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Abstract

This paper presents a new algorithm for attitude stabiliza-
tion and spin control of small satellites using only electro-
magnetic actuation. The approach takes advantage of the
time-varying nature of the problem (the geomagnetic field
changes through the orbit) by using the most appropri-
ate control effort (according to an energy-based criterion)
given the geomagnetic field and the satellite angular ve-
locity at each actuation instant. The proposed controller
is simulated and the results are discussed and compared
with other approaches presented in the literature.

1 Introduction

Small satellites are nowadays an easy and cheap way to
gain access to space and to all the advantages a satellite
can provide (telecommunications, environment monitor-
ing, etc). This class of LEO (Low Earth Orbit) satellites
may be controlled by strict interaction with the geomag-
netic field. A magnetic moment produced by coils placed
on the satellite will produce a resultant torque by inter-
action with the geomagnetic field, which may be used
for attitude control purposes. Nevertheless, this simple,
low power consumption approach poses several interest-
ing control difficulties, as the geomagnetic field viewed by
a satellite changes along its orbit. Besides this time de-
pendency, the mathematical description of this problem is
highly non-linear, and new control strategies are needed
to solve the attitude control demands of such a satellite.
This work has been carried out at the Intelligent Con-
trol Laboratory of ISR/IST under the ConSat project. A
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possible implementation on the PoSAT-1! satellite is en-
visaged.

2 Related Work

Several researchers have already begun to explore and
solve the control problems posed by a LEO small satellite.
Ong [4] proposes some intuitive control laws to tackle this
problem, but the actuation is very restricted and does not
take advantage of the time-varying nature of this prob-
lem. Steyn [5] approaches the control problem by using a
Fuzzy Logic Controller that achieves better results than
a Linear Quadratic Regulator (LQR), despite consider-
ing the constraint of actuating on a single coil at each
actuation time. This approach suggests that non-linear
and time-varying control methodologies should be further
explored so that a better problem understanding and pos-
sible solutions may be found. Wisniewski [8] compares
two non-linear solutions: sliding mode control and energy
based control, achieving better results than LQRs based
on linear periodic theory.

3 Problem Formulation

3.1 Coordinate systems

The following coordinate systems (C.S.) were used
throughout this paper:

Control C.S.: This is a right orthogonal coordinate sys-
tem built on the principal axes of the satellite with
the origin placed in the center of mass. The z axis is
the axis of the maximum moment of inertia, and the
z axis is the minimum.

Orbital C.S.: This is a right orthogonal coordinate sys-
tem fixed in the center of mass of the satellite. The z

1PoSAT-1 is the first Portuguese Satellite in orbit, developed in
a technology transfer program between University of Surrey and a
Portuguese industrial and educational consortium lead by INETI.



axis points at the zenith (is aligned with the center of
the Earth and points away of the Earth), the z axis
points in the orbital plane normal direction and its
sense coincides with the sense of the orbital angular
velocity vector.

Inertial C.S.: This is a right orthogonal coordinate with
origin in the center of mass of the satellite. The 2
axis is parallel to the rotation axis of the Earth and
points towards the North Pole. The z axis is parallel
to the line connecting the center of the Earth with
the Vernal Equinox, and points towards the Vernal
Equinox (the Vernal Equinox is the point where the
ecliptic crosses the Earth equator going from South
to North on the first day of spring).

3.2 Problem Description

The dynamics of a small satellite is well known and may
be expressed in the Control CS as [7]:

ICQCi = _CQci X ICQci + C]N-ctrl + CNgg + CIV-dist (1)
where I is the inertia tensor, “Ng»; the control torque,
°Ngg the gravity gradient torque and “Ng;s¢ a distur-
bance torque cause by aerodynamic drag and other effects.
€Q.; is the angular velocity of the Control CS w.r.t. the
Inertial CS written in the Control CS.

The control torque is obtained by electromagnetic inter-
action with the geomagnetic field [7],

®Netrt = “m X °B (2)

where “m is the control magnetic moment generated by
the satellite coils and will be referred as the control vari-
able throughout the paper. B is the geomagnetic field.

Equation 2 shows that the control torque is always per-
pendicular to the geomagnetic field, pointing out the non-
controllability of electromagnetic actuation. The direc-
tion parallel to the geomagnetic field is not controllable,
but the geomagnetic field changes along the orbit. This
implies that, e.g., yaw, is not controllable over the poles
but only a quarter of orbit later, approximately over the
equator. Those characteristics must be adequately ex-
plored to appropriately regulate the satellite attitude. A
time-varying predictive algorithm to determine the control
moment, which takes advantage of the geomagnetic field
changes, is proposed as a solution to this control problem.

4 The predictive algorithm

4.1 Motivation

Using the satellite total energy as a Lyapunov candidate
function [8] shows that its time derivative is given by:

Etot = CQZ‘O “Netrt (3)

where €€., is the angular velocity of the Control C.S.
w.r.t. the Orbital C.S. expressed in the Control C.S. The
equation Eior = 0 represents all the control torques that
lie on a plane that is perpendicular to “€2.,. Therefore,
imposing Etot < 0 is the same as constraining the control
torque to lie ’behind’ the plane perpendicular to Q..

Furthermore the control torque is obtained from (2),
therefore the control torque must always be perpendicular
to the geomagnetic field. As such, the solution of this
control problem must satisfy two requirements:

CQZ‘O chtrl <0
{ cBT chtrl -0 (4)

It can be seen from (4) that although the solution to
these constraints is not a linear space, it is neverthe-
less an unlimited subset of a plan embedded in a three-
dimensional space, in the general case, or it doesn’t exist if
Q.o is parallel to *Ne¢;. This is equivalent to state that
the solutions to this control problem are infinite in the
general case, suggesting a control algorithm that should
choose the optimum magnetic moment (or at least the
best one given all the constraints) at each actuation in-
stant to take advantage of the particular angular velocity
and geomagnetic field. This approach differs from most
of the others solutions available in the literature, which
use a constant control law, independently of the current
angular velocity and geomagnetic field.

4.2 Formulation

As in [5], the measurements of the current geomagnetic
field and satellite angular velocity are used to determine
the control magnetic moment. We start by defining a cost
function based on the kinetic energy? :

J = % QT Ag “Qeo (5)
where Aq is a positive definite gain matrix. More insight
will be given regarding the choice of the cost function,
when studying the algorithm stability in Section 4.3.
The dynamical model of the satellite is well known and
understood so it can be used to check the influence of the
magnetic moment on the angular velocity. The angular
velocity of the Control CS w.r.t. the Inertial CS can be
written as:

chi = cﬂco + cﬂoi
cﬂco 'I' c—Aoofzoi (6)
where ©A, = [®i, %Jo ko] is the direct cosine matrix

which transforms vectors expressed in the Orbit CS to
the Control CS. Small satellites are usually launched into

2The use of Aq instead of the inertia matrix was chosen due to
the possibility of defining relative weights for the angular velocities



polar orbits with small eccentricities. Therefore, the an-
gular velocity of the Orbital CS w.r.t. the Inertial CS is
approximately given by:

°Qpi = [wo 0 0]T (7)
where wg is the angular velocity of the satellite revolution
about Earth, Equation (6) becomes:

chi = cho + U-’Ocio

The derivative of Equation (8) now becomes:

(8)

chi = cho + U-’Ocio X cho (9)

substituting in the dynamics equation (1) and neglecting
the disturbance torque we get:

IV = I°Qu X °Qq;
b I(*Qe0 X woti)
4+  “Ngg + “Netri
Equation (10) is used to predict the evolution of the

angular velocity produced by a given control torque by
discretising it, considering a small time step At:

(10)

Qoo (t + At) — “Quo(t)
At

~ T7HIQ(E) X “Qei(t))

+ Qo (t) X wolio(t)
+ I71°Ngg (t) + I *Negri (8)
(11)

which may be written as:

“Qeo(t + At) = “Qo(t) + Atf(t) + O((At)?)

f(t) = I_l(ICQm-(t) X ch’(t))
+ cSIr_'o(t) X wocio(t)
+ I7'Ngg(t) + I *Negm (t) (12)

and the prediction equation is obtained by discarding the
higher order terms®:

Qoo (t + At) = Qo (t) + ALf(2) (13)

where the cflco is the predicted angular velocity. It can
be seen from (13) that it is possible to predict the effect
that a given control torque will produce on the angular ve-
locity. This prediction requires only the knowledge of the
current angular velocities and attitude, readily available
from the attitude determination system. Using the pre-
diction equation (13) and (2) it is possible to choose from
the available magnetic moments the one that minimizes
the cost function (5), once the geomagnetic field value is
available from the magnetometers.

3Recall that eq. (12) corresponds to the Euler method for nu-
merically solving first order differential equations.

4.3 Stability study

The total energy of satellite is composed of a kinetic term
and a potential term,

FEiotal = Erin + Epot-

Their sum, the total energy, can be considered con-
stant, since the dissipative forces and torques actuating
on a satellite are very weak. By dissipating the kinetic
energy, the total energy is also decreased. Since the sys-
tem is not fully controllable it is not possible to place the
satellite in a zero kinetic energy configuration and keep
it there because gravity-gradient torques will impose a li-
bration movement converting potential energy to kinetic
energy. All potential energy is converted to kinetic energy
during the libration movement. Should all kinetic energy
be dissipated by the predictive algorithm, the only stable
configuration for the satellite would be a minimum total
energy one (°k, = +°k, ).

There is, however, a situation under which the predic-
tive algorithm is not capable of dissipating energy, when
using on-off actuation and if the actuation instants are
coincident with zero kinetic energy configurations. This
situation can be avoided by guaranteeing that the libra-
tion movement period, which is a function of the inertia
moments and the satellite angular velocity around earth
[1], is different from the actuation period.

To show that the proposed algorithm is indeed global uni-
form asymptotical stable we start by considering a Lya-
punov candidate function as defined in (14). The kinetic
energy based on (5) will effectively be dissipated, since it
can be expressed as:

(14)

Epin(t + At) = Ekin (t + At)

+ O((At)*) + O((Aat)*) (15)
where Egin is the kinetic energy computed using the pre-
dicted angular velocity (13). Assuming that the minimiza-
tion algorithm is working correctly, we will have:

Epin(t + At) < Epin(t)
substituting (14) in (15) we get:

(16)

Eyin(t + At) — Erin < O((A#)?) +0((A1)*) (17)

dividing by At and assuming At as small as wanted, we
can write:

Ekin (t + At) - Ekin (t)

lim
At— oo At
O((At)? o((At)4
o e OLAD?) +O((A0Y
At— oo At
&
Ekin <0 (18)



Using the fact that Ekin < 0 and the fact that ©Negp
is chosen by minimizing (5) we will show that the total
energy is dissipated. Rewriting (14) we have:

Ekin = Etotal - Epot <0 (19)

from this we see that when E'pot < 0 the total energy
verifies Eiotar < 0. When E"mt > 0 we can only state
that Etotal < Epot- But Etotal = CQZOCthrl and
¢Netr is chosen as to minimize (5), the chosen value for
¢Netrt will also guarantee Etotal < 0, since the lowest
value for Fiotal implies the lowest value for the cost func-
tion (5) at the next time step. Unfortunately there does
not always exist a Nty the ensures Fiotar < 0 as dis-
cussed in section 4.1. In the rare occasions when Q..
is parallel to “Nggpny the algorithm is forced to choose
°m = [0 0 0] = ©Ngm which is the best available
solution.

In summary, when the potential energy decreases, the
total energy also decreases, since the kinetic energy is al-
ways decreasing. When the potencial energy increases, all
the solutions that decrease the total energy also decrease
the kinetic energy, and these solutions are found (when
they exist) by minimizing (5).

So far we have only shown that the system is globally
stable, but not asymptotically stable. To show asymp-
totical stability we realize that “m is computed based
on the curent angular velocity and geomagnetic field, so
‘m = g(“Qeco, “B(t)) and therefore the dynamics (1)
equation is periodic with the same period of the satellite’s
orbit. Using a periodic extension to Lyapunov stability
theory due to Krasovskii-LaSalle [3] we can show that the
system is indeed globally uniformly asymptotically stable
towards the reference °Q., = [0 0 0]T, °k, = +°k,.
The proof is similar to the one in [8] and will not be re-
peated here.

4.4 Implementation

4.4.1 Unrestricted actuators

For ideal actuators the minimization of the cost function
is done on a continuous unlimited subset of a plan. An
iterative method for the cost function minimization was
required, so a Genetic Algorithm (GA) [2] was imple-
mented. Any other iterative algorithm could be used but
the GA was chosen because of its fast convergence char-
acteristics, since in this problem the geomagnetic field is
constantly changing. The implemented GA uses the stan-
dard techniques and two special operators: elitism, under
which the best solution is always preserved and transmit-
ted to the next generation, and cloning, by which we in-
sert into the population the solution “m = [0 0 0]7.
Cloning is justified because it has been found through sim-
ulation that sometimes the algorithm would converge to
magnetic moments parallel to the geomagnetic field af-
ter the stabilization had been completed. The solution
°m = [0 0 0]T performs the same action (do nothing),

but preserves power, as it does not use the magnetorquers
for that purpose.

4.4.2 Restricted actuators

PoSAT-1 as other satellites of the UoSAT class has re-
duced control capabilities due to the restricted nature of
its actuators.

Satellite design factors have restricted the values of the
control magnetic moment to only three different values
of positive/negative polarity. Combining this restriction
with the single-coil-actuation the available set of magnetic
moments is reduced to only 18 different values (6 for the
x coils, 6 for the y coils and 6 for the z coils).

Power consumption is another serious restriction, which
reflects on PoSAT actuation capabilities. For each actu-
ation on a coil there must be at least a back-off time of
100 seconds to recharge the power supplies. This means
that the actuators have at most a duty cycle of 3%, since
the maximum actuation time is only 3 seconds. Consider-
ing these constraints, there are only 19 available magnetic
moments: the 18 already referred and the do nothing so-
lution ®“m = [0 0 0] . With such a restricted search
space it is not necessary to use an iterative minimization
algorithm, because all solutions may be evaluated and the
best one (the one that minimizes (5)) is chosen.

5 Simulation results

Several simulations were performed using ConSat simula-
tor [6] where perfect attitude determination is assumed
and no disturbance torques (ex: aerodynamic drag or
other effects) are considered.
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Figure 1: ~ evolution for Energy Based Control and the
Predictive Algorithm. Initial condition v = 60°, “Q. =
[0 0 0.0625]T. Desired reference v = 0°, °Q., =
[000]T.
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Figure 2: ~ and spin velocity evolution for the predic-

tive algorithm. Initial condition v = 60°,°Q., =
[0 0 0.02]T. Desired reference v = 0°,°Q., =
[0 0 0.02]T.

Simulations were performed for attitude stabilization
only and attitude stabilization with spin control, where
the used cost function was a variation from (5),

J = %CQZEfAQchef

Qrer =° Qo — [0 0 Wepin]T (20)

Figure 1 shows that the performance attained with the
predictive algorithm, for attitude stabilization only, is sim-
ilar to energy based control proposed by [8]. «, the angle
between the local vertical and the boom axis, is reduced
from 60° to less then 5° in only 3 orbits.

It is interesting to note that the results attained with

restricted actuators are similar to unrestricted actuators,
and since the computational effort involved is considerably
smaller, this algorithm is a valid solution for the available
on board computer resources.
For attitude stabilization and spin control the algorithm’s
libration damping performance is slightly reduced since 4
orbits are now necessary to reduce v to 5° and steady
state error of 2° is attained, while maintaining the spin
velocity at a reference of 0.02 rad/s. Figure 2 shows that
spin velocity oscillates around the reference while libration
is being damped but the set point is attained again as
soon as the perturbation is rejected and the oscillation
amplitudes reduced, being inferior to 0.0006 rad/s.

To test the algorithm spin control performance the
satellite was spinned-up from 0 to 0.02 rad/s with an ini-
tial v value of 5°. Simulation results plotted in Figure
3 show that the predictive algorithm takes less then 19.2
minutes or 12 actuations to set the spin velocity within a
neighborhood of 0.001 rad/s (top figure) and achieves a
final accuracy of less then 0.0005 rad/s (bottom figure).
These are encouraging results since the actuators restric-
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Figure 3: Spin velocity evolution for the predictive al-
gorithm. Initial condition v = 5°,°€., = [0 0 0]T.
Desired reference v = 0°,Q., = [0 0 0.02]T. The top
plot is a detailed view of the results during the first orbit.

tions are quite severe. However, the dissipated energy is
superior to energy based control since it is impossible to
generate a magnetic moment perpendicular to the geo-
magnetic field at all actuation instants.

6 Conclusions and future work

A new algorithm for attitude stabilization and spin control
was proposed and was shown to be asymptotically stable.
Simulation results showed good performance, when com-
pared to the algorithms proposed in the literature. For re-
stricted actuators the low computational demands allow
the implementation in the on board available computer
resources. The reduced computational needs of the algo-
rithm when used with restricted actuators suggest its use
also with unrestricted actuators. Guaranteeing that the
available set of control magnetic moments is perpendicu-
lar to the geomagnetic field can reduce the power require-
ments, which is a critical factor for small satellites. A
possible algorithm improvement is to use a time varying
set of magnetic moments, e.g. proportional to the angular
velocity. This way, large moments are available to quickly
reduce the satellite velocity, and small moments are avail-
able when the satellite will be near the desired set point
allowing for a precise control.
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