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Abstract 
  
An Expert Controller (EC) for the Operation of a recuperative 
glass furnace is introduced in this paper. The EC is part of an 
Integrated Operation and Control System, whose hierarchical 
architecture is also described, and is divided in two sub-
systems, a Fault Detection System, and a Process 
Optimisation System (POS). The POS architecture and 
operation, detailed in this paper, is based on a Genetic 
Algorithm, for solution search, and a learning algorithm, 
based on fuzzy set theory, to interpolate a cost function, 
which quantifies one of the objectives.  
 
 
1 Introduction 
 
Intelligent Control Systems are becoming more important in 
Process Industry due to higher quality product demands, 
stricter laws on pollutant emissions and sensor technological 
developments (increasing the amount and quality of available 
information). As an example, we find cement, [hasler], and 
gas production industries, [mclean]. Glass industry can not be 
an exception. The existence of sophisticated control systems, 
concerning furnace lifetime and environment conditions 
optimisation, is referred as a crucial aspect in the 
improvement of productivity and glass quality [heitor]. Glass 
furnaces Operation and Control are still performed only on 
the basis of the operator’s experience. An Operation and 
Control System that is intended to be an on-line aid to the 
operator, namely through a Process Optimisation System, is 
described in this paper. The long-term goal is to implement a 
completely automatic operation system. This system will be 
implemented in a recuperative furnace, with two groups of 
four natural gas burners, each controlling a temperature zone 
measured by a thermocouple in the side wall. The furnace has 
also an electrical booster system to increase its capacity and 
the glass quality. The furnace and the whole factory are being 

built under the project NOVOVIDRO, and are located at 
Marinha Grande, Portugal. 
      The paper is organised as follows: in section 2 it is 
described the operation and control hierarchical architecture 
under development, as well as its conceptual levels; in 
section 3 the Process Optimisation System and its theoretical 
support are explained, including Pareto optimality concepts 
and the evolutionary approach for multiobjective 
optimisation; in section 4, conclusions and future trends are 
referred. 
 
 
2 Operation and Control Hierarchical 
Architecture 
 
The functional hierarchic architecture of the Operation and 
Control System under development is presented in Figure 1. 
The conceptual levels shown there are the Process itself, the 
Goals, the Execution, the Analysis and the Operation level. 
 
2.1 Process 
 
The purpose of a glass furnace is to melt, using a temperature 
distribution, a composition, called batch. As a result, some 
chemical reactions occur, conditioning glass quality. To 
achieve natural gas energy maximum utilisation, combustion 
in the furnace must take place with a small excess air factor. 
At high temperatures glass becomes electrically conductor, 
due to the mobility of certain ions (e. g. lithium). By Joule 
effect glass temperature raises, leading to the formation of 
melting glass currents. Pressure inside furnace must be 
maintained at a certain level, above the atmospheric pressure, 
to avoid energy losses and refractory corrosion, and to assure 
good furnace operation.   
 
2.2 Goals 
 
Glass Industry has five main control goals: Glass Quality 
Maximisation, Thermal Efficiency Maximisation, 
Refractory and Furnace Lifetime Maximisation, 
Pollutants Production and Emission Minimisation and 



Energetic Consumption Minimisation. These objectives are 
interrelated, so the use of multicriteria or multiobjective 
techniques will be a natural approach. Some of the relations 
between control goals and process variables are identified in 
[farmer]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 – Operation and Control System Hierarchical 
Architecture. 

 
2.3 Execution 
 
This level includes low-level control loops and the operation 
of systems that actuate the process directly. There are, 
typically, four low-level control loops. These are the furnace 
pressure, glass level, air-to-natural gas ratio and zone 
temperatures control loops, whose actuation is interrelated. 
They are currently implemented in Programmable Logic 
Controllers (PLC’s).  
 
2.4 Analysis 
 
This block will supply quantitative information about process 
performance. It includes glass quality analysis, waste gas 
analysis, energetic balance and inside furnace visual 
analysis provided by an automatic vision system. 
 
2.5 Operation 
 
Furnace Operation is based on an Expert Controller divided 
in two sub-systems: a Fault Detection System, implemented 
by an expert system, and a Process Optimisation System 
(POS). In Figure 2 we depict the relationships between 
process state variables and also POS structure and 
information flows. In the figure, Cost Parameters specify 
the information related to the cost vector used to quantify 
goals (referred later), which is specified initially by the 
operator, and later by the POS; x is the Process State, 

described by a vector of feature values (e. g., air and gas 
flows, temperatures, flame length); xA is the state vector used 
in the analysis block; xO is the state vector used for process 
optimisation; f’(xO) is the cost vector computed from process 
data, and is used to complement and correct the used models 
(see 3.3); xSPC is an optimal solution candidate;  is 
the evaluation estimate of a candidate solution, x

)(ˆ
SPCxf

FD is the 
state vector used for fault detection read from sensors;  is 
the state vector used for fault detection computed from 
process analysis; x

'
FDx

C is the state vector used for low-level 
control. The output of the POS is the vector xSP of set-points 
for the low level controllers and sub-systems. The POS is 
described in the sequel. 
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xO has three components (m = 3), which are zone 1 
temperature, zone 2 temperature and applied electric voltage. 
f represents the control goals. Next, we describe the analysis 
proposed to estimate how close is the process from the 
control goals. 
 
Thermal efficiency maximisation: An on-line efficiency 
model is being designed, based on the furnace energetic 
balance, and will be used to predict performance changes, for 
different operating conditions. Being η ∈ [0, 1] the output of 
this model, a cost function can be obtained by: 
 
f1(temperature set points, electric voltage, recuperators 
efficiency)     1 - η 
 
Furnace and refractory lifetime maximisation: Although it is 
not possible to quantify how many years lifetime a furnace 
still has, some factors are known to increase refractory 
corrosion process, for instance, higher furnace temperatures 
or pressures. To achieve this objective we only have to ensure 
that these variables are maintained within some safety limits, 
and no other function must be defined. 
 
Pollutants production and emission minimisation: Pollutants 
production is mainly due to inefficient combustion (CO, CO2) 
or to thermal mechanisms (NOX). In the first case, the oxygen 
percentage in the waste gases can be monitored and the air-
to-natural gas relation adapted. NOX production is related 
with flame temperatures, and since these depend on the 
temperature set points, we define two more cost functions: 
 
f2     zone 1 temperature set point;  
f3     zone 2 temperature set point;  
 
Energetic consumption minimisation: It is desirable to make 
a balance, under an economic point of view, between natural 
gas and electric energy consumption. We then define 
 
f4(furnace load, temperature zones set points, electric voltage)           
 α.(electric energy consumption) + β.(natural gas 
consumption) 
 
α will vary according to daily changes in electric energy cost. 
 
Glass quality maximisation: We can quantify quality through 
the amount of defects in glass. These can be of three types, 
namely, Cord, due to faulty glass gathering or batch 
heterogeneity, Stone, due to refractory mixing with glass, 
caused by corrosion processes, and Blister, due to inadequate 
temperature distribution. The only defect that has a direct 
relationship with process variables, at furnace level, is the 
blister. Another function, to quantify blisters, can be defined: 
 
f5(batch recipe, furnace load, temperature zones set points, 
electric voltage)     Glass defects percentage 
 
which has to be less then a certain value, Pmax, defined 
according to the needs. 

In summary, and taking into account only the variables 
affected by the Process Optimisation System, the glass 
furnace MO problem can be stated as follows: 
 
x1      T1  ; zone 1 temperature 
x2      T2  ; zone 2 temperature 
x3      VE  ; applied electric voltage  

=∆
=∆

xO     ( x1, x2, x3 ) 
=∆

f      ( f1, f2, f3, f4, f5 ) 
=∆

=∆
 
Minimise f(xO) 
subject to f5(xO) < Pmax. 
 

= ∆ 3.2 Genetic Algorithms applied to Multiobjective 
Optimisation 
 
MO problems usually do not have a unique solution, rather a 
set of alternative ones, whose elements are such that they 
cannot have all its components simultaneously improved. 
This is known as Pareto Optimality concept [fons1], and is 
based on the following definitions:  
Given a vector function f(x) = (f1(x), ..., fN(x)), x ∈ Ωm, 
 
Definition Pareto Dominance: a vector u = f(xu) is said to 
dominate another vector v = f(xv), and is denoted u p< v, iff u 
is partially less a v, which means: 

{ } { i v iu ,  N ..., 1,   i           i v iu , N ..., 1,   i } <∈∃∧≤∈∀  ▄ 
Definition Pareto Optimality: a given decision vector, xu, is 
said to be a Pareto-optimal, iff there is no other xv, for which 
v = f(xv) dominates u = f(xu) ▄ 
 

= ∆ 
The set of all Pareto-optimal vectors is called non-inferior or 
non-dominated set of the problem. Genetic Algorithms (GA), 
[gold], are frequently used for MO, [fons1]. They begin with 
a population of P randomly initialised individuals (set-points 
solution candidates) to which they apply selection, crossover, 
mutation and elitism operators. These and other concepts will 
be briefly reviewed under the particular framework of this 
application.  

= ∆ 

= ∆ 
 
3.2.1 Population 
 
Each problem variable is represented by a string of bits, and 
an individual is formed by the concatenation of these ones, 
forming a chromosome. Since a string of l bits represents 
values in the range [0, 2l – 1], a linear mapping for an interest 
interval, [Umin, Umax], must be performed. Variables 
restrictions can be handled by the appropriate choice of Umin 
and Umax. These limits, the discretization step (corresponding 
to the desired accuracy) of each variable, q, and the number 
of bits used are shown in Table 1. 
 
3.2.2 Selection and Reproduction 
 

= ∆ 
Since in natural selection only the fittest survive, in GA’s an 
individual is selected to generate offspring based on its 
fitness (see 3.2.7). Each selected individual is reproduced for 
crossover. 



Variable Set-Point Umin Umax q l 
1SPx  zone 1 

temperature  
1500 ºC 1600 ºC 1 ºC 7

2SPx  zone 2 
temperature 

1500 ºC 1600 ºC 1 ºC 7

3SPx  Electric 
voltage 

50 V 122 V 7 V 4

 
Tab. 1 – MO parameters 

 
3.2.3 Crossover 
 
Crossover, between two selected individuals, consist of 
interchanging, with some probability, chromosome parts, as 
is exemplified next: 
 
 
 
 
 

Fig. 3 – Crossover 
 
3.2.4 Mutation 
 
Mutation consists in changing, with some probability, each 
chromosome bit value, after crossover. 
 
3.2.5 Elitism 
 
Elitism is an operator that intends to preserve best individuals 
over the run of the algorithm. Giving generations n and n+1, 
the M% worse individuals in n+1 will be substituted by all 
individuals in n with highest fitness. 
 
3.2.6 Niche Formation 

 
Share: to avoid an uncontrolled growth of a dominant specie, 
i. e., individuals with the same genetic characteristics (genetic 
drift [gold]), some techniques (called niche formation) that 
favour population distribution by the several peaks of the cost 
function, are used. In one of those techniques, each individual 
fitness is weighted by the contribution of all its neighbours 
closer a σshare. To process that contribution, between two 
individuals, x and xi, the sharing function of Figure 4 is used. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 – Sharing function 
 

It was established that an individual, xi, is closer a σshare from 
another, x, if all parameters in xi are at a distance (in an 
Euclidean way) shorter a σshare%, relatively to each range, 
from the correspondent parameters in x. Sharing s(.) is then 
computed based on the average distance between parameters 
of both individuals. The derated fitness is then given by: 
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where h(x) is the fitness without sharing. Selection is 
performed based on hd(x). 
Mating restrictions: As in nature, it’s unlike that individuals 
from different species attempt to mate. It was decided to 
restrict mate only between individuals less a σmate from each 
other, if they exist. 
 
3.2.7 Fitness assignment – population ranking 
 
The evolution of a population in a run of a GA is guided by 
individuals fitness. A strategy of fitness assignment, based on 
population ranking, is used, [fons1]. 
Rank: a preference vector, g = [ g1, ..., gp ], assigns goals to 
priorities, in the objectives. For g = 

[ ], which implies , 

and, for an objective vector, f, in the same way, each g

)g ..., ,(g..., ),g ..., ,(g pnp,p,11n1,1,1 N  n
p

1  i
i =∑

=

i = 
 assigns priority i and goal g)g ..., ,(g ini,i,1 i,j to the objective 

fi,j. This implies, without loss of generality, that objective 
functions might be permuted. For a vector u, the components 

that achieve goals in priority i, are denoted by , and the 

other ones by . In another vector, v, the correspondent 

components will be  and . Ranking is based on the 
preference relation defined by Preferability [fons1]. 

u

u∪
i

u

u∩
i

u

v∪
i

u

v∩
i

 
Definition Preferability: A given objective vector u is said to 
be preferable to another, v, for a preference vector g, , 

iff: 

v u
g
 p
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with u1, ...,p-1 = [ u1, ..., up-1 ], v1, ...,p-1 = [ v1, ..., vp-1 ] and g1, 

...,p-1 = ( g1, ..., gp-1 )  ▄ 
 
Preferability establishes that between two objective vectors 
high priority goals must be achieved first. The next level is 

0 1 0 0 0 1 1 0 1 0 0 
0 1 0 0 0 1 1 0 1 0 0 

0 1 0 0 0 
1 1 0 1 0 00 1 0 0 0 
1 1 0 1 0 0Individual j: 

Individual j+1: 
k (random) 

Sharing 
s(d( x, xi )) 

σshare

Distance 
d( x, xi ) 

1 



then tested, until the lowest priority is reached, when the 
values are compared according to Pareto notions. With these 
definitions, and as in [fons1], we have in our case g = [g1, g2] 
= [ (0, 1600, 1600, 0), (Pmax) ]. Since f5 presents restrictions, 
and it represents an important goal, it is assigned the highest 
probability. The individuals ranking is done according to the 
rule [fons1]: being ru

(t) the number of preferable individuals 
to an element u, in iteration t, then rank(u, t) = ru

(t). This way, 
preferable individuals have rank 0. Fitness is calculated by an 
exponential transformation of the rank. Once all individuals 
objectives are evaluated, its ranks and fitness are computed, 
then niche formation techniques, selection, crossover, 
mutation and elitism operators are used to proceed to the next 
generation. This process continues until maximum generation 
number is achieved, when one solution is selected. If more 
than one solution has the maximum fitness, then the selection 
is done according to f5 and/or with the one that assures 
stability of operation, an important factor in this kind of 
process. 
 
3.3 Learning unknown functions – a fuzzy approach 
 
In each GA iteration, a number of individuals, at most the 
size of the population must be evaluated. This means that cost 
functions must be determined. For functions f1 to f4 this can 
be measured. On the other hand, only some initial points of 
function f5 (glass defects percentage) are known, due to a 
priori tests. It should not be expected that individuals fall 
always on these points. Besides, these values may change in 
time. Although there is not an analytical model for function 
f5, and this function is time variant, there is some operator’s 
heuristic knowledge on the relationship between glass defects 
and process variables. This way, for each type of batch 
recipe, tables are built whose inputs are fuzzy variables 
(furnace load) and crisp variables (temperature set points, 
applied voltage). For each table the output is a fuzzy variable, 
representing a prediction of glass defects. This approach, 
fuzzy based, is justified because it allows, not only the 
integration of the referred heuristic knowledge, but also to 
overcome the high complexity of modelling these kind of 
systems, whose parameters are hardly determinable and time 
variant.  
      Using the typical rules whose syntax is 
 

( ) (l)
5

1 i

(l)
i

(l) B is Defects  A is iattribute  R THEN IF ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

=
I  

 
where attribute is respectively recipe, furnace load, zone 1 
temperature set-point, zone 2 temperature set-point and 
electric voltage, tables may be initialised by operator 
interaction and furnace tests. The remaining points are 
interpolated. New acquired information is used to complete 
and correct old one. For this purpose, the simplified fuzzy 
algorithm, described by [branco2], it’s used for learning by 
examples. The membership functions used are triangular, 
symmetric and uniformly distributed.  
 
 

3.4 Multiobjective Optimisation Algorithm 
 
The MO algorithm has two main tasks: 
 

Solution search: provides the result of the GA running, 
a Pareto-optimal set-points vector, using the tables to 
provide estimates of f5.  

• 

• Learning: new information, resulting from process data, 
is used to update the tables that implement function f5. 

 
The algorithm runs as long as the furnace is active, 
permanently trying to improve its performance. At time t we 
denote by  the vector of set-points being used in low 
level control, by  the new vector of set-points calculated 

by the GA, by  the state vector used for optimisation and 

by  the same vector but with measured variables replaced 
by new set-points, . There are two important time 
intervals in the algorithm: T

(t)
SPx

SPx
(t)
Ox

'
Ox

SPx
PROC, defined as the estimated 

time delay required for the effect of the inputs to become 
visible (which has the magnitude of some hours) and TMOS, 
the wait time delay if no set-point change was made (of about 
tenths of minutes).  
Each iteration of the algorithm can be described as follows: 
 

1.  ←   ; Store information  OLDx (t)
SPx

  ←  OLDf ) )(f ..., ),(f (  )( (t)
5

(t)
1

(t)
OOO xxxf =

2.  ←  Solution search  SPx

3. ? ; Checks if new  OLDg
'
O

'
O

'
O fxxxf     ) )(f̂ ..., ),(f (  )(ˆ

51 p=

 3.1 Yes:   ←  ; solution is  (t)
SPx SPx

 3.2  No:  Wait TMOS  ; expected to be  
  3.2.1 Go to 1.    ; preferable to the  
         ; current one 
4. Wait TPROC 
5.  ←  NEWx (t)

SPx
 )f ..., ,f (  NEW5NEW1=NEWf ←  

    ) )(f ..., ),(f (  )( (t)
5

(t)
1

(t)
OOO xxxf =

6. ε  ) )(f̂ f ( 2
5NEW5 <− '

Ox  ? ; Checks if the  

 ;predicted f5 is  
 ;similar to the real  
 ; one 
 6.1  No: Add to training set ) f, (

NEW2
 x

NEW

 6.1.1 Learning 
 6.1.2  ? ; If not, checks if  OLDfNEWf

g
    p

     ; the current state  
     ; is preferable 
   ; to the previous  
   ; one 
 6.1.2.1 No: ←   (t)

SPx OLDx



 6.1.2.2 Wait TPROC 
 6.1.2.3 Go to 1. 
7. Wait TMOS 
8. Go to 1 

 
 
4. Conclusions and Future Trends 
 
The concepts presented in this paper are currently being 
implemented in a real furnace. Its construction has been only 
recently terminated, and there are not, up to date, software 
and hardware means that allow data gathering for testing the 
proposed algorithms. This is actually our major goal. Future 
work will include the integration in the EC of other types of 
information, such as image data, so that a more accurate 
relation between control goals, state variables and 
manipulated set-points can be determined. The integration 
with the factory information system (namely BannIV 
[perrea]) is also being studied, to allow automatic access to 
production data like glass defects. 
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