mX y −mY ]Σ−1[x−mX y −mY ]T

]
≥ K1

}
(2.15)

which is equivalent to{
(x, y) : [x−mX y −mY ]Σ−1

[
x−mX

y −mY

]
≤ K

}
(2.16)

with
K = −2 ln(2πK1

√
detΣ).

Figures 2.3 and 2.4 represent all the pairs(x, y) for which the pdf is less or
equal a given specified constantK1. The locus of constant value is an ellipse
with the axis parallel to thex and y coordinates whenρ = 0, i.e., when the
random variablesX andY are uncorrelated. Whenρ 6= 0 the ellipse axis are not
parallel with thex andy axis. The center of the ellipse coincides in all cases with
(mX , mY ).

The locus in (2.16) is the border and the inner points of an ellipse, centered in
(mX , mY ). The length of the ellipses axis and the angle they do with the axisx
andy are a function of the constantK, of the eigenvalues of the covariance matrix
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Figure 2.2: Second-order Gaussian pdfs, withmX = 1, mY = 2, σX =
1.5, σY = 1.5
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Σ and of the correlation coefficient. We will demonstrate this statement in two
different steps. We show that:

1. Case 1- if Σ in (2.16) is a diagonal matrix, which happens whenρ = 0, i.e.,
X andY are uncorrelated, the ellipse axis are parallel to the frame axis.

2. Case 2- if Σ in (2.16) is non-diagonal, i.e,ρ 6= 0, the ellipse axis are not
parallel to the frame axis.

In both cases, the length of the ellipse axis is related with the eigenvalues of
the covariance matrixΣ in (2.3) given by:

λ1 =
1

2

[
σ2

X + σ2
Y +

√
(σ2

X − σ2
Y )2 + 4σ2

Xσ2
Y ρ2

]
, (2.17)

λ2 =
1

2

[
σ2

X + σ2
Y −

√
(σ2

X − σ2
Y )2 + 4σ2

Xσ2
Y ρ2

]
. (2.18)

Case 1 - Diagonal covariance matrix
When ρ = 0, i.e., the variablesX andY are uncorrelated, the covariance

matrix is diagonal,

Σ =

[
σ2

X 0
0 σ2

Y

]
(2.19)

and the eigenvalues particularize toλ1 = σ2
X andλ2 = σ2

Y . In this particular case,
illustrated in Figure 2.5, the locus (2.16) may be written as{

(x, y) :
(x−mX)2

σ2
X

+
(y −mY )2

σ2
Y

≤ K

}
(2.20)

or also, {
(x, y) :

(x−mX)2

Kσ2
X

+
(y −mY )2

Kσ2
Y

≤ 1

}
. (2.21)

Figure 2.5 represents the ellipse that is the border of the locus in (2.21) having:

• x-axis with length2σX

√
K

• y-axis with length2σY

√
K.

Case 2 - Non-diagonal covariance matrix
When the covariance matrixΣ in (2.3) is non-diagonal, the ellipse that bor-

ders the locus (2.16) has center in(mX , mY ) but its axis are not aligned with the
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Figure 2.5: Locus of constant pdf: ellipse with axis parallel to the frame axis

coordinate frame. In the sequel we evaluate the angle between the ellipse axis and
those of the coordinate frame. With no loss of generality we will consider that
mX = mY = 0, i.e., the ellipse is centered in the coordinated frame. Therefore,
the locus under analysis is given by{

(x, y) : [x y]Σ−1

[
x
y

]
≤ K

}
(2.22)

whereΣ is the matrix in (2.3). As it is a symmetric matrix, the eigenvectors
corresponding to distinct eigenvalues are orthogonal. When

σX 6= σY

the eigenvalues (2.17) and (2.18) are distinct, the corresponding eigenvectors are
orthogonal and thereforeΣ has simple structure which means that there exists a
non-singular and unitary coordinate transformationT such that

Σ = T D T−1 (2.23)

where
T = [ v1 | v2 ], D = diag(λ1, λ2)

andv1, v2 are the unit-norm eigenvectors ofΣ associated withλ1 andλ2. Replac-
ing (2.23) in (2.22) yields{

(x, y) : [x y]TD−1T−1

[
x
y

]
≤ K

}
. (2.24)

19



Denoting [
w1

w2

]
= T−1

[
x
y

]
(2.25)

and given thatT T = T−1, it is immediate that (2.24) can be expressed as{
(w1, w2) : [w1 w2]

[
λ1 0
0 λ2

]−1 [
w1

w2

]
≤ K

}
(2.26)

that corresponds, in the new coordinate system defined by the axisw1 andw2,
to the locus bordered by an ellipse aligned with those axis. Given thatv1 andv2

are unit-norm orthogonal vectors, the coordinate transformation defined by (2.25)
corresponds to a rotation of the coordinate system(x, y), around its origin by an
angle

α =
1

2
tan−1

(
2ρσXσY

σ2
X − σ2

Y

)
, −π

4
≤ α ≤ π

4
, σX 6= σY . (2.27)

Evaluating (2.26), yields,{
(w1, w2) :

w2
1

Kλ1

+
w2

2

Kλ2

≤ 1

}
(2.28)

that corresponds to an ellipse having

• w1-axis with length2
√

Kλ1

• w2-axis with length2
√

Kλ2

as represented in Figure 2.6.
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Figure 2.6: Ellipses non-aligned with the coordinate axisx andy.
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Chapter 3

Properties

Let X andY be two jointly distributed Gaussian random vectors, of dimensionn
andm, respectively, i.e,

X ∼ N (mX , ΣX) Y ∼ N (mY , ΣY )

andΣX a square matrix of dimensionn andΣY a square matrix of dimensionm.

Result 3.1 The conditional pdf ofX andY is given by

f(x|y) =
1√

(2π)ndetΣ
exp

[
−1

2
(x−m)T Σ−1(x−m)

]
∼ N (m, Σ) (3.1)

with

m = E[X|Y ] = mX + ΣXY Σ−1
Y (Y −mY ) (3.2)

Σ = ΣX − ΣXY Σ−1
Y ΣY X (3.3)

The previous result states that, whenX andY are jointly Gaussian,f(x|y) is
also Gaussian with mean and covariance matrix given by (3.1) and (3.3), respec-
tively.

Result 3.2 Let X ∈ Rn, Y ∈ Rm andZ ∈ Rr be jointly distributed Gaussian
random vectors. IfY andZ are independent, then

E[X|Y, Z] = E[X|Y ] + E[X|Z]−mX (3.4)

whereE[X] = mX .
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Result 3.3 Let X ∈ Rn, Y ∈ Rm andZ ∈ Rr be jointly distributed Gaussian
random vectors. IfY andZ are not necessarily independent, then

E[X|Y, Z] = E[X|Y, Z̃] (3.5)

where
Z̃ = Z − E[Z|Y ]

yildeing
E[X|Y, Z] = E[X|Y ] + E[X|Z̃]−mX
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Chapter 4

Covariance matrices and error
ellipsoid

Let X be a n-dimensional Gaussian random vector, with

X ∼ N (mX , ΣX)

and consider a constant,K1 ∈ R. The locus for which the pdff(x) is greater or
equal a specified constantK1,i.e.,{

x :
1

(2π)n/2|Σ|1/2
exp

[
−1

2
[x−mX ]T Σ−1

X [x−mX ]

]
≥ K1

}
(4.1)

which is equivalent to{
x : [x−mX ]T Σ−1

X [x−mX ] ≤ K
}

(4.2)

with K = −2 ln((2π)n/2K1|Σ| 1/2) is an n-dimensional ellipsoid centered at the
meanmX and whose axis are only aligned with the cartesian frame if the covari-
ance matrixΣ is diagonal. The ellipsoid defined by (4.2) is the region of minimum
volume that contains a given probability mass under the Gaussian assumption.

When in (4.2) rather than having an inequality there is an equality, (4.2), i.e.,{
x : [x−mX ]T Σ−1

X [x−mX ] = K
}

this locus may be interpreted as the contours of equal probability.

Definition 4.1 Mahalanobis distanceThe scalar quantity

[x−mX ]T Σ−1
X [x−mX ] = K (4.3)

is known as the Mahalanobis distance of the vectorx to the meanmX .
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The Mahalanobis distance, is a normalized distance where normalization is
achieved through the covariance matrix. The surfaces on whichK is constant are
ellipsoids that are centered about the meanmX , and whose semi-axis are

√
K

times the eigenvalues ofΣX , as seen before. In the special case where the ran-
dom variables that are the components ofX are uncorrelated and with the same
variance, i.e., the covariance matrixΣ is a diagonal matrix with all its diagonal
elements equal, these surfaces are spheres, and the Mahalanobis distance becomes
equivalent to the Euclidean distance.
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(m
X
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Y
) 

Figure 4.1: Contours of equal Mahalanobis and Euclidean distance around
(mX , mY ) for a second order Gaussian random vector

Figure 4.1 represents the contours of equal Mahalanobis and Euclidean dis-
tance around(mX , mY ) for a second order Gaussian random vector. In oher
words, any point(x, y) in the ellipse is at the same Mahalanobis distance to the
center of the ellipses. Also, any point(x, y) in the circumference is at the same
Euclidean distance to the center. This plot enhances the fact that the Mahalanobis
distance is weighted by the covariance matrix.

For decision making purposes (e.g., the field-of-view, a validation gate), and
givenmX andΣX , it is necessary to determine the probability that a given vector
will lie within, say, the 90% confidence ellipse or ellipsoid given by (4.3). For
a givenK, the relationship betweenK and the probability of lying within the
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ellipsoid specified byK is, [3],

n = 1; Pr{x inside the ellipsoid} = − 1√
2π

+ 2erf(
√

K)

n = 2; Pr{xinside the ellipsoid} = 1− e−K/2

n = 3; Pr{x inside the ellipsoid} = − 1√
2π

+ 2erf(
√

K)−
√

2
π

√
Ke−K/2

(4.4)
wheren is the dimension of the random vector. Numeric values of the above
expression forn = 2 are presented in the following table

Probability K
50% 1.386
60% 1.832
70% 2.408
80% 3.219
90% 4.605

For a givenK the ellispoid axis are fixed. The probability that a given value of
the random vectorX lies within the ellipsoid centered in the mean value, increases
with the increase ofK.

This problem can be stated the other way around. In the case where we specify
a fixed probability value, the question is the value ofK that yields an ellipsoid
satisfying that probability. To answer the question the statistics ofK has to be
analyzed.

The scalar random variable (4.3) has a known random distribution, as stated
in the following result.

Result 4.1 Given then-dimensional Gaussian random vectorX, with meanmX

and covariance matrixΣX , the scalar random variableK defined by the quadratic
form

[x−mX ]T Σ−1
X [x−mX ] = K (4.5)

has a chi-square distribution withn degrees of freedom.

Proof: see, p.e., in [1].

The pdf ofK in (4.5), i.e., the chi-square density withn degrees of freedom
is, (see, p.e., [1])

f(k) =
1

2
n
2 Γ(n

2
)
k

n−2
2 exp−

k
2
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where the gamma function satisfies,

Γ(
1

2
) =

√
π, Γ(1) = 1 Γ(n + 1) = Γ(n).

The probability that the scalar random variable,K in (4.5) is less or equal a
given constant,χ2

p

Pr{K ≤ χ2
p} = Pr{[x−mX ]T Σ−1[x−mX ] ≤ χ2

p} = p

is given in the following table wheren is the number of degrees of freedom and
the sub-indicep in χ2

p represents the corresponding probability under evaluation.

n χ2
0.995 χ2

0.99 χ2
0.975 χ2

0.95 χ2
0.90 χ2

0.75 χ2
0.50 χ2

0.25 χ2
0.10 χ2

0.05

1 7.88 6.63 5.02 3.84 2.71 1.32 0.455 0.102 0.0158 0.0039
2 10.6 9.21 7.38 5.99 4.61 2.77 1.39 0.575 0.211 0.103
3 12.8 11.3 9.35 7.81 6.25 4.11 2.37 1.21 0.584 0.352
4 14.9 13.3 11.1 9.49 7.78 5.39 3.36 1.92 1.06 0.711

From this table we can conclude, for example, that for a third-order Gaussian
random vector,n = 3,

Pr{K ≤ 6.25} = Pr{[x−mX ]T Σ−1[x−mX ] ≤ 6.25} = 0.9

Example 4.1 Mobile robot localization and the error ellipsoid
This example illustrates the use of the error ellipses and ellipsoids in a partic-

ular application, the localization of a mobile robot operating in a given environ-
ment.

Consider a mobile platform, moving in an environment and letP ∈ R2 be the
position of the platform relative to a world frame.P has two components,

P =

[
X
Y

]
.

The exact value ofP is not known and we have to use any particular localization
algorithm to evaluateP . The most common algorithms combine internal and
external sensor measurements to yield an estimated value ofP .

The uncertainty associated with all the quantities involved in this procedure,
namely vehicle model, sensor measurements, environment map representation,
leads to considerP as a random vector. Gaussianity is assumed for simplicity.
Therefore, the localization algorithm provides an estimated value ofP , denoted
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asP̂ , which is the mean value of the Gaussian pdf, and the associated covariance
matrix, i.e.,

P ∼ N (P̂ , ΣP )

At each time step of the algorithm we do not know the exact value ofP , but we
have an estimated value,̂P and a measure of the uncertainty of this estimate,
given byΣP . The evident question is the following: ”Where is the robot?”, i.e.,
”What is the exact value ofP ”? It is not possible to give a direct answer to this
question, but rather a probabilistic one. We may answer, for example: ”GivenP̂
andΣP , with 90% of probability, the robot is located in an ellipse centered inP̂
and whose border is defined according to the Mahalanobis distance”. In this case
the value ofK in (4.5) will beK = 4.61.

Someone may say that, for the involved application, a probability of90% is
small and ask to have an answer with an higher probability, for example99%.
The answer will be similar but, in this case, the error ellipse, will be defined for
K = 9.21, i.e.,the ellipse will be larger than the previous one.
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