
Emotion-based Agents: Three approaches to implementation(Preliminary Report)Rodrigo Ventura and Carlos Pinto-FerreiraInstituto de Sistemas e Rob�oticaInstituto Superior T�ecnicoRua Rovisco Pais, 11049-001 LisboaPortugalemails: fyoda,cpfg@isr.ist.utl.ptAbstractThis paper describes three implementations of anemotion-based agent architecture previously describedin (Ventura & Pinto-Ferreira 1998a; Ventura, Cust�odio,& Pinto-Ferreira 1998a; Ventura & Pinto-Ferreira1998b; Ventura, Cust�odio, & Pinto-Ferreira 1998b).This architecture is based upon the Damasio �ndingson the neurophysiological foundations of human emo-tions (Damasio 1994). The underlying model is brieydescribed in the �rst two sections. Then, the imple-mentations are presented, along with some experimen-tal results. IntroductionAccording to Damasio (Damasio 1994), some aspectsof human intelligence, namely the ability to makeappropriate decisions in dynamic, complex, and un-predictable environments, depend on emotions. Thispaper follows previous theoretical work (Ventura &Pinto-Ferreira 1998a; Ventura, Cust�odio, & Pinto-Ferreira 1998a; Ventura & Pinto-Ferreira 1998b; Ven-tura, Cust�odio, & Pinto-Ferreira 1998b) on develop-ing a prescriptive model of emotion-based agents. Thismodel is distinguished from the descriptive model pre-sented by Damasio, which as a consequence, is muchmore abstract and complex, in the sense of attemptingto describe the human brain.To validate the referred theoretical framework, threeimplementations were constructed and experimented,using di�erent approaches. The obtained results arepresented, showing some aspects of the proposed model.The seminal publications of Sloman (Sloman &Croucher 1981) and Minsky (Minsky 1988) stated theneed to research emotions in the context of Arti�cial In-telligence. However, the �eld of arti�cial emotions (ora�ective computing, as Picard prefers to name it) onlystarted to gain some momentum after the publicationof the inuential books of Damasio (Damasio 1994) andGoleman (Goleman 1996).Some current related work in this �eld can be foundin (Vel�asquez 1997), where the approach is based on theMinsky's Society of Mind paradigm (Minsky 1988). Hiswork has evolved thereafter to include Damasio (Dama-sio 1994) ideas (Vel�asquez 1998a; 1998b; 1998c). Tak-

ing a robotic learning approach, Gadanho (Gadanho &Hallam 1998b; 1998a) came up with a model also basedon the Damasio work (Damasio 1994). The OCC the-ory of emotions (Ortony, Clore, & Collins 1988) hasalso served as an inspiration for several AI models ofemotions, such as the Em module of OZ project (Reilly& Bates 1992; Bates, Loyall, & Reilly 1992), and theTABASCO architecture (Staller & Petta 1998), basedon the emotion appraisal theory. On the side of a�ec-tive computing (Picard 1997), i.e., the human-machineinteraction on an emotional basis, Picard (Picard 1995;Vyzas & Picard 1998) and Ca~namero (Ca~namero 1997)have developed some interesting research paths.There are several aspects that distinguish the modeldeveloped by the authors and other approaches. Onthe one hand, the model is oriented towards the emer-gence of arti�cial emotional behavior from a particulararchitecture, without an a priori de�nition of human-like emotions. There are a reason for this: the objectiveof this research is not explaining human emotions (andfeelings, in the Damasio de�nition (Damasio 1994)) butrather creating a theoretical and abstract frameworkuncompromised with human emotions. On the otherhand, besides and beyond mimicking emotional behav-ior, this approach aims at covering more generic aspectsof intelligence, such as primordial meaning (Ventura &Pinto-Ferreira 1998b), relevance assessment (Ventura,Cust�odio, & Pinto-Ferreira 1998a), and decision mak-ing under partial ignorance. A �nal concern also in-cludes e�cient response to the environment (Ventura& Pinto-Ferreira 1998a).In the following section, the foundations of the modelare briey described. In section 3, the model is pre-sented, which will be used in section 4. This papersends with some conclusions and related work.FoundationsThe intelligence that distinguishes humans from othermammals is related with cognitive functions, such asreasoning, planning, and so on. These abilities are com-monly associated with the neocortex. But according toDamasio, even these higher cognitive abilities use emo-tions to function properly (Damasio 1994).To explain the role of emotions in rationality, Dama-



sio raises the somatic marker hypothesis (Damasio1994): certain experienced events left an associationbetween the perceptual stimulus1 and the response itelicited in the body (e.g., gut feeling). In other words,some images perceived during the event became markedwith a representation of the body state at that time.Furthermore, the establishment of somatic marks maynot require the actual presence of stimuli eliciting abody state. Previous somatic marks can be propa-gated through associations, for instance. The way thispropagation occurs is not explicit in Damasio litera-ture (Damasio 1994). While it is essential to a pre-scriptive model, it may be considered secondary for adescriptive one. The ModelThe model presented in this paper is based on a double-representation paradigm previously discussed in (Ven-tura & Pinto-Ferreira 1998a; Ventura, Cust�odio, &Pinto-Ferreira 1998b; 1998a). It is hypothesized thatstimuli are processed under two di�erent perspectives.The �rst one extracts a cognitive image aimed at pat-tern matching and it is rich enough to allow a fairlygood reconstruction of the original stimulus, and thesecond one creates a perceptual image that is a sim-ple, small, reduced set of essential features which are\meaningful" to the agent in the sense that they formthe built-in substratum (e.g., a vector of features likesize, fast movement, quick approach, dominant color,etc.). This double representation spawns a major divi-sion of the model into a cognitive and a perceptual layer(see �gure 1). It is important to stress that althoughthe term \perceptual" is being assigned to the percep-tual layer, both layers do respond to perceived stimuli.The use of the term \perceptual" aims at distinguishingit from the cognitive kind of processing. The perceptualprocessing is centered on a small set of basic featuresextracted from an input stimulus.Besides the perceptual image, there is another rep-resentation in the perceptual layer termed DesirabilityVector (DV for short). Each one of the DV compo-nents represents a basic kind of assessment of a stim-ulus. Each component can be either activated or neu-tral (varying either discretely or continuously). Neutralcomponents mean no assessment. But when a certaincomponent is activated, it means that the stimulus trig-gers a speci�c basic assessment, e.g., is it good? is itbad? Certain basic stimuli are able to trigger, at a �rstlevel, certain components of the DV. For instance, athreatening stimulus, may activate a \fear" DV com-ponent, which ultimately generates a fear behavior.Here follows a summary of how the model works: inresponse to an external stimulus, the cognitive and theperceptual layer process it in parallel. At the perceptuallayer, there is a direct map between stimuli and the DV.1Also termed image in this paper, including not onlyvisual images, but also information originating from othersensors, such as auditory, tactile, and so on.
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Figure 1: The complete picture of the proposed model,containing all the components discussed in the abovesections.When the agent is built, a part of this mapping mustalready exist, in order to allow it to bootstrap. Further-more, this map is able to be adaptive. This forms a kindof implicit memory, termed perceptual memory. On theother hand, the cognitive processor looks for matchesin the main memory. This memory contains experi-enced associations, but unlike the perceptual memory,these associations are individually stored as represent-ing events2. These associations contain both the cogni-tive image, the corresponding DV, and the perceptualimage. The origin of this DV comes primarily fromthe perceptual layer, but one can also consider propa-gating DV instances from other associations. This is away to allow the agent to associate cognitive images toDV instances, even when faced with a situation wherethe input stimulus does not deliver (in the perceptualmapping) a signi�cant DV. This memory is here termedmain memory. The working memory holds the inputcognitive image, the DV (and optionally the percep-tual image), as well as the results from the matchingprocess (or any other higher-level cognitive processes).The action, in response to the stimulus (if any) comesprimarily from the DV, although there is provision foractions originating from the cognitive layer. If the agentdecides on any action, it may produce alterations in theenvironment, which can be perceived by the agent as afeedback stimulus. This new stimulus tells the agentthe result of its action. It is fed into the architecture,in order to make the agent learn. This learning can beaccomplished at several levels: at the perceptual layer,it can adapt the perceptual map to be sensible to newstimuli, and at the cognitive layer, it can mark (oneor more) cognitive images with the DV, along with theaction that led to the environment feedback.ImplementationThis section describes three implementations of the pro-posed model. The common ground for the implemen-tations is an episodic environment. Each episode startswith a stimulus applied to the agent, followed by the2Note that in the future, other kinds of representationsother than events may take place in this memory.
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Figure 2: Architecture of the damasio implementation.agent decision/action, and possibly a response from theenvironment in the form of a second stimulus.The damasio implementationThe �rst implementation is called damasio and it aimsat experimenting the marking mechanism described inthe previous section. To understand the basic idea, pic-ture a person being frightened by the occurrence of athunder. After a quick ash of light, (s)he is stricken bythe scary sound of a thunder. Assume that the grouplightning and thunder can be considered as a single,complex stimulus because of the short time lapse sepa-rating these two events. Furthermore, assume that thelightning is far away from the observer, and as con-sequence, it only has a relevant cognitive image (lowperceptual relevance) whereas the thunder contains astrong perceptual impression (because of its intensity).Of course each of these aspects of the complex stimuluscan be considered as having both cognitive and percep-tual parts. According to the model, (s)he then forms anassociation between the ash of light (cognitive part)and the thunder (perceptual part). Then, every time(s)he senses the ash of light alone, the memory of athunder is recalled, indicating the scary nature of thestimulus.In this implementation, stimuli are delivered to theagent pairwise: a cognitive stimulus and a perceptualstimulus, both implemented using bidimensional realvectors. The rationale is to view the absolute posi-tion of the vector in the 2D real plane as a cognitiverepresentation, and to interpret the perceptual vectorin an hardwired fashion: the �rst and second compo-nents denote \amounts" of positiveness and negative-ness of the stimulus. For instance, the stimulus pair<(2; 4); (0:9; 0)> denotes a very positive stimulus (con-sidering the perceptual vector components ranging from0 to 1) consisting of a point in the plane with coordi-nates (2; 4).The architecture of this implementation is shown in�gure 2. The agent perceives external stimuli throughtwo channels: the cognitive part of the stimulus (e.g.,shape of the lightning), and the perceptual one (e.g.,the thunder). There is a (short-term) working memory,where the present input is used to recall past associ-ations, and an output is obtained; and a (long-term)

main memory, where associations are stored throughoutthe agent life. The recalled associations are combinedwith the environment input to derive a body response(labeled \somatic mark"). This body response (labeled\somatic response") is used to trigger a decision (pos-itive or negative, for simplicity | \is it good?" or \isit bad?"), and to update the association, depending onits similitude to the stimulus.The system works as follows: each stimulus corre-sponds to a pair (cognitive, perceptual) of vectors. Thecognitive vector is copied into the working memory, andthe main memory is browsed for similar vectors. Forsimplicity, all associations from the main memory areconsidered, but only a pre-de�ned number of the mostsimilar ones are chosen and copied to the working mem-ory. In the working memory, these associations formframes. A frame contains the recalled association (thecognitive vector and a mark vector), and the similaritymeasure. Next, each of these frames are combined withthe perceptual input. Figure 3 shows this mechanismin detail.
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Figure 3: Marking mechanism in the damasio imple-mentation. A body response (\somatic response") andan updated mark is computed, from the perceptual in-put, the old mark, and a similarity measure.Using the perceptual image, the mark, and the sim-ilarity measure (termed \relevance"), a body (\so-matic") response and an updated mark are computed.This mark is associated to the originating association,and supersedes the corresponding association in themain memory. Note that the incoming stimulus always



forms a new frame in the working memory, and its markis initially put to zero (null vector), and the similar-ity measure put to 1 (maximum similarity). For eachframe Fn (n = 1; 2; : : :), these operations are performedaccording to the formulasRn = �IP + (1� �)snMn (1)M 0n = �snRn (2)where IP stands for the perceptual image, Mn and snfor the frame mark and its similarity measure, Rn thebody response, and M 0n for the updated mark value.The rationale behind equation (1) is to linearly inter-polate between the present perceptual image and thebody response marked on the recalled image, weightedby the similarity measure s (relevance), which rangesfrom 0 (not similar at all) and 1 (maximum similar-ity). This interpolation is controlled by the � coe�-cient (0 � � � 1). The role of sn is to allow therecalled mark to inuence the outcoming somatic re-sponse Rn, depending on the similarity found betweenthe present stimulus and the recalled one. Strong markson very similar stimulus should elicit higher body re-sponses than less similar ones. This similarity measuresn accounts not only for the cognitive image similari-ties, but also for the perceptual image. With respectto (2), the idea is to update the new mark M 0n accord-ing to two coe�cients: the similarity measure (the moresimilar the stimulus is, the more it should be updated),and a learning rate �.As it was previously noted, both the cognitive andperceptual images are bidimensional vectors, as well asthe referred marks. The similarity measure is evaluatedusing the following expression:d(u; v) = exp �tq(u1 � u2)2 + (v1 � v2)2� (3)where u = (u1; u2) and v = (v1; v2) are the consideredimages. The constant t < 0 conditions the decay rate asu and v become apart. This constant can be interpretedas a tolerance value | \how much shall I consider this(non-identical) image pair similar?". The expressionused for measuring mark similarities is the same. Thetotal similarity, between the stimulus and the recalledframe is weighted by � (0 � � � 1) between these twomeasures:s = �d(IC ; IMCn) + (1� �)d(IP ;Mn) (4)where IC and (IMCn) denote the input and the recalledcognitive images.The experimental setup for this implementation com-prises three phases. First, a set of four stimuli was pre-sented, two of them strongly positive, and the other twostrongly negative. These stimuli are called A1-, A2+,A3+, and A4-. The ending signal is + or - dependingon whether they are positive or negative. The location

of the stimuli in the Cartesian plane is shown in �g-ure 4 as bullets. Positive stimuli have perceptual imageIP = (0:8; 0) while the negative ones have IP = (0; 0:8).The agent was sequentially stimulated with this set offour stimuli four times, in order to get them clearlymarked in the agent memory.
�
�
�
��
�
�
�

�
�
�
�

-2 7 8 10

-3

2

8
9

A1-

A2+

A3+

A4-

B1+

B3+

B2-

-1

-1
B4-

C1-,C2+

C3+C4-

Figure 4: Location of the stimulus cognitive image vec-tors in the damasio experiment. See text for the exper-iment description, as well as the used notation.Next, a series of four stimuli with null perceptual im-age IP = (0; 0) were applied. These stimuli are denotedB1+, B2-, B3+, and B4-, where the signal now repre-sents the agent assessment, i.e., whether the strongestclassi�cation is positive or negative. As expected, theseresults are consistent with the closest stimuli experi-enced in the �rst phase. This shows that after the agentbeing submitted to a set of \strong" stimuli, it learnt,and when stimulated with null perceptual image stim-uli, the agent was able to classify them according toits previous experience. The output of the implemen-tation can be seen below, where for each stimulus, the\strongest" frame n is shown:IC IP IMCn sn Rn D(7,8) (0,0) (8,9) 0.394 (0.254,0) +(10,9) (0,0) (10,8) 0.494 (0,0.319) {(0,0) (0,0) (-2,2) 0.247 (0.160,0) +(-1,-1) (0,0) (-2,-3) 0.286 (0,0.184) {Finally, an experiment to test the expert discrimi-nation capability of the agent. A stimulus C1- withnull perceptual image was applied, and as expected,the agent answered with a negative assessment (closestto A4-). Then, a positively marked stimulus C2+ wasapplied (IP = (0:8; 0)). Two \colorless" (IP = (0; 0))stimuli, C3+ and C4-, were applied, resulting in a pos-itive to the �rst and negative to the second. Given anew scenario with the new stimulus C2+, the agent an-



swered coherently, showing its ability to discriminatebetween C3+ and C4-:IC IP IMCn sn Rn D(0,-3) (0,0) (-2,-3) 0.308 (0,0.173) {(0,-3) (.8,0) (0,-3) 1 (0.8,0) +(0,-2.5) (0,0) (0,-3) 0.685 (0.384,0) +(-2,-2.5) (0,0) (-2,-3) 0.685 (0,0.332) {These experiments were performed setting the pa-rameters � = 0:3, � = 1, and the working memorywas limited to 5 frames. These constants conditionthe behavior of the agent in ways that allow someinteresting considerations on possible interpretations.For instance, taking the � parameter, which interpo-lates the somatic response between the perceptual im-age and the recalled mark, when signi�cantly reduced(say, � = 0:05), makes the agent less sensible to theperceptual image, relying more on its past experiencethan in present reality. Consider that right after the ini-tial sequence of stimuli A1 to A4, is applied a stimuluswith cognitive image (10; 9) (same as B2 ) and percep-tual image set to (0:4; 0) (mild positive). With � = 0:3the agent accepts the new stimulus, assigning a positiveclassi�cation (it disregards the \negative experience" ofA1-):IC IP IMCn sn Rn D(10,9) (0.4,0) (10,9) 1 (0.4,0) +But when the � parameter is reduced to 0:05, the agentdisregards now the positive perceptual image, assessingthe stimulus as negative (due to the inuence of A1-):IC IP IMCn sn Rn D(10,9) (0.4,0) (10,8) 0.494 (0.020,0.433) {How can this behavior be interpreted? The � parame-ter plays an interesting role of making the agent moreor less trustful of the perceptual, when faced with acontradictory past experience. This result has somesimilarity with a \superstitious" behavior.This implementation deals only with the markingmechanism. The stimuli are very basic, not reectingthe complex nature of the cognitive memory. Further-more, there is no action (and consequently no percep-tual feedback). Associations are always done, �lling theagent memory with data that may not be relevant. Butthe results are interesting, in the sense of showing themarking and the memory retrieval mechanisms.The faces ImplementationThis implementation presents several sophisticationover the preceding one. The objective is to experimentwith more complex stimuli models, as well as the envi-

ronment feedback. So, the stimuli (equal to the cogni-tive images) are a square set of polychromatic pixels (16by 16). The mapping between the stimulus and the DVis �xed by design. In fact, the perceptual map discussedin the section used the perceptual image as an interme-diate representation. This perceptual image contains aset of basic features extracted from the stimulus. Thesefeatures are then mapped into the DV. Both maps arehard-wired.The agent perception of the environment is limited tothe 16 by 16 pixel images. Each pixel is one of blank(background), black, green, or red. The agent canhave one of three decisions: none (inaction), accept, orreject. The perceptual features extracted are: numberof red pixels (assessment of \redness"), number or greenpixels (assessment of \greenness"), and total number ofnon-blank pixels (measure of object size). The DV hasthree components: three boolean components, indicat-ing whether or not the stimulus is \good," \bad," or\deadly" (i.e., very dangerous). The perceptual imageis mapped into the DV using a set of thresholds. Forinstance, if the total number of pixels is above a pre-determined threshold, and the number of green pixels isabove another threshold, the \good" components of theDV is activated. In this implementation, the presenceof green pixels corresponds to a \good" stimulus, whilered pixels denote a \bad" one.The model of this implementation is depicted in �g-ure 5. The cognitive layer uses both the cognitive andthe perceptual images to search for a memory match.The perceptual image is �rst used to select a limitedset of candidate memory associations (termed memoryframes). Note that this is an implementation of an in-dexing mechanism raised in the section . From those,the cognitive image selects the best match. If threeconditions hold, the frame action is selected. Other-wise, the direct perceptual path is used to derive theaction. These conditions are: there is a match, the dif-ference measure between the cognitive image and thememory frame is below a certain threshold. This di�er-ence measure is simply the Hamming distance betweenthe two images3.
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Figure 6: Screenshot of the faces implementation: a smiling face with some green pixels.cide on the next action, based on the past experience.When a memory frame is selected as a match for thecurrent stimulus, its action list is browsed, and the ac-tion that leads to the most favorable scenario is cho-sen. Each scenario is evaluated according to its DV(the positive component means +1, the negative -1, andthe \deadly" -10; the heuristic to be minimized is thesum of the values of the corresponding activated com-ponents). If no match is found, or there is no actionlist, the agent acts accordingly to a built-in DV actionmap (negative or \deadly" leads to a reject, positiveto an accept, and none otherwise).After the agent action, the feedback stimulus is ap-plied to the system, and the resulting memory frame isstored in the main memory. Furthermore, the action listof the original stimulus frame (before the action be per-formed) is updated/set, pointing to the feedback frame.Next time the agent faces a similar situation where thisframe is recalled, it will know what to expect from thecorresponding action.An illustrative experiment will be presented below,consisting of a sequence of stimuli. In the followingscreenshots, green pixels are denoted by ( ), and redpixels by ( ). Prior to the agent �rst stimulus, thememory is blank. The �rst stimulus (�gure 6) consistsin a smiling face silhouette with some green pixels (aperceptual positive DV). The agent uses the perceptualassessment indicating an accept action. The environ-ment responds with a all-green face (i.e., positive DV).The corresponding association is formed and stored inmemory.Next, a colorless face, which is similar to the �rst one,is presented (�gure 7). The agent recalls the previousassociation, and chooses to accept the stimulus. How-ever, if this stimulus were presented without the formerassociation, the action would be none | the stimuluswould be mapped by the perceptual layer to a null DV.An interesting result is obtained when now, a simi-

Figure 7: Screenshot of the faces implementation: asimilar smiling face all in black.lar face is shown, containing some red pixels (�gure 8).In this case, the recalled association is used to overridethe perceptual impulse to reject the stimulus, so aaccepting it. This case illustrates the role of the cog-nitive layer in providing a re�ned response, than thebasic perceptual one. Using the same line of reason-ing, if this stimulus were shown prior to the �rst of thesequence, the agent would reject it.
Figure 8: Screenshot of the faces implementation:a similar smiling face but with some red pixels (the\eyes").At last, a di�erent face is shown (with some red pixels,�gure 9), and unlike the previous stimulus, because thisface is \unknown" to the cognitive layer, the action isreject, following the perceptual negative assessment.Other experiments were performed with the archi-



Figure 9: Screenshot of the faces implementation: adistinct face with some red pixels.tecture, showing another interesting results. For in-stance, if the acceptance of the stimulus of the �gure 6had a negative response (e.g., a very \red" face), nexttime that same stimulus was presented, the agent wouldreject it. When the action resulting from a given stim-ulus is answered with a negative response, the agent willnot repeat the mistake | other actions are \tried" in aseek for a better response. The frame that this actionpoints to has a negative DV, making the agent to avoidit.It is very clear in this implementation, the role of thebuilt-in knowledge. The mechanism that is behind theagent behavior facing environment stimuli, is encodedin the perceptual layer. Namely in the perceptual map-ping between stimuli and the DV. It is on top this layerthat the cognitive layer works. When the simplicity ofthe perceptual layer is not enough to cope with a com-plex environment, the cognitive one jumps in, providingthe \knowledge" gained from past experience.The decks ImplementationThe objective of the decks implementation is to repro-duce the results of the deck game (�gure 10) describedby Damasio ((Damasio 1994) page 212), using the pro-posed model. This game consists of four decks | Athrough D. The subject is asked to turn a card, froma deck of her/his choice, then the (s)he is told whetherthat card made her/him lose or gain a certain amountof (fake) money (from a start loan of $2,000).In a simpli�ed version of the original game (Becharaet al. 1994; 1997), decks A and B usually give $100except for a few cards that make the player lose -$1250,while decks C and D usually give a lower value of $50where there are more frequent losses of -$250. The netpro�t of decks A and B is negative, while decks C andD provide a positive one.In the original experiment (Damasio 1994) normalpeople usually started the game trying each one of thedecks, but soon after taking note of the high losses re-sulted from the A and B decks, they converged takingcards only from decks C and D. However, patients withprefrontal lobes lesions, kept on taking cards from theapparently more pro�table decks A and B, insensitiveto the high losses that, now and then, cards from thosedecks undertook (�gure 10). These patients were unableto recall the risk of choosing A or B deck cards (i.e.,

its somatic marker), and kept on choosing the imme-diate higher value of these decks. Damasio called thisphenomenon \myopia for the future" (Damasio 1994).

Figure 10: Number of selections from each of the decks,in normal subjects and frontal patients. (From (Dama-sio 1994) page 215, reprint by courtesy of the author.)In terms of the implementation, the environment isepisodic, with an environment feedback phase. First,four stimuli are simultaneously presented to the agent(four symbols, corresponding to the four decks: A, B,C, and D ; if a deck is empty, it is not presented tothe agent). The agent action is simply the choice of adeck. The environment responds with the amount ofmoney gained/lost. Each stimulus encompasses a pairof symbol and money amount gained (negative, if lost).In the �rst phase, the second components of all stimuliare null (the card amount is obviously hidden). Onlyafter the action the reward associated with the chosencard is revealed. The perceptual layer only extracts themoney amount (the perceptual image), while the cog-nitive layer extracts the symbol. The DV has only two(boolean) components, one for positive and other fornegative assessment of the deck. The mapping betweenthe perceptual image and the DV activates the posi-tive component if the amount greater than zero, or thenegative component when it is less than zero.The model of this implementation is identical the onerepresented in �gure 1. An important innovation facingthe previous two implementations is the adaptability ofthe perceptual layer. Both kinds of learning are im-plemented: the cognitive event-based learning, and theperceptual mapping-based learning. When the agent isfaced with the four decks, the perceptual layer is able togive an immediate assessment of the desirability of eachdeck, while the cognitive layer browses the memory forpast events associated with each deck. With all thisinformation in the working memory, the agent decideswhich deck to choose.The working memory is organized in clusters offrames. Each cluster corresponds to a speci�c deck,and contains the input stimulus (the deck symbol only),



the perceptual frame (the expected perceptual imageand the expected DV, or in other words, the expectedamount of gain/loss), and the frames recalled frommemory (obtained by the cognitive layer). When eachframe is complete, a representative frame is chosen foreach cluster. Then, all the clusters with a negative DVare rejected, and a deck is randomly chosen from theremaining ones. In fact, the perceptual value is used toweight this random choice, in order to make the agentprefer higher value cards. But if all clusters are re-jected, then the action is randomly chosen from all theavailable decks, also using a weight factor.After choosing the deck, the environment respondswith a feedback stimulus, now containing not only thesymbol of the deck, but also the amount of moneygained/lost. This information is used to update theperceptual map (according to a learning rate), and toadd the frame to the main memory, associating the cog-nitive and the perceptual images, along with the DV(mapped from the perceptual image, i.e., the amountof money). This perceptual image can be interpretedhere as the expected gain. In the perceptual layer learn-ing, the update rule of this expected value is simply:V 0m = �Vp + (1� �)Vm (5)where the new memory frame expected value V 0m is in-terpolated between its former value Vm and the feed-back value Vp, using the learning rate �.In order to simulate the behavior of the frontal (ab-normal) patients playing this game, the agent was pre-vented from recalling memory frames. Then, the per-ceptual layer was left alone to decide which deck tochoose, preferring the decks A and B, because of themost frequent $100 cards. As an example, setting thelearning rate parameter to � = 0:001, the obtained re-sults, shown in �gure 11, are similar with the Damasioexperiments results of �gure 10.
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Figure 11: Results from the decks implementation.The average number of picks for each deck is shown.The average was taken over 200 experiments of 100turns each. The � parameter was set to 0:001.These results illustrate the distinct natures of thelearning process performed by each layer. But they are

not to be considered separately. Although the percep-tual layer is able to work by itself, the same cannot besaid about the cognitive layer. This is because the cog-nitive layer uses the perceptual representation, in orderto contribute to an overall enriched behavior.Conclusions and Future WorkOne of the interesting results got from the implemen-tation of the theoretical model is that the developedagents exhibit a behavior that can be seen as \emo-tional." This assertion deserves some explanation. Itwas assumed by the authors that the endeavor of for-mally de�ning the concept of emotion is not worth pur-suing | at least in what concerns \arti�cial emotions."(For instance, it is a waste of time to create a de�-nition of intelligence in order to explain whether anagent exhibits arti�cial intelligence or not). From abehavioral point of view, all the three implementationsshow the ability of dealing with unpredictable stimuli,making adequate decisions e�ciently, i.e., without theneed of wasting time in exhaustively analyzing the cog-nitive aspect of the stimuli. Recall that e�ciency is acharacteristic of emotional decision systems (Damasio1994). This quick response to the environment shouldnot be confused with the one exhibited by reactive sys-tems. Although the latter uses the environment as thesole representational mechanism, the former is able tobuild its own associations to learn with the environ-ment. Other characteristic which can be associatedwith emotional decision making is the ability of con-structing a certain kind of meaning bootstrapped ontop of a basic set of built-in associations. This basic as-sociations were essential to ensure the adequacy of theimplemented agent decision making process. For exam-ple, recall that in the decks implementation the agentdecided based on the \semantics" of the perceptual im-age previously associated with losses and gains.It is important to note that this model is still unableto explain certain \high-level" emotions, such as shameand guilt. The rationale behind the development of thismodel is to �rst cover the most basic aspects of emo-tions, according to Damasio. In the presented model,the DV is directly related with action, which it seems itis not the case with shame or guilt. It is assumed thatonly after most basic aspects of the model are mastered,one can worry about these \high-level" emotions, whichare more indirectly connected with the agent action.The model presented in this paper along with the de-scribed implementations leave open a variety of ques-tions, possibly leading to some interesting researchpaths. In the last implementation, two distinct kinds oflearning were implemented: one in the perceptual layer,which resembles reinforcement learning in the aspectof updating through time a set of parameters accord-ing to a feedback from the environment, and anotherat the cognitive layer, which is basically an instance-based kind of learning (Mitchell 1997). However, thesetwo learning processes are not independent: they worktogether. It would be useful to study the theoretical



implications of having these two learning processes in-tertwined this way. A second path of research is relatedwith the inclusion of more complex emotions (e.g., guilt,shame) which are indirectly related to the agent ac-tion. Finally, it is necessary to move out of the simpleepisodic environments used in the described implemen-tations, either by applying the model to environmentsrequiring some elaborative abilities, or by experiment-ing with real robots in the physical world. In eithercase, some useful lessons can be taken from the work ofPiaget (Piaget & Inhelder 1969). His research on childdevelopment provide interesting cues on how progres-sively complex cognitive abilities appear on top of morebasic ones.The ultimate goal of this research is to build agents(namely embodied in physical robots) that are able tocope with the dynamic and complex environments hu-mans live in, learn to interact with them, and to showintelligent behavior in domains for which it was notspeci�cally programmed. Picture for instance teachinga robot to play chess, not by developing search algo-rithms and �ne-tuning heuristics, but by showing it anactual chess board, the pieces, the rules, and allow-ing it to develop itself by playing, rather than simplyprogramming it in a way that reects the ideas of theprogrammers. ReferencesBates, J.; Loyall, A. B.; and Reilly, W. S. 1992. Anarchitecture for action, emotion, and social behavior.In Proceedings of the Fourth European Workshop onModeling Autonomous Agents in a Multi-Agent World,Decentralized AI Series. Elsevier/North Holland.Bechara, A.; Damasio, A. R.; Damasio, H.; and Ander-son, S. W. 1994. Insensitivity to future consequencesfollowing damage to human prefrontal cortex. Cogni-tion 50:7{15.Bechara, A.; Damasio, H.; Tranel, D.; and Damasio,A. R. 1997. Decising advantageously before knowingthe advantageous strategy. Science 275:1293{1295.Ca~namero, D. 1997. Modelling motivations and emo-tions as a basis for intelligent behavior. In Proceedingsof Agents'97. ACM.Damasio, A. R. 1994. Descartes' Error: Emotion,Reason and the Human Brain. Picador.Gadanho, S. C., and Hallam, J. 1998a. Emotion-triggered learning for autonomous robots. InCa~namero, D.; Numaoka, C.; and Petta, P., eds.,Workshop: Grounding Emotions in Adaptive Systems,31{36. SAB'98: From Animals to Animats.Gadanho, S. C., and Hallam, J. 1998b. Exploringthe role of emotions in autonomous robot learning. InCa~namero, D., ed., Emotional and Intelligent: TheTangled Knot of Cognition, 84{89.Goleman, D. 1996. Emotional Intelligence. Blooms-bury.Minsky, M. 1988. The Society of Mind. Touchstone.
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